F Hautmann

TMD hadron structure and heavy quark production

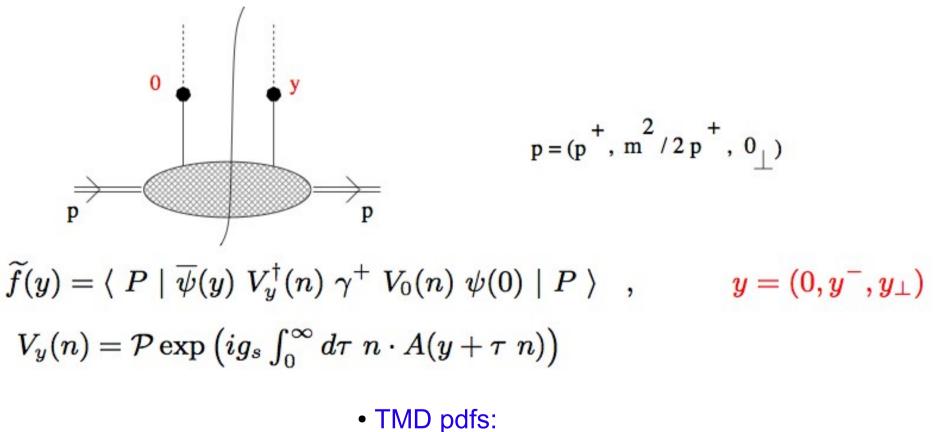
MITP Program "Heavy Quark Hadroproduction from Collider to Astroparticle Physics"

Mainz Institute for Theoretical Physics, October 2019

Overview

UNINTEGRATED, OR TRANSVERSE MOMENTUM DEPENDENT (TMD), PARTON DISTRIBUTION FUNCTIONS

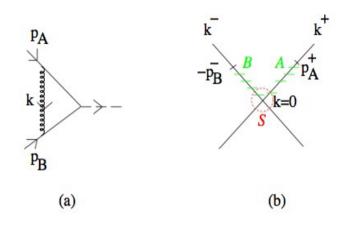
• Parton correlation functions at non-lightlike distances:



$$f(x,k_{\perp}) = \int \frac{dy^{-}}{2\pi} \frac{d^{d-2}y_{\perp}}{(2\pi)^{d-2}} e^{-ixp^{+}y^{-} + ik_{\perp} \cdot y_{\perp}} \tilde{f}(y)$$

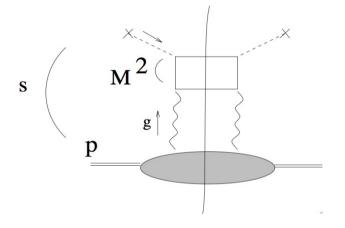
Evolution equations for TMD parton distribution functions

low q_T : $q_T \ll Q$



 $lpha_s^n \ln^m Q/q_T$

high \sqrt{s} : $\sqrt{s} \gg M$



 $(lpha_s \ln \sqrt{s}/M)^n$

CSS evolution equation

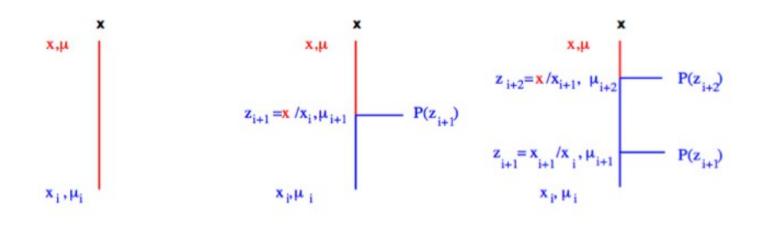
(or variants – SCET, ...)

CCFM evolution equation (or BFKL, BK, JIMWLK, ...)

R. Angeles-Martinez et al., "Transverse momentum dependent (TMD) parton distribution functions: status and prospects", Acta Phys. Polon. B46 (2015) 2501

TMDs from Parton Branching (PB)

Jung, Lelek, Radescu, Zlebcik & H, "Collinear and TMD quark and gluon densities from parton branching", JHEP 1801 (2018) 070



PB evolution equation motivated by

 applicability over large kinematic range from low to high transverse momenta

applicability to exclusive final states and Monte Carlo event generators

TMD distributions (unpolarized and polarized)

TABLE I

(Colour on-line) Quark TMD pdfs: columns represent quark polarization, rows represent hadron polarization. Distributions encircled by a dashed line are the ones which survive integration over transverse momentum. The shades of the boxes (light gray (blue) versus medium gray (pink)) indicate structures that are T-even or T-odd, respectively. T-even and T-odd structures involve, respectively, an even or odd number of spin-flips.

QUARKS	unpolarized	chiral	transverse
U	$f_{\rm i}$		h_1^{\perp}
L		(g_u)	h_{1L}^{\perp}
т	f_{1T}^{\perp}	g_{1T}	$(h_{ir})h_{ir}^{\perp}$

TABLE II

(Colour on-line) Gluon TMD pdfs: columns represent gluon polarization, rows represent hadron polarization. Distributions encircled by a dashed line are the ones which survive integration over transverse momentum. The shades of the boxes (light gray (blue) versus medium gray (pink)) indicate structures that are T-even or T-odd, respectively. T-even and T-odd structures involve, respectively, an even or odd number of spin-flips. Linearly polarized gluons represent a double spin-flip structure.

