Probing double parton scattering via associated open charm and bottom production in ultraperipheral *pA* collisions

Emmanuel G. de Oliveira

Federal University of Santa Catarina Florianópolis – Brazil

in collaboration with: Edgar Huayra P. & Roman S. Pasechnik 1905.03294 Accepted in EPJC

October 10, 2019

Summary

2 Ultra-Peripheral Collisions (UPCs) and Single Parton Scattering (SPS)

3 Double Parton Scattering (DPS)

A Results and Conclusions

Motivation

Double Parton Scattering in pp collisions

Pocket formula (simplest approximation):

$$\sigma_{p_1p_2}^{DPS} = \frac{N}{2} \frac{\sigma_A^{SPS} \sigma_B^{SPS}}{\sigma_{\text{eff}}}$$

Measurements of the effective cross section

ar	ATLAS	
õ	AFS ($\sqrt{s} = 63$ GeV, 4 jets, 1986)	•
X	UA2 ($\sqrt{s} = 630$ GeV, 4 jets, 1991)	$ \rightarrow $
сî.	CDF ($\sqrt{s} = 1.8$ TeV, 4 jets, 1993)	⊢ ,
ate	CDF ($\sqrt{s} = 1.8$ TeV, $\gamma + 3$ jets, 1997)	H-+-H
to to	DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2010)	H-1-1
S	LHCb ($\sqrt{s} = 7$ TeV, $J/\psi \Lambda_c^+$, 2012)	H-7-H
a	LHCb ($\sqrt{s} = 7$ TeV, J/ ψD_s^+ , 2012)	HVH
ü	LHCb ($\sqrt{s} = 7$ TeV, J/ ψ D ⁺ , 2012)	
fi	LHCb ($\sqrt{s} = 7$ TeV, $J/\psi D^0$, 2012)	
Ś.	ATLAS ($\sqrt{s} = 7$ TeV, $W + 2$ jets, 2013)	+▲-+-1
g.	CMS ($\sqrt{s} = 7$ TeV, $W + 2$ jets, 2014)	
ner	DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + b/c + 2$ jets, 2014	4) — M —
	DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2014)	HTH
۵,	DØ ($\sqrt{s} = 1.96$ TeV, $J/\psi + J/\psi$, 2014)	⊢ ₩→I
t (ATLAS ($\sqrt{s} = 8$ TeV, $Z + J/\psi$, 2015)	֥
Ċ.	LHCb ($\sqrt{s} = 7\&8$ TeV, $\Upsilon(1S)D^{0,+}$, 2015)	H-7-8
e	$DO(\sqrt{s} = 1.96 \text{ TeV}, J/\psi + \Upsilon, 2016)$	HVN
Ľ	DØ ($\sqrt{s} = 1.96$ TeV, $2\gamma + 2$ jets, 2016)	· · · · · · · · · · · · · · · · · · ·
Ľ.	ATLAS ($\sqrt{s} = 7$ TeV, 4 jets, 2016)	I _1≜1 _1
e e	ATLAS ($\sqrt{s} = 8$ TeV, $J/\psi + J/\psi$, 2017)	HAH
×	CMS ($\sqrt{s} = 8$ TeV, $\Upsilon + \Upsilon$, 2017)	\leftrightarrow
ш	LHCb ($\sqrt{s} = 13$ TeV, $J/\psi + J/\psi$, 2017)	3
	CMS ($\sqrt{s} = 8$ TeV, $W^{\pm}W^{\pm}$, 2018)	1 >
	ATLAS ($\sqrt{s} = 8$ TeV, 4 leptons, 2018)	·····
	L	0 5 10 15 20 25 20
		0 0 10 15 20 25 3

 $\sigma_{\rm eff}$ [mb] Figure: Compiled by the ATLAS Collaboration; PLB, 790, 595.

Ultra-Peripheral Collisions (UPCs)

- Ultra-peripheral: impact parameter *b* is greater that sum of the radii of the nuclei.
- Therefore, the interaction is mostly electromagnetic.
- The interacting photon is approximated as a real one $(Q^2 = 0)$.

Equivalent photon flux

Weizsäcker-Willians photon flux is given by:

$$\frac{d^3 N_{\gamma}(\boldsymbol{\omega},\vec{b})}{d\boldsymbol{\omega} d^2 \vec{b}} = \frac{Z^2 \alpha k^2}{\pi^2 \omega b^2} \Big[K_1^2(k) + \frac{1}{\gamma^2} K_0^2(k) \Big], \qquad k = \frac{b \, \boldsymbol{\omega}}{\gamma} \,,$$

- Z: nuclear charge (lead: 82);
- ω : photon energy;
- Lorentz factor: $\gamma = \sqrt{s/2m_p}$.

Now, we work with the photon momentum fraction ξ :

$$\xi = \frac{2\omega}{\sqrt{s}}$$

We define the following distribution:

$$\frac{d^3 N_{\gamma}(\xi, \vec{b})}{d\xi d^2 \vec{b}} = \frac{\sqrt{s}}{2} \frac{d^3 N_{\gamma}(\omega, \vec{b})}{d\omega d^2 \vec{b}}$$

Single Parton Scattering (SPS) in UPCs

• In the photon-gluon interaction we consider that the nucleus (*A*) survives intact and that the proton breaks.

