Introduction

Theoretical framework

Numerical results

Summary 00

Treatment of charm production in higher-orders at tree-level within k_T -factorization approach

Rafał Maciuła

Institute of Nuclear Physics PAN, Kraków, Poland

in collaboration with A. Szczurek based on Phys. Rev. D100 (2019) no.5, 054001

Heavy-Quark Hadroproduction from Collider to Astroparticle Physics, MITP Program 7-11 October 2019, Mainz, Germany

Introduction ●0	Theoretical frame	ework	Numerical results	Summary 00
Motivation beh	hind			
Heavy F	Flavours at high	energies		
Heavy-flav • amon	vours (HF) \Rightarrow open or $_{ m ng}$ the most important tool	hidden charm s in high-energy µ	and beauty \Rightarrow study of <i>pp</i> , <i>pA</i> and <i>AA</i> collisions	QCD
	REMNANTS	in	proton-proton interactions:	
$p_1 \longrightarrow$	Q = c, b	HIDDEN quarkonia	 Important tests of our u various aspects of QCD bound state ⇒ non-pert aspects of QCD calculat 	nderstanding of quarkonium urbative ions
	$\bar{Q} = \bar{c}, \bar{b}$		• heavy quark mass \Rightarrow per	rturbative QCD
$p_2 \longrightarrow$	REMNANTS	$ D, B meson $ $ OPEN $ $ \Delta_c, \Lambda_b baryon $	 ● B and D mesons and/or ⇒ non-perturbative aspendence hadronization in QCD 	Λ-baryons ects of
Productio	on of HFs is one of the	most actively	, decay	
studied to	pics at the LHC		hadronization	
indirect semilept	t method \Rightarrow leptons from tonic decays of heavy flave	ours decay		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
direct n or heavy	method \Rightarrow open heavy me y baryons	sons	Laure and the second second	
charm a and forv	at the LHC at central (ALI ward rapidities (LHCb)	CE)	, , , , , , , , , , , , , , , , , , ,	-j
	,			2 / 27

Introduction	
00	

Numerical results

Summary 00

Motivation behind

Studies of charm production at the LHC

our last years activity in Heavy Flavours in pp-collisions

- model of calculations of charm cross section at high energies: the standard k_T -factorization approach \Rightarrow
 - $2 \rightarrow 2$ pQCD mechanisms with off-shell partons and unintegrated PDFs independent parton fragmentation picture
 - + independent parton fragmentation picture
 - inclusive D (p_T and rapidity distributions) Phys.Rev.D87 (2013) no.9, 094022
 - $D\bar{D}$ -pair production (correlation studies) Phys.Rev.D87 (2013) no.9, 094022
 - nonphotonic leptons (semileptonic decays) PoS DIS2013 (2013) 169
 - double charm production (DPS) Phys.Rev.D87 (2013) no.7, 074039
 - triple charm production (MPI) Phys.Lett.B772 (2017) 849-853
 - D associated with one and two jets (DPS) Phys.Rev.D96 (2017) no.7, 074013
 - associated D and B (DPS) Phys.Rev.D97 (2018) no.9, 094010
 - inclusive Λ_c (ALICE and LHCb) <code>Phys.Rev.D98</code> (2018) no.1, 014016
 - ${\small \bullet}~$ inclusive J/ ψ (color evaporation model) <code>Phys.Rev.D99</code> (2019) no.5, 054014

in this talk: A new scheme of the k_T -factorization calculations of charm cross section with the higher-order $2 \rightarrow 3$ and $2 \rightarrow 4$ mechanisms Phys.Rev.D100 (2019) no.5, 054001

Introduction	

Numerical results

Summary 00

Charm cross section at high energies

• The leading-order (LO) partonic processes for $Q\overline{Q}$ production \Rightarrow gluon-gluon fusion dominant at high energies

• Main classes of the next-to-leading order (NLO) diagrams:

the NLO/NNLO corrections of a special importance for charm production!