GLUONS	unpolarized	circular	linear
U	(f_1^g)		$h_1^{\perp g}$
L		$\left(g_{u}^{s}\right)$	$h_{1L}^{\perp g}$
т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_{17}^g, h_{17}^{\perp g}$

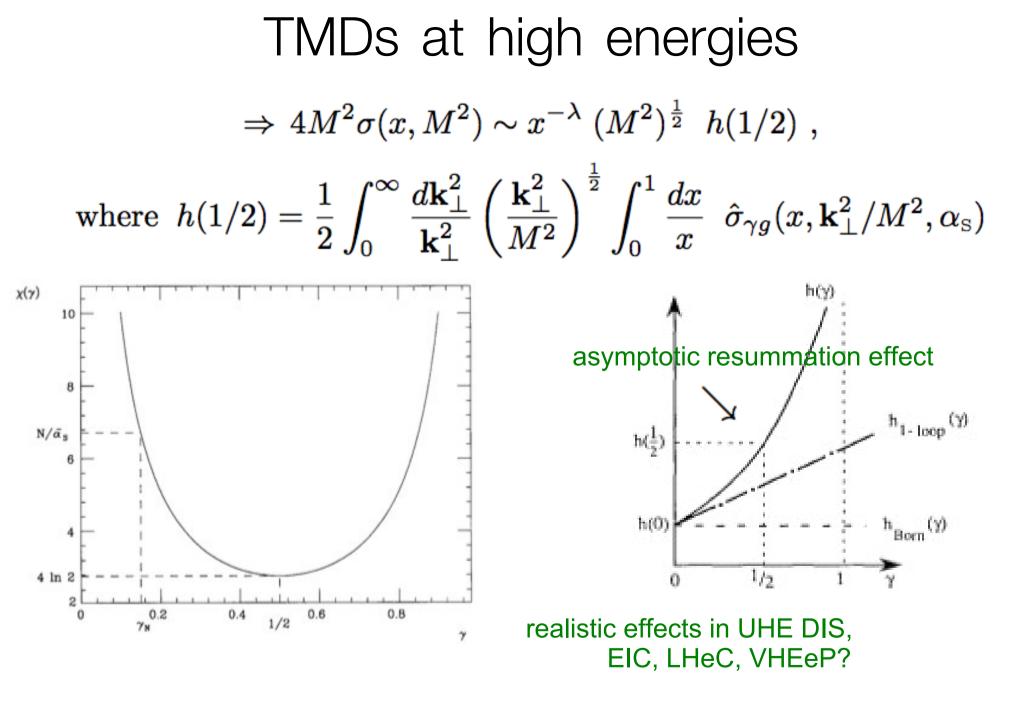
R. Angeles-Martinez et al., "Transverse momentum dependent (TMD) parton distribution functions: status and prospects", Acta Phys. Polon. B46 (2015) 2501

Outline of this talk

• TMD effects at high \sqrt{s} and at low qT

PB approach

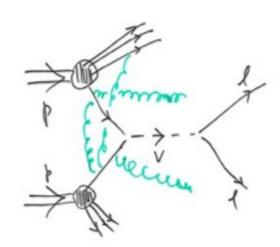
INTRODUCTION TMDs at high energies Ex.: heavy flavor electroproduction for $s \gg M^2 \gg \Lambda_{\rm QCD}^2$ $\gamma + h \to Q + \bar{Q} + X$ $4M^2 \ \sigma(x,M^2) = \int d^2 \mathbf{k}_\perp \int_{-}^1 rac{dz}{z} \ \hat{\sigma}_{\gamma g}(x/z,\mathbf{k}_\perp^2/M^2,lpha_{
m s}(M^2)) \ \mathcal{A}_{g/h}(z,\mathbf{k}_\perp)$ where TMD gluon distribution is given by Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution: $\lambda
ightarrow 4 \, C_A \, rac{lpha_{
m S}}{\pi} \, \ln 2$ $\mathcal{A}_{g/h}(x,\mathbf{k}_{\perp}) \sim \frac{1}{2\pi} e^{-\lambda \ln x} \, (\mathbf{k}_{\perp}^2)^{\gamma-1}$ $\gamma \rightarrow \frac{1}{2}$



NB: - incorporate sub-asymptotic, finite-x terms \rightarrow CCFM evolution

- dense-medium modifications in nucleons and nuclei \rightarrow nonlinear evolution

TMDs for low qT



Ex.: Drell-Yan production qT spectra for Q >> qT

$$\frac{d\sigma}{d^2\mathbf{q}_T dQ^2 dy} = \sum_{i,j} \frac{\sigma^{(0)}}{s} H(\alpha_{\rm S}) \int \frac{d^2\mathbf{b}}{(2\pi)^2} e^{i\mathbf{q}_T \cdot \mathbf{b}} \mathcal{A}_i(x_1, \mathbf{b}, \mu, \zeta) \mathcal{A}_j(x_2, \mathbf{b}, \mu, \zeta) + \{\mathbf{q}_T - \text{finite}\} + \mathcal{O}\left(\frac{\Lambda_{\rm QCD}^2}{Q^2}\right)$$

 μ)

where
$$\frac{\partial \ln \mathcal{A}}{\partial \ln \sqrt{\zeta}} = K(\mathbf{b},$$

Collins-Soper-Sterman (CSS) evolution

and
$$\frac{d \ln A}{d \ln \mu} = \gamma_f(\alpha_s(\mu), \zeta/\mu^2)$$
, $\frac{dK}{d \ln \mu} = -\gamma_K(\alpha_s(\mu))$ RG evolution
 ζ cusp anomalous dimension

