Large N Limits

 An important theoretical tool: some models
simplify in the limit of a large number of
degrees of freedom.

 One class of such large N limits is for theories
where fields transform as vectors under O(N)
symmetry with actions like
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e Describes magnets with O(N) symmetry near
their second-order phase transitions.



The O(N) vector model is solvable in the limit

where N is sent to infinity while keeping gN
fixed.

Flow from the free d<4 scalar model in the UV
to the Wilson-Fisher interacting one in the IR.

For N=1 it describes the critical Ising model;
for N=2 the superfluid transition; for N=3 the
critical Heisenberg model.

The 1/N expansion is generated using the
Hubbard-Stratonovich auxiliary field.
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e In d<4 the quadratic term may be ignhored in
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* Induced dynamics for the auxiliary field
endows it with the propagator




 The 1/N corrections to operator dimensions

are calculated using this induced propagator.
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Operator Dimensions in d=3

e Sisthe O(N) singlet quadratic operator.
e Tisthe symmetric traceless tensor:
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Conformal Bootstrap Results

e From Kos, Poland, Simmons-Duffin, arxiv:
1307.6856

O(N) Singlet Bounds
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Interacting O(N) Model in d>47

Scalar large N model with 3(¢¢")* interaction has
a good UV fixed point for 4<d<®6. paris

In 4+ c.dimensions  s=a+ i
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So, the UV fixed point is at a negative coupling
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A more complete definition of the O(N) model

in 4<d<6 was proposed in my paper with L. Fei
and S. Giombi, arXiv: 1404.1094



In the O(N) model,
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It is positive not only for 2<d< 4,
but also for 4<d<®6.




Perturbative IR Fixed Points

e Work in ¢=6-¢ with O(N) symmetric cubic

scalar theory .- é{w)ﬂ \ %({:—;a#g)? + L6t + 2o

e The beta functions rei, Giombi, Ik
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 Forlarge N, the IR stable fixed point is at real
couplings

g2+ = 691



RG Flows:

 Here is the flow pattern for
N=2000

 The IR stable fixed points go
off to complex couplings for
N < 1039. Large N expansion
breaks down very early!
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* The dimension of sigmais 4 =2-3+ 55

* At the IR fixed point thisis 2+10

 Agrees with the large N result for the
O(N) model in d dimensions:

Petkou (1995) oy X ['(d)
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 For N=0, the fixed point at imaginary coupling
may lead to a description of the Lee-Yang edge
singularity in the Ising model. wichael Fisher (1978)

e For N=0, 4. is below the unitarity bound 2-

e For N>1039, the fixed point at real couplings is
consistent with unitarityin ¢—=6—«
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Since the UV lagrangian is cubic, does the theory
make sense non-perturbatively?

In d=5 there is evidence from bootstrap that
there is a theory with N=500 and higher. u, su

When the CFT is studied on s? or i x5! the
conformal coupling of scalar fields to curvature
renders the perturbative vacuum meta-stable. In
6-¢ dimensions, scaling dimensions have
imaginary parts of order exp (- A N/g).

Work in progress with Giombi, Huang, Pufu,
Tarnopolsky.



Large N Fermionic Models

e Solvable vector large N limit also applies to
the Gross-Neveu CFT and conformal QED with
or without the Chern-Simons Term.



The Gross-Neveu Model
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In 2 dimensions it has some similarities with
the 4-dimensional QCD.

It is asymptotically free and exhibits dynamical
mass generation.

Another 2-dimensional model with similar
physics is the O(N) non-linear sigma model.

In dimensions slightly above 2 both the O(N)
and GN models have weakly coupled UV fixed
points.



2+ € expansion

The beta function of the Gross-Neveu model and
the critical value of the coupling are
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N =NTr1 is the number of components of the
Dirac fermions.

The 2+¢ expansion for scaling dimensions of
simplest operators, like the fermion or fermion
bilinear, have been developed. see areview by Moshe and zinn-

Justin.

Similar expansions in the O(N) sigma model. srezin,

Zinn-Justin



The Gross-Neveu-Yukawa Model

e The GN model is in the same universality class

as the GNY model Zinn-Justin; Hasenfratz, Hasenfratz, Jansen, Kuti,
Shen
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 Has an IR fixed point in 4-& dimensions
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e Using the two € expansions, we can study the
Gross-Neveu CFT in the range 2<d<4.

g2 = 1672€




1/N Expansion

e Both the Gross-Neveu and the scalar O(N)
models have “double-trace” interactions
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e Use the Hubbard-Stratonovich transformation
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* Induced quadratic term for the auxiliary field
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e At the critical point the induced propagator is
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e The 1/N expansion is found using this induced

propagator. In the GN model, cracey
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e This result agrees with the two € expansions.



t Hooft Limit and Planar Graphs

Another famous large N limit is for “planar”
theories of N x N matrices with single-trace
interactions.

This has been explored widely in the context
of large N QCD: SU(N) gauge theory coupled
to matter.

g.v N2 must be held fixed.

The ‘t Hooft double line | @
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e Each vertex contributes factor ¥N, each edge
(propagator) ~1/N, each face (index loop)~N.

 The contribution to free energy of the
Feynman graphs which can be drawn on a

two-dimensional surfaces of genus g scales as
N2(1-g)



Glueballs in 3d SU(N) Theory

 For SU(N) the ol
corrections are PP
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21 years of AdS/CFT Correspondence

e Starting in 1995 -- D-brane/black hole and D-
brane/black brane correspondence. rolchinski

Strominger, Vafa; Callan, Maldacena; ...

e A stack of N Dirichlet 3-branes realizes V=4
supersymmetric SU(N) gauge theory in 4
dimensions. It also creates a curved RR
charged background of type |IB theory of
closed superstrings
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Large N Is Important
 Matching the brane tensions gives 1* = 42,,Na”

Gubser, IK, Peet; IK; ...

 The ‘t Hooft coupling makes a crucial
appearance. In the large N limit, the effects of
guantum gravity are suppressed by powers of
1/N?

e A serendipitous simplification for 9yu/V > L
the background has a small curvature.

* This permitted calculation of two-point functions
in strongly coupled gauge theory using classical
gravitational absorption. i

e |n the r->0 limit, which corresponds to low
energies, approaches AdS; x S°. maldacena



The AdS/CFT Duality

Maldacena; Gubser, IK, Polyakov; Witten

The low-energy limit taken directly in the

geometry. Maldacena #ﬁ*%ﬂﬁnhh
' & i@ \
Relates conformal gauge theory in 4 . -@@M@ »
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Sitter space times a 5-d compact space. For ﬁ% Qﬁﬂ ;&33}'
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the N=4 SYM theory this compact spaceisa '« @ﬁg@'@%’

5-d sphere. “&& s

The geometrical symmetry of the AdS, space
realizes the conformal symmetry of the
gauge theory.

Allows us to “solve” strongly coupled

gauge theories, e.g. find operator dimensions A. =2+ /4 + m2[2



Some Tests of AdS/CFT

String theory can make definite, testable
predictions!

The dimensions of unprotected operators, which
are dual to massive string states, grow at strong

couplingas (ngymvN) /2

Verified for the Konishi operator dual to the
lightest massive string state (n=1) using the exact
integrability of the planar /N=4 SYM theory. cromoy,

Kazakov, Vieira; ...

Similar successes for the dimensions of high-spin
operators, which are dual to spinning strings in
AdS space.
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