<u>the observables of the interest</u> \Rightarrow single-particle transverse momentum (inclusive spectra) correlation observables (less inclusive $\Delta \varphi$, M_{inv} , pair p_T)

collinear approach:

- stat of the art for single particle spectra at NLO (FONLL, GM-VFNS)
- MC@NLO+PS for correlations
- NNLO not available for charm/bottom

k_T -factorizaton:

- exact kinematics from the very beginning
- correlation observables directly calculable
- some contributions even beyond the NLO available (also differentially)

k_T -factorization (high-energy factorization) approach

off-shell initial state partons \Rightarrow

initial transverse momenta explicitly included $k_{1,t}$, $k_{2,t} \neq 0$

- additional hard dynamics coming from transverse momenta of incident partons (virtualities taken into account)
- very efficient for less inclusive studies of kinematical correlations
- more exclusive observables, e.g. pair transverse momentum or

azimuthal angle very sensitive to the incident transverse momenta

multi-differential cross section

$$\begin{aligned} \frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} &= \int \frac{d^2 k_{1,t}}{\pi} \frac{d^2 k_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \frac{1}{|\mathcal{M}_{g^*g^* \to Q\bar{Q}}|^2} \\ &\times \delta^2 \left(\vec{k}_{1,t} + \vec{k}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \mathcal{F}_g(x_1, k_{1,t}^2, \mu) \mathcal{F}_g(x_2, k_{2,t}^2, \mu) \end{aligned}$$

- $\mathcal{F}_g(x, k_t^2, \mu)$ (unintegrated) transverse momentum dependent PDFs
- the LO off-shell matrix elements $\overline{|\mathcal{M}_{\sigma^*\sigma^*} \rightarrow Q\bar{Q}|^2}$ available (analytic form)
- the higher-order matrix elements only at tree-level (KaTie Monte Carlo generator)
- part of higher-order (real) corrections might be effectively included in uPDF ٩ pair creation

flavour excitation

, with aluon emission للالالالالال *agaga* hard scatter لفقققققققق

Unintegrated parton distribution functions (uPDFs)

Most popular models:

- Jung, Salam, Hautmann (CCFM, broad range of x)
- Jung, Hautmann, et al. (DGLAP + PB, broad range of x)
- Kimber-Martin-Ryskin (DGLAP-BFKL, broad range of x)
- Kwieciński-Martin-Staśto (BFKL-DGLAP, rather small x-values)
- Kutak-Staśto, Kutak-Sapeta (BK+saturation, only small x-values)

As a default set: Kimber-Martin-Ryskin (KMR) approach:

- calculated from collinear PDFs (most up-to-date PDF sets can be used)
- the unique feature: $k_t > \mu$ included \Rightarrow hard emissions from the uPDF
- in fact, only the KMR model effectively includes real higher-order contributions that correspond, e.g. for charm, to associated production with one (NLO) and two (NNLO) jets (or minijets)

 k_{T} -factorization + KMR uPDF works very well for inclusive open charm and bottom mesons at the LHC (as well as for correlation observables) Introduction

Theoretical framework

Numerical results

Summary 00

Unintegrated parton distribution functions (uPDFs)

aluon, x = 0.01

KMR-MMHT2014lo (solid

PB-NLO-set1 (dashed

- both models are similar only at intermediate k_T 's
- region of $k_T \leq 1$ GeV \Rightarrow completely artificial
- KMR-MMHT2014lo \Rightarrow large $k_t > \mu$ contributions included (the only model in the literature)
- PB-NLO-set1 $\Rightarrow k_t > \mu$ strongly suppressed (as in the case of all other models of uPDFs from the literature)

The k_T -factorization approach and the typical procedure

Standard calculations of charm production within the leading-order $2 \rightarrow 2$ mechanism:

- off-shell hard matrix element: $g^*g^*
 ightarrow car{c}$ mechanism only
- extra soft emissions from the uPDFs included
- extra hard emissions from the uPDFs allowed (but in fact present only in the KMR uPDFs)
- part of (real) higher-order corrections effectively included (but only within the KMR uPDFs)

Open charm meson at the LHCb experiment:

- PB-NLO-set1 \Rightarrow the data points significantly underestimated
- MR-CT14lo ⇒ very good description of the LHCb data!