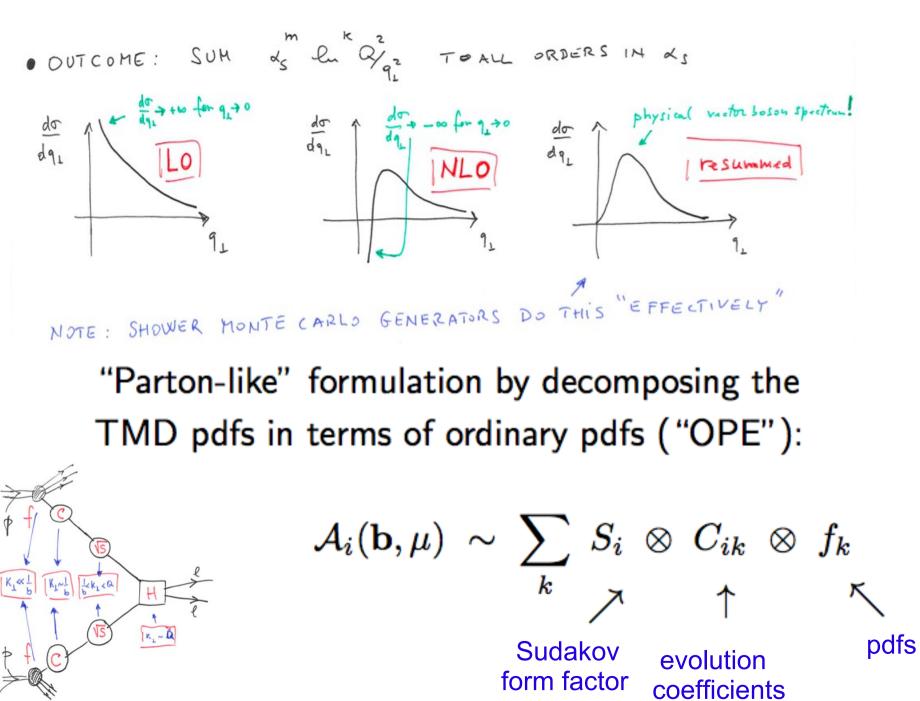
$$- \mathcal{F}_{k} = \frac{\partial}{\partial e_{1} \delta_{3}} \mathcal{F}_{f} \quad \text{i.e.} \quad \mathcal{F}_{f}(\mathcal{I}_{1}(\mu), \tilde{\mathcal{I}}_{\mu}) = \mathcal{F}_{f}(\mathcal{I}_{1}(\mu), 1) - \frac{1}{2} \mathcal{F}_{k} \ell_{m} \tilde{\mathcal{I}}_{m}$$
• Soft Collinear Effective Theory (SCET) provi

alternative approach leading to same results

F Hautmann: Mainz Institute for Theoretical Physics, October 2019

provides

TMDs for low qT



From color-neutral to color-charged final states

Color neutral:

 $rac{1}{5}$ $rac{$

Color charged:

• New long-time correlations in color-charged case:

$$\left(\frac{d\sigma}{d^4q}\right)_{t\bar{t}} = \sum_{ija_1a_2} \int d^2 \mathbf{b} \ e^{i\mathbf{q}_T \cdot \mathbf{b}} \ \int dz_1 \int dz_2 \ S(Q,\mathbf{b}) \ f_{a_1} \otimes [\operatorname{Tr}(H\Delta)C_1C_2]_{ija_1a_2} \otimes f_{a_2}$$

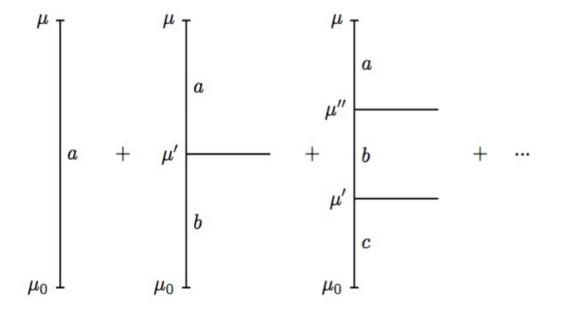
- Generate azimuthal correlations
- Observable for Δp_{\perp} high compared to $\Lambda_{\rm QCD}$?