We would like to have the factorized formula (after integral over the impact parameter outside the nucleus).

$$d\sigma_{pA \to Q\bar{Q}AX} = \int d\xi \, dx N(\xi) g(x, Q^2) \, d\hat{\sigma}_{\gamma_S \to Q\bar{Q}}(\omega, x)$$

Results and Conclusions

Single Parton Scattering (SPS) in UPCs

Figure: Feynman diagrams for: (a) direct contribution and (b) resolved photon contribution

Direct contribution of the SPS in UPCs

• Direct contribution for the production of $c\bar{c}$

$$\frac{d\sigma_{pA\to XA+c\bar{c}}^{\text{Direct, }\gamma g}}{dy_c dy_{\bar{c}} dy_{\bar{L}}^2 dp_{\perp}^2} = \int d^2 \vec{b} \,\Theta(b-R_A-R_p) \frac{dP_{pA\to XA+c\bar{c}}(b)}{dy_c dy_{\bar{c}} dp_{\perp}^2},$$

$$\begin{array}{ll} \frac{dP_{pA \to XA + c\bar{c}}(b)}{dy_c dy_{\bar{c}} dp_{\perp}^2} &=& \int d^2 \vec{b}_{\gamma} d^2 \vec{b}_g \, \delta^{(2)}(\vec{b} + \vec{b}_g - \vec{b}_{\gamma}) \int d\xi dx N_{\gamma}(\xi, \vec{b}_{\gamma}) G_g(x, \vec{b}_g) \\ &\times& \frac{d\hat{\sigma}_{\gamma g \to c\bar{c}}}{dy_c dy_{\bar{c}} dp_{\perp}^2} \end{array}$$

Direct contribution of the SPS in UPCs

Suppose the factorization with narrow b dependence:

 $G_g(x, \vec{b}) = g(x)f_g(\vec{b})$

Then all the impact parameter dependence is a factor very close to 1:

$$\frac{d\sigma_{pA\to XA+c\bar{c}}^{\text{Direct, }\gamma g}}{dy_c dy_{\bar{c}}} = \int d\xi dx \overline{N}_{\gamma}(\xi) g(x) \frac{d\hat{\sigma}_{\gamma g\to c\bar{c}}}{dy_c dy_{\bar{c}}} \int d^2 \vec{b} \,\Theta(b-R_A-R_p) T_{g\gamma}(\xi,\vec{b})$$

Where we define:

$$T_{g\gamma}(\xi,\vec{b}) = \frac{1}{\overline{N}_{\gamma}(\xi)} \int d^{2}\vec{b}_{\gamma} \Theta(b_{\gamma} - R_{A}) N_{\gamma}(\xi,\vec{b}_{\gamma}) f_{g}(\vec{b} - \vec{b}_{\gamma}),$$

$$\overline{N}_{\gamma}(\xi) = \int d^2 b \,\Theta(b-R_A) N_{\gamma}(\xi,\vec{b}) \,.$$

Parton distributions

Results and Conclusions

Resolved photon contribution in UPCs

Partons inside the photons

Distributions at next-to-leading order provided by Aurenche, Fontannaz, and Guillet (AFG04)

Resolved contribution of the SPS in UPCs

We have one more convolution:

$$\frac{d^2 \sigma_{pA \to XA + c\bar{c}}^{\text{Resolved, }gg}}{dy_c dy_{\bar{c}}} = \int d\xi \, dx \, \overline{N}_{\gamma}(\xi) \, g(x) \int dz \, g^{\gamma}(z) \, \frac{d^2 \hat{\sigma}_{gg \to Q\bar{Q}}}{dy_c dy_{\bar{c}}} \\ \times \int d^2 \vec{b} \, \Theta(b - R_A - R_p) T_{g\gamma}(\xi, \vec{b})$$

$$\frac{d^2 \sigma_{pA \to XA + c\bar{c}}^{\text{Resolved}, q\bar{q}}}{dy_c dy_{\bar{c}}} = \sum_{q=u,d,s} \int d\xi \, dx \overline{N}_{\gamma}(\xi) \bar{q}(x) \int dz \, q^{\gamma}(z) \, \frac{d^2 \hat{\sigma}_{qq \to Q\bar{Q}}}{dy_c dy_{\bar{c}}} \\ \times \int d^2 \vec{b} \, \Theta(b - R_A - R_p) T_{g\gamma}(\xi, \vec{b})$$

SPS Results

• In this calculation we considered that the *A*(Pb) comes from the left and the *p* comes from the right.

SPS vs. DPS processes in UPCs

SPS $(c\bar{c})$

SPS $(c\bar{c}b\bar{b})$

SPS vs. DPS in UPCs

 $\sigma^{SPS} \approx \alpha_{\rm em} \alpha_s^3 g(x) \overline{N}_{\gamma}(\xi)$

 $\sigma^{DPS} \approx \alpha_{\rm em}^2 \alpha_s^2 g^2(x) \overline{N}_{\gamma}^2(\xi)$

Enforce large $c\bar{c}b\bar{b}$ mass to suppress the SPS contribution.