Numerical results

The k_T -factorization approach and the typical procedure

 k_T -factorization: $g^*g^* \to c\bar{c}$ + KMR uPDF with $k_T > \mu$ + Peterson FF for $c \to D$

Uncertainties due to the collinear PDFs (different models)

- here we compare MMHT2014lo and CT14lo PDFs
- visible differences for different models of PDFs used in the KMR calculations
- Iow-p_T data better described by the KMR-CT14lo uPDF

 Summary

The k_T -factorization approach and the typical procedure

 $k_{T}\text{-}\mathsf{factorization:}~g^{*}g^{*}\to c\bar{c}$ + KMR uPDF with $k_{T}>\mu$ + Peterson FF for $c\to D$

Uncertainties due to the collinear PDFs (different orders)

here we compare MMHT2014lo, MMHT2014nlo and MMHT2014nnlo PDF fits
 again visible differences for the three different PDF fits: LO, NLO and NNLO
 it is not clear in the k_T-factorization which of them is the most appropriate
 low-p_T data better described by the NLO and NNLO MMHT2014 fits

The k_T -factorization approach and the typical procedure

 $k_{T}\text{-}\mathsf{factorization:}~g^{*}g^{*}\to c\bar{c}$ + KMR uPDF with $k_{T}>\mu$ + Peterson FF for $c\to D$

Uncertainties due to the scales

- we set the scales $\mu = \mu_R = \mu_F$ in three different ways
- here we show only results for the central values of these choices
- visible differences obtained at low transverse momenta

Numerical results

The k_T -factorization approach and the typical procedure

 k_T -factorization: $g^*g^* \to c\bar{c} + \text{KMR}$ uPDF with $k_T > \mu + \text{Peterson FF}$ for $c \to D$ Shapes of the correlation distributions for $D\bar{D}$ pair production

● different PDF sets ⇒ similar quality description of the LHCb data

Numerical results

The k_T -factorization approach and the typical procedure

 k_T -factorization: $g^*g^* \to c\bar{c} + \text{KMR}$ uPDF with $k_T > \mu + \text{Peterson FF}$ for $c \to D$ Shapes of the correlation distributions for $D\bar{D}$ pair production

Invariant mass and azimuthal angle distributions sensitive to the choice of the scales

The k_T -factorization approach and the new scheme

An alternative scheme of the calculation of the HF cross sections in the k_T -factorization: The main idea is to include higher-order corrections at the level of hard matrix elements with simultaneous limiting of the corresponding contributions incorporated in the uPDFs

• Due to the lack of the full NLO and/or NNLO framework of the k_T -factorization, within the present methods this can be done only at tree-level

We include and sum up:

- LO: $g^*g^* \rightarrow c\bar{c}$
- NLO: $g^*g^* \rightarrow gc\bar{c}$
- NNLO: $g^*g^* \rightarrow ggc\bar{c}$

The 2 \rightarrow 3 and 2 \rightarrow 4 mechanisms with PYTHIA regularization for minijets: $F_{sup}(p_T) = p_T^4 / (p_{T0}^2 + p_T^2)^2$

- the higher-orders with hard extra emissions come from the higher-order matrix elements, while only the softer extra emissions are included via the uPDF
- the limitations of the emissions from uPDFs \Rightarrow merging LO, NLO and NNLO
- a special conditions are introduced to avoid a possible double-counting

Double counting exclusion (DCE) cuts:

- $k_T < \mu_F$ for $g^*g^* \rightarrow c\bar{c}$, where μ_F is the factorization scale,
- $k_T < p_T$ of the minijet for $g^*g^* \rightarrow gc\bar{c}$,
- $k_T < p_T^{\min}$ of the two minijets for $g^*g^* \to ggc\bar{c}$.

transverse momenta of (mini)jets from the uPDF are constrained to be always subleading

14 / 27

Numerical results

Summary 00

The k_T -factorization approach and the new scheme

An alternative scheme of the calculation of the HF cross sections in the k_T -factorization:

Role of the DCE cuts (limiting emissions from the uPDFs)

 $2 \rightarrow 2$ mechanism + KMR-MMHT2014nnlo uPDF:

- damping of the cross section
- change of the azimuthal angle distribution

Introduction 00 Theoretical framework

Numerical results

Summary 00

The k_T -factorization approach and the new scheme

An alternative scheme of the calculation of the HF cross sections in the k_T -factorization:

Role of the DCE cuts (limiting emissions from the uPDFs)

- $2 \rightarrow 3 \text{ and } 2 \rightarrow 4 \text{ mechanisms} + \text{KMR-MMHT2014nnlo uPDF:}$
 - a huge damping of the cross section
 - DCE cuts stronger than the pure $k_T < \mu_F$ limitation
 - large double counting in 2 \rightarrow 4 than in 2 \rightarrow 3 case

The k_T -factorization approach and the new scheme

An alternative scheme of the calculation of the HF cross sections in the k_T -factorization:

Role of the DCE cuts (limiting emissions from the uPDFs)

 $2 \rightarrow 2$ mechanism + PB-NLO-set1 uPDF:

- much smaller effect (almost negligible) than in the case of the KMR uPDF
- still small change of the azimuthal angle distribution (small angles)

The k_T -factorization approach and the new scheme

An alternative scheme of the calculation of the HF cross sections in the k_T -factorization:

Role of the DCE cuts (limiting emissions from the uPDFs)

 $2 \rightarrow 3 \text{ and } 2 \rightarrow 4 \text{ mechanisms} + \text{PB-NLO-set1 uPDF:}$

smaller double counting than in the case of the KMR uPDF

Introduction 00 Theoretical framework

Numerical results

Summary 00

The k_T -factorization approach and the new scheme

An alternative scheme of the calculation of the HF cross sections in the k_T -factorization:

Numerical illustration of the DCE cuts (KMR uPDF)

Numerical results

Summary 00

The k_T -factorization approach and the new scheme

An alternative scheme of the calculation of the HF cross sections in the k_T -factorization: KMR-MMHT2014nnlo vs. PB-NLO-set1 (DCE cuts included)

2 → 2 ⇒ visible (rather small) differences in results for the two uPDF models
2 → 3 and 2 → 4 ⇒ results for both uPDFs almost coincide

Introduction	

Numerical results

Summary

The k_T -factorization approach

Comparison of the standard and the new scheme of the k_T -factorization calculations: 2 \rightarrow 2 with $k_T > \mu$ vs. 2 \rightarrow 2 + 3 + 4 with DCE cuts

- both prescriptions coincide for pt > 3 GeV
- the differences at small transverse momenta may be driven by the differences in collinear PDFs taken as an input for the calculation of the unintegrated PDFs
- both prescriptions lead to similar shapes of the azimuthal angle distribution (differences in the normalization comes from the region of small p_T 's)

Numerical results

The k_T -factorization approach vs. collinear approach

Hypothesis:

Large NNLO corrections to the transverse momentum distribution

- no loops \Rightarrow do not look at small transverse momenta
- at larger p_T 's tree-level collinear $2 \rightarrow 2+3$ very similar to the full collinear NLO
- simple model predicts large NNLO effects on the p_T -slope in the collinear approach
- these collinear predictions are similar to the k_T -factorization results (even with the standard scheme for the k_T -factorization calculations)