F Hautmann: Mainz Institute for Theoretical Physics, October 2019

soft gluons coupling

initial and final states

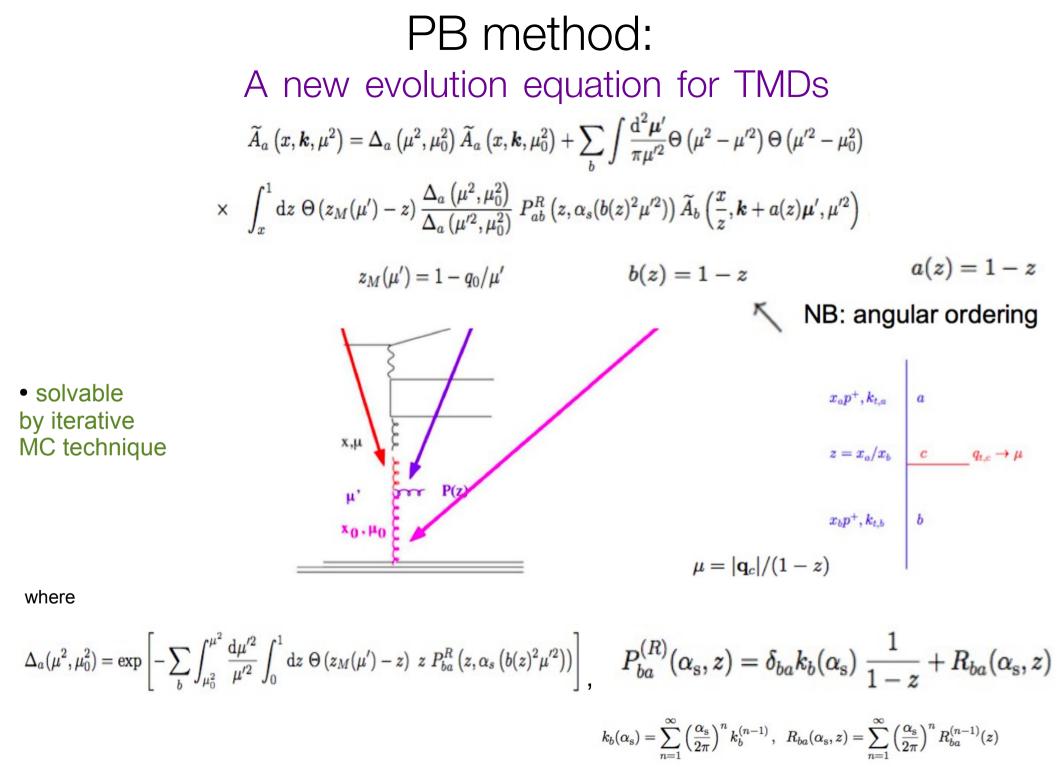
II. The Parton Branching (PB) approach



– how to describe TMD evolution in a PB formalism?

- construct the analogue of a parton shower for TMDs?

- connection with DGLAP collinear evolution?



Non-resolvable emissions and unitarity method

• Introduce resolution scale z_M , where $1 - z_M \sim \mathcal{O}(\Lambda_{\rm QCD}/\mu)$.

• Classify singular behavior of splitting kernels $P_{ab}(z, \alpha_s)$ in non-resolvable region $1 > z > z_M$:

$$egin{aligned} P_{ab}(lpha_{
m S},z) &= D_{ab}(lpha_{
m S})\delta(1-z) + K_{ab}(lpha_{
m S})\;rac{1}{(1-z)_+} + R_{ab}(lpha_{
m S},z) \ \end{aligned}$$
 where $\int_{0}^{1}rac{1}{(1-z)_+}\;arphi(z)\;dz &= \int_{0}^{1}rac{1}{1-z}\;[arphi(z)-arphi(1)]\;dz \end{aligned}$

and $R_{ab}(\alpha_{\rm S}, z)$ contains logarithmic and analytic contributions for $z \rightarrow 1$

• Expand plus-distributions in non-resolvable region and use sum rule $\sum_{c} \int_{0}^{1} z P_{ca}(\alpha_{s}, z) dz = 0$ (for any *a*) to eliminate *D*-terms in favor of *K*- and *R*-terms

 \Rightarrow real-emission probabilities exponentiate into Sudakov form factors

$$k_{\perp} = -\sum_i q_{\perp,i}$$

Integrated PB-TMD with angular ordering:

$$\widetilde{f}_{a}(x,\mu^{2}) = \Delta_{a}(\mu^{2},\mu_{0}^{2})\widetilde{f}_{a}(x,\mu_{0}^{2}) + \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{x}^{1} dz$$

$$\times \quad \Theta(1-q_{0}/\mu'-z) \; \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}(\mu'^{2},\mu_{0}^{2})} \; P_{ab}^{R}\left(z,\alpha_{s}\left((1-z)^{2}\mu'^{2}\right)\right) \widetilde{f}_{b}\left(\frac{x}{z},\mu'^{2}\right)$$

• coincide with CMW result for coherent branching

[Catani-Marchesini-Webber, Nucl. Phys. B349 (1991) 635; Marchesini-Webber, Nucl. Phys. B310 (1988) 461.]

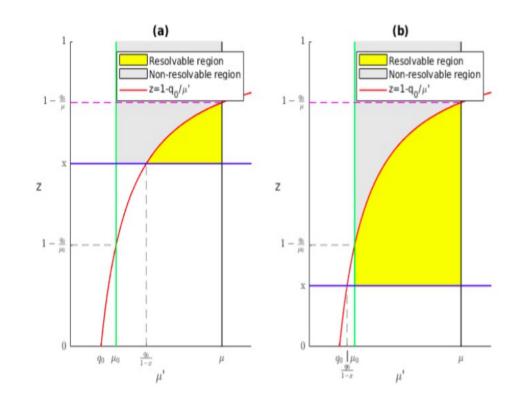


Figure 2: The angular ordering condition $z_M(\mu') = 1 - q_0/\mu'$ with the resolvable and non-resolvable emission regions in the (μ', z) plane: a) the case $1 > x \ge 1 - q_0/\mu_0$; b) the case $1 - q_0/\mu_0 > x > 0$.

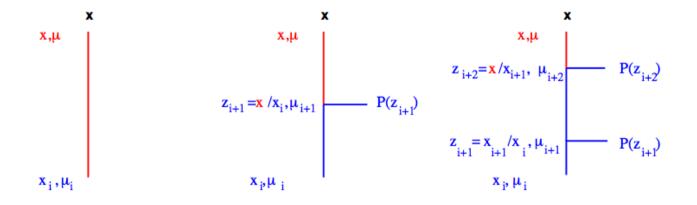
Integrated PB-TMD with $z_M \rightarrow 1$ and $\alpha_s \rightarrow \alpha_s(\mu'^2)$ ---> collinear PDFs

QCD evolution and soft-gluon resolution scale

[Jung, Lelek, Radescu, Zlebcik & H, PLB772 (2017) 446 + in progress]

$$\widetilde{f}_{a}(x,\mu^{2}) = \Delta_{a}(\mu^{2}) \ \widetilde{f}_{a}(x,\mu_{0}^{2}) + \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu'^{2})} \int_{x}^{z_{M}} dz \ P_{ab}^{(R)}(\alpha_{s}(\mu'^{2}),z) \ \widetilde{f}_{b}(x/z,\mu'^{2})$$