E.g., large $y_c - y_b$.

DPS in UPCs

Figure: A schematic illustration of the $A + p \rightarrow A + (c\bar{c}b\bar{b}) + X$ cross section in *pA* UPCs.

$$\frac{d\sigma_{pA\to XA+c\bar{c}+b\bar{b}}}{dy_c dy_{\bar{c}} dy_b dy_{\bar{b}}} = \int d^2\vec{b}\,\Theta(b-R_A-R_p)\frac{dP_{pA\to XA+c\bar{c}}(b)}{dy_c dy_{\bar{c}}} \times \frac{dP_{pA\to XA+b\bar{b}}(b)}{dy_b dy_{\bar{b}}}$$

DPS in UPCs

Figure: Schematic illustration of the geometry of a collision pA-UPCs.

$$\frac{d\sigma_{pA\to XA+c\bar{c}+b\bar{b}}}{dy_c dy_{\bar{c}} dy_b dy_{\bar{b}}} = \int d^2b\,\Theta(b-R_A-R_p)\int d^2\vec{b}_{\gamma,1}\,\Theta(b_{\gamma,1}-R_A)\int d^2\vec{b}_{\gamma,2}\,\Theta(b_{\gamma,2}-R_A)$$
$$\times \int d\xi_1 d\xi_2 dx_1 dx_2 N_{\gamma\gamma}(\xi_1,\vec{b}_{\gamma,1};\xi_2,\vec{b}_{\gamma,2})G_{gg}(x_1,\vec{b}_{g,1};x_2,\vec{b}_{g,2})\frac{d\hat{\sigma}_{\gamma g\to c\bar{c}}}{dy_c dy_{\bar{c}}}\frac{d\hat{\sigma}_{\gamma g\to b\bar{b}}}{dy_b dy_{\bar{b}}}$$

DPS in UPCs

Neglecting correlations:

$$\begin{split} &N_{\gamma\gamma}(\xi_1, \vec{b}_1; \xi_2, \vec{b}_2) &= N_{\gamma}(\xi_1, \vec{b}_1) N_{\gamma}(\xi_2, \vec{b}_2) \,, \\ &G_{gg}(x_1, \vec{b}_1; x_2, \vec{b}_2) &= G_g(x_1, \vec{b}_1) G_g(x_2, \vec{b}_2) \end{split}$$

$$\frac{d\sigma_{pA\to XA+c\bar{c}+b\bar{b}}}{dy_c dy_{\bar{c}} dy_b dy_{\bar{b}}} = \int d\xi_1 dx_1 d\xi_2 dx_2 \frac{1}{\sigma_{\text{eff}}(\xi_1,\xi_2)} \overline{N_{\gamma}(\xi_1)g(x_1)\frac{d\hat{\sigma}_{\gamma_B\to c\bar{c}}}{dy_c dy_{\bar{c}}}} \times \overline{N_{\gamma}(\xi_2)g(x_2)\frac{d\hat{\sigma}_{\gamma_B\to b\bar{b}}}{dy_b dy_{\bar{b}}}}$$

Double Parton Scattering (DPS)

Results and Conclusions

Effective cross section in UPCs

$\sigma_{\rm eff}$ in UPCs

$$\sigma_{\rm eff}(\xi_1,\xi_2) \equiv \left[\int d^2b\,\Theta(b-R_A-R_p)T_{g\gamma}(\xi_1,b)T_{g\gamma}(\xi_2,b)\right]^{-1}$$

where the overlap is given by:

$$T_{g\gamma}(\xi,\vec{b}) = \frac{1}{\overline{N}_{\gamma}(\xi)} \int d^{2}\vec{b}_{\gamma} \Theta(b_{\gamma}-R_{A}) N_{\gamma}(\xi,\vec{b}_{\gamma}) f_{g}(\vec{b}-\vec{b}_{\gamma}) \,.$$

Effective cross section in UPCs

DPS results

DPS vs SPS comparison

Double Parton Scattering (DPS)

Results and Conclusions

DPS ratio results

Double Parton Scattering (DPS)

Results and Conclusions

Single rapidity distributions

Integrated cross sections

\sqrt{s} (TeV)	8.16	50	100	
SPS UPC $c\bar{c}$ production in mb				
Direct	3.10	10.46	15.75	
Resolved	0.35	1.81	3.03	
Total	3.45	12.27	18.78	
DPS UPC $c\bar{c}b\bar{b}$ production in nb				
Total	3.55	54.1	136	

Table: Table with the integrated cross sections for DPS and SPS production processes.

Conclusion

- Ultra-peripheral collisions provide a new approach to study of double parton scattering.
- We derived the effective cross section in UPCs.
- The main difference is that it is strongly dependent on the the photon fraction of longitudinal moment. (Not a constant.)
- The naïve pocket formula would not work.
- The effective cross section is quite large.
- We are working now on the AA case.

Than you very much!

Special thank to the MITP and the organizers for the invitation and support.