Introduction	Theoretical framework	Numerical results	Summary
00	0000	000000000000000000000000000000000000000	00

The k_T -factorization approach

Comparison of the new scheme of the k_T -factorization calculations with the LHCb data: 2 \rightarrow 2 + 3 + 4 with DCE cuts (KMR-MMHT2014nnlo and PB-NLO-set1 uPDFs)

- within the new scheme we significantly improve description of the LHCb data (including correlations) with the PB-NLO-set1 uPDF
- here the PB-NLO-set1 uPDF is used only as an example, similar conclusions can be drawn for other (non KMR type) models of uPDFs from the literature
- (at present) proposed scheme is the only way to describe LHC charm data within the k_T -factorization approach when the uPDF different than the KMR is used

Introductio	on

Numerical results

Summary 00

The k_T -factorization approach

Comparison of the new scheme of the k_T -factorization calculations with the LHCb data: 2 \rightarrow 2 + 3 + 4 with DCE cuts (KMR-MMHT2014nnlo and PB-NLO-set1 uPDFs)

 correlation distributions also very well described with the new scheme and PB-NLO-set1 uPDFs

Introduction	

Numerical results

Summary

The k_T -factorization approach

Comparison of the new scheme of the k_T -factorization calculations with the LHCb data: 2 \rightarrow 2 + 3 + 4 with DCE cuts (KMR-MMHT2014nnlo and PB-NLO-set1 uPDFs)

 correlation distributions also very well described with the new scheme and PB-NLO-set1 uPDFs

Introduction	Theoretical framework	Numerical results	Summary
00		೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	●○
Conclusions			

- We have considered charm production at the LHC within the k_T -factorization approach beyond the standard leading-order $g^*g^* \rightarrow c\bar{c}$ partonic mechanism
- For the first time we have included in this context next-to- and next-to-next-to-leading order mechanisms for the differential distributions
- We have proposed a new scheme for calculating the charm quark cross section including in addition the 2 → 3 and 2 → 4 higher-order contributions at the tree-level
- To the best of our knowledge this is first attempt to study the charm cross section at the LHC differentially beyond the NLO

One of the open question from Sven-Olaf Moch slides:

What can calculations beyond collinear factorization for heavy-quark production in k_T -factorization provide?

- k_T -factorization does not help to reduce uncertainties of the theoretical predictions for charm production
- some extra informations relevant for charm at the LHCb can be extracted from less inclusive studies of correlation observables for which k_T-factorization is very efficient
- the kinematical regime relevant for prompt neutrino flux that corresponds to the very forward production at high energies (linking very small x_1 and very large x_2) certainly is not the regime for which the k_T -factorization is dedicated to and where the k_T -factorization is expected to be valid

Our activity in prompt neutrino flux calculations

 \ldots and let me give you references to our papers which are strictly connected to the subject of prompt neutrino flux:

- V.P. Goncalves, R. Maciuła, R. Pasechnik, and A. Szczurek Mapping the dominant regions of the phase space associated with cc̄ production relevant for the prompt atmospheric neutrino flux Phys. Rev. D96 (2017) no.9, 094026
- R. Maciuła, and A. Szczurek D-meson production asymmetry, unfavoured fragmentation, and consequences for prompt atmospheric neutrino production Phys. Rev. D97 (2018) no.7, 074001
- V.P. Goncalves, R. Maciuła, and A. Szczurek From D_s^{\pm} production asymmetry at the LHC to prompt ν_{τ} at IceCube Phys. Lett. B794 (2019) 29-35
- R. Maciuła, A. Szczurek, J. Zaremba, and I. Babiarz Production asymmetry of ν_τ neutrinos and ν_τ antineutrinos from a fixed target experiment SHiP arXiv:1910.01402 [hep-ph]

Hopefully, some of our results might be interesting for you and worth to notice

Thank You for attention!