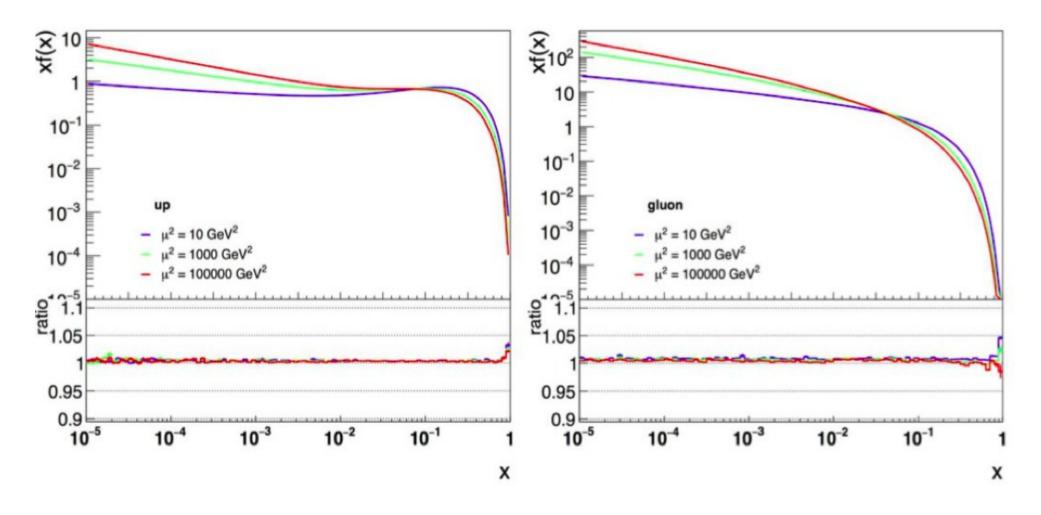
where
$$\Delta_a(z_M,\mu^2,\mu_0^2) = \exp\left(-\sum_b \int_{\mu_0^2}^{\mu^2} \frac{d\mu'^2}{\mu'^2} \int_0^{z_M} dz \ z \ P_{ba}^{(R)}(lpha_{
m S}(\mu'^2),z)
ight)$$



▷ soft-gluon resolution parameter z_M separates resolvable and nonresolvable branchings ▷ no-branching probability Δ ; real-emission probability $P^{(R)}$

• Equivalent to DGLAP evolution equation for $zM \rightarrow 1$

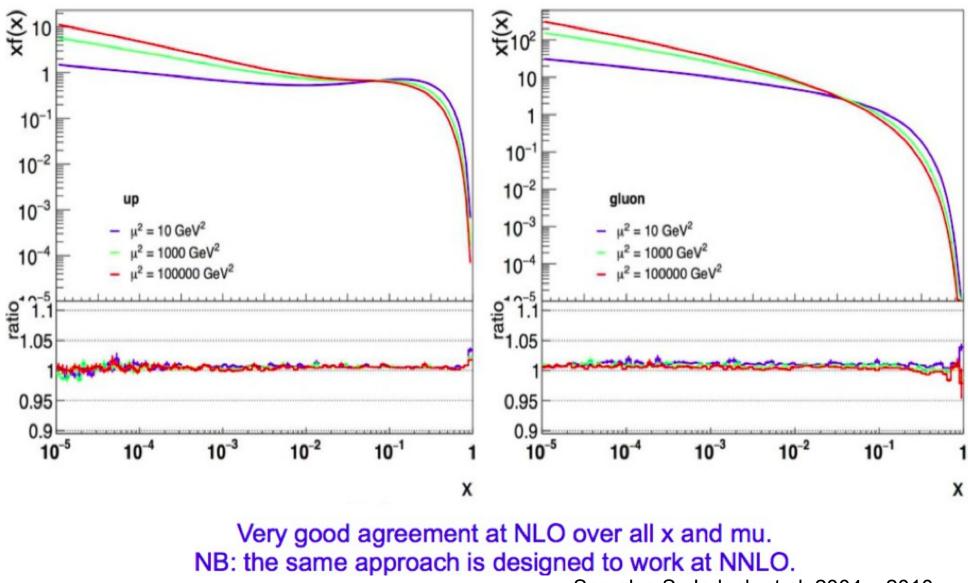
Validation at LO against semi-analytic result from QCDNUM



Agreement to better than 1 % over several orders of magnitude in x and mu

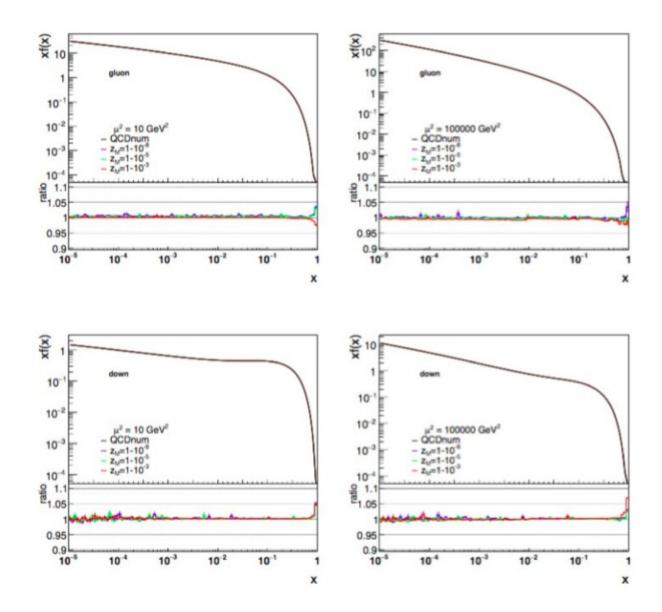
See also S. Jadach et al, 2004 – 2010 H. Tanaka et al, 2001 - 2005

Validation at NLO against semi-analytic result from QCDNUM

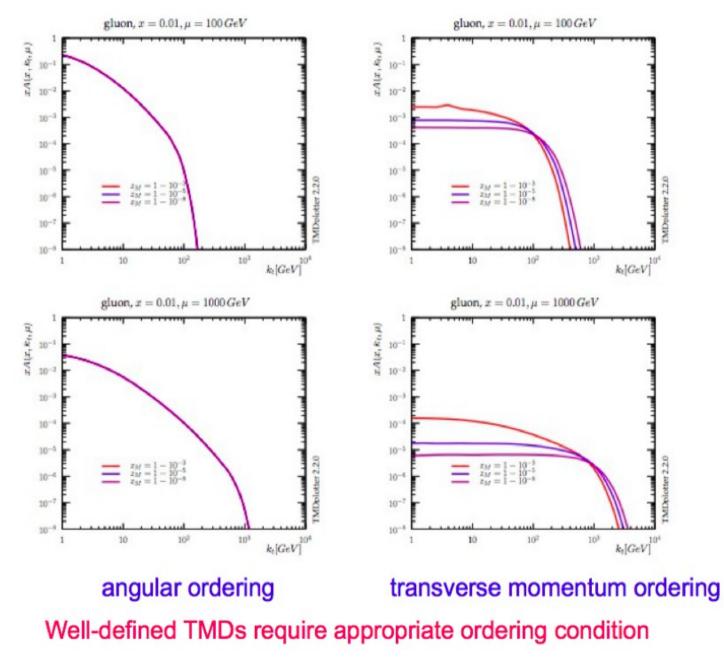


See also S. Jadach et al, 2004 – 2010 H. Tanaka et al, 2001 - 2005

Stability with respect to resolution scale z_M



TMDs and soft-gluon resolution effects



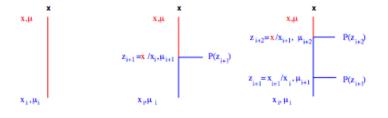
Comparison with CSS (Collins-Soper-Sterman) resummation

 \diamond The resummed DY differential cross section is given by

$$\frac{d\sigma}{d^2\mathbf{q}dQ^2dy} = \sum_{q,\bar{q}} \frac{\sigma^{(0)}}{s} H(\alpha_{\rm S}) \int \frac{d^2\mathbf{b}}{(2\pi)^2} \ e^{i\mathbf{q}\cdot\mathbf{b}} \mathcal{A}_q(x_1,\mathbf{b},Q) \mathcal{A}_{\bar{q}}(x_2,\mathbf{b},Q) + \mathcal{O}\left(\frac{|\mathbf{q}|}{Q}\right) \quad \text{where}$$

$$\begin{aligned} \mathcal{A}_i(x, \mathbf{b}, Q) &= \exp\left\{\frac{1}{2} \int_{c_0/b^2}^{Q^2} \frac{d\mu'^2}{\mu'^2} \left[A_i(\alpha_{\mathrm{S}}(\mu'^2)) \ln\left(\frac{Q^2}{\mu'^2}\right) + B_i(\alpha_{\mathrm{S}}(\mu'^2))\right]\right\} G_i^{(\mathrm{NP})}(x, \mathbf{b}) \\ &\times \sum_j \int_x^1 \frac{dz}{z} C_{ij}\left(z, \alpha_{\mathrm{S}}\left(\frac{c_0}{\mathbf{b}^2}\right)\right) f_j\left(\frac{x}{z}, \frac{c_0}{\mathbf{b}^2}\right) \end{aligned}$$

and the coefficients H, A, B, C have power series expansions in α_S . \diamond The parton branching TMD is expressed in terms of real-emission $P^{(R)}$:



▷ via momentum sum rules, use unitarity to relate $P^{(R)}$ to virtual emission ▷ identify the coefficients in the two formulations, order by order in α_S , at LL, NLL, ...

Comparison with CSS (Collins-Soper-Sterman) resummation

More precisely:

▷ The parton branching TMD contains Sudakov form factor in terms of

$$P^{(R)}_{ab}(lpha_{ ext{ iny S}},z) = K_{ab}(lpha_{ ext{ iny S}}) \; rac{1}{1-z} + R_{ab}(lpha_{ ext{ iny S}},z) \; \; ext{where}$$

$$K_{ab}(lpha_{
m S}) = \delta_{ab}k_{a}(lpha_{
m S}), \ \ k_{a}(lpha_{
m S}) = \sum_{n=1}^{\infty} \left(rac{lpha_{
m S}}{2\pi}
ight)^{n}k_{a}^{(n-1)}, \ \ R_{ab}(lpha_{
m S},z) = \sum_{n=1}^{\infty} \left(rac{lpha_{
m S}}{2\pi}
ight)^{n}R_{ab}^{(n-1)}(z)$$

Via momentum sum rules, use unitarity to re-express this in terms of

$$P^{(V)} = P - P^{(R)} , \text{ where }$$

$$P_{ab}(lpha_{
m S},z) = D_{ab}(lpha_{
m S})\delta(1-z) + K_{ab}(lpha_{
m S}) \; rac{1}{(1-z)_+} + R_{ab}(lpha_{
m S},z)$$

is full splitting function (at LO, NLO, etc.)

$$ext{ with } \quad D_{ab}(lpha_{ ext{ iny S}}) = \delta_{ab} d_a(lpha_{ ext{ iny S}}) \;, \quad d_a(lpha_{ ext{ iny S}}) = \sum_{n=1}^\infty \left(rac{lpha_{ ext{ iny S}}}{2\pi}
ight)^n d_a^{(n-1)}$$

 \triangleright Identify $d_a(\alpha_s)$ and $k_a(\alpha_s)$ with resummation formula coefficients (LL, NLL, . .)

Comparison with CSS (Collins-Soper-Sterman) resummation

• $d_a(lpha_{
m s})$ and $k_a(lpha_{
m s})$ perturbative coefficients

$$\begin{aligned} & \text{one} - \text{loop} \ : \\ & d_q^{(0)} = \frac{3}{2} \, C_F \quad , \ k_q^{(0)} = 2 \, C_F \\ & \text{two} - \text{loop} \ : \\ & d_q^{(1)} = C_F^2 \left(\frac{3}{8} - \frac{\pi^2}{2} + 6 \, \zeta(3) \right) + C_F C_A \left(\frac{17}{24} + \frac{11\pi^2}{18} - 3 \, \zeta(3) \right) - C_F T_R N_f \left(\frac{1}{6} + \frac{2\pi^2}{9} \right) \ , \\ & k_q^{(1)} = 2 \, C_F \, \Gamma \ , \quad \text{where} \ \ \Gamma = C_A \left(\frac{67}{18} - \frac{\pi^2}{6} \right) - T_R N_f \frac{10}{9} \end{aligned}$$

• The k and d coefficients of the PB formalism match, order by order, the A and B coefficients of the CSS formalism:

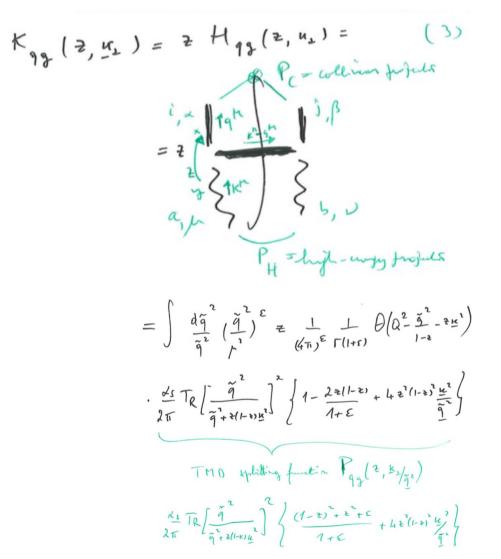
$$ext{LL}: \ k_q^{(0)} = 2 \ C_F = 2 \ A_q^{(1)}$$
 $ext{NLL}: \ k_q^{(1)} = 2 \ C_F \ \Gamma = 4 \ A_q^{(2)} \ ; \ d_q^{(0)} = rac{3}{2} \ C_F = -B_q^{(1)}$

NNLL : analysis in progress

How to extend PB to small-x evolution?

$$\phi_{qg}(x) = \int_{x}^{1} \frac{dy}{d} \frac{dx}{k_{\perp}} + \frac{dy}{qg}(\frac{x}{y}, \frac{k_{\perp}}{y}) \mathcal{A}_{g}(y, \frac{k_{\perp}}{z})$$

• Promote splitting functions to TMD splitting functions:



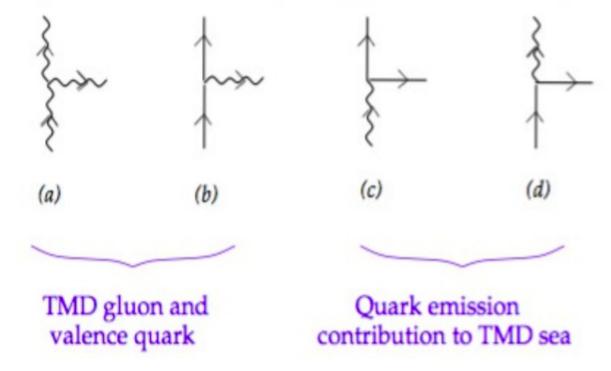
 controls summation of small-x logarithms in gluon-to-quark processes

How to extend PB to small-x evolution?

The TMD gluon-to-quark splitting function has the schematic structure

$${\cal P}_{g
ightarrow q}(z;q_{\perp},k_{\perp})=P_{qg}^{(0)}(z)~\left(1+\sum_{n=1}^{\infty}~b_n(z)(k_{\perp}^2/q_{\perp}^2)^n
ight)$$

• Work is underway to extend this to splitting processes in all partonic channels:



III. APPLICATIONS PB method in xFitter

TMD distributions from fits to precision inclusive-DIS data from HERA using the open source QCD platform xFitter [*S. Alekhin et al., E. Phys. J. C 75 (2014) 304*]

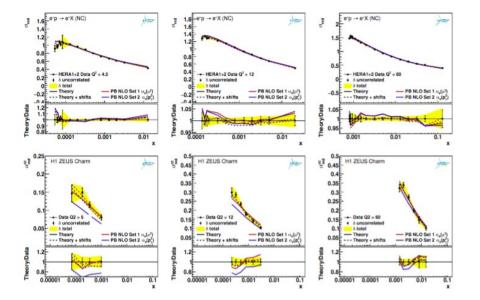


Figure 5: Measurement of the reduced cross section obtained at HERA compared to predictions using Set 1 and Set 2. Upper row: inclusive DIS cross section [11], lower row: inclusive charm production [38]. The dashed lines include the systematic shifts in the theory prediction.

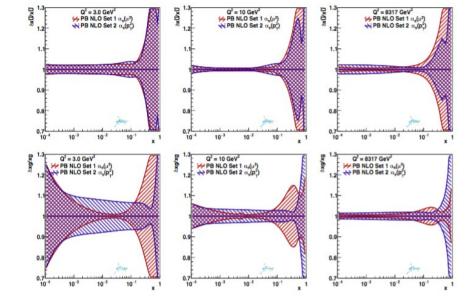


Figure 4: Total uncertainties (experimental and model uncertainties) for the two different sets at different values of the evolution scale μ^2 .

A. Bermudez et al., Phys. Rev. D99 (2019) 074008

NLO determination of TMDs including uncertainties

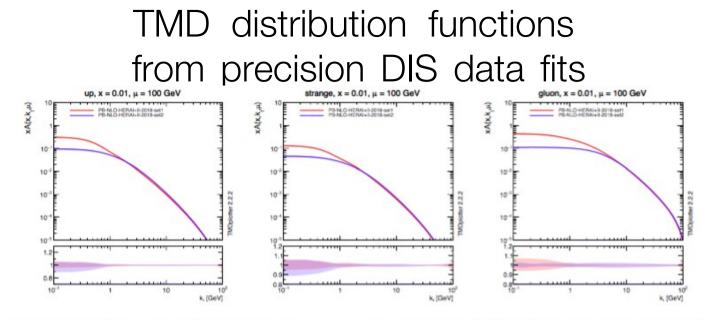


Figure 2: TMD parton distributions for up, strange and gluon (PB-NLO-2018-Set1 and PB-NLO-2018-Set2) as a function of k_t at $\mu = 100$ GeV and x = 0.01.

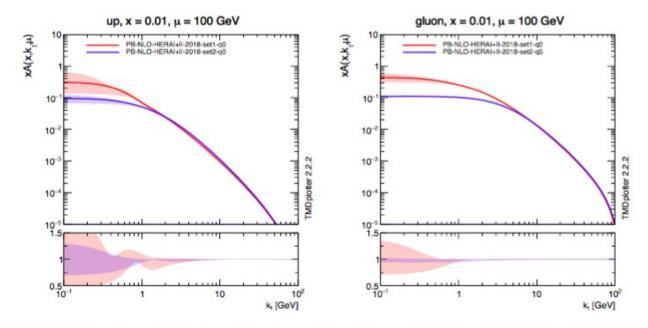


Figure 3: TMD parton distributions for up-quark and gluon (PB-NLO-2018-Set1 and PB-NLO-2018-Set2) as a function of k_t at $\mu = 100$ GeV and x = 0.01 with a variation of the mean of the intrinsic k_t distribution.

Where to find TMDs? TMDlib and TMDplotter

- TMDlib proposed in 2014 as part of the "Resummation, Evolution, Factorization" Workshop
- A library of parameterizations and fits of TMDs (LHAPDF-style)

http://tmdlib.hepforge.org http://tmdplotter.desy.de

 Also contains collinear (integrated) pdfs Eur. Phys. J. C (2014) 74:3220 DOI 10.1140/epjc/s10052-014-3220-9 THE EUROPEAN PHYSICAL JOURNAL C

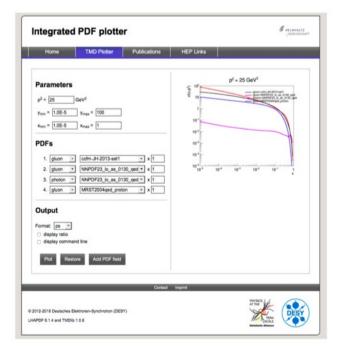
Special Article - Tools for Experiment and Theory

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions

F. Hautmann^{1,2}, H. Jung^{3,4}, M. Krämer³, P. J. Mulders^{5,6}, E. R. Nocera⁷, T. C. Rogers^{8,9}, A. Signort^{5,6,a}

1 Rutherford Appleton Laboratory, Oxford, UK

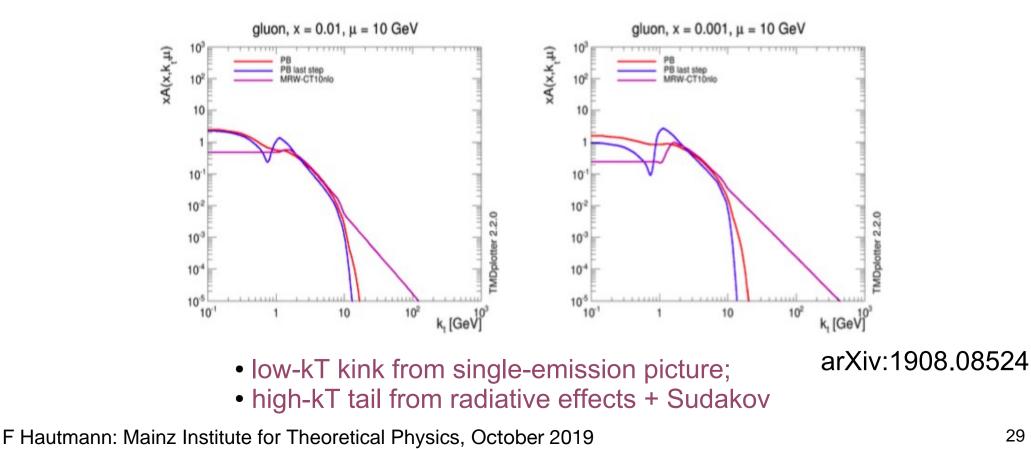
- ² Department of Theoretical Physics, University of Oxford, Oxford, UK
- ³ DESY, Hamburg, Germany
- ⁴ University of Antwerp, Antwerp, Belgium
- ⁵ Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
- 6 Nikhef, Amsterdam, The Netherlands
- ⁷ Università degli Studi di Genova, INFN, Genoa, Italy
- ⁸ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, USA
- ⁹ Department of Physics, Southern Methodist University, Dallas, TX 75275, USA



Comparison with KMRW unintegrated distributions (Kimber-Martin-Ryskin-Watt)

KMRW :

- transverse momentum generated by last emission
 - radiation populates different phase space region
 - no rescaling of transverse momenta in Sudakov form factor
 - differs in treatment of non-resolvable processes



3D Imaging and Monte Carlo

Parton Branching evolution

• start from hadron side and evolve from small to large scale μ^2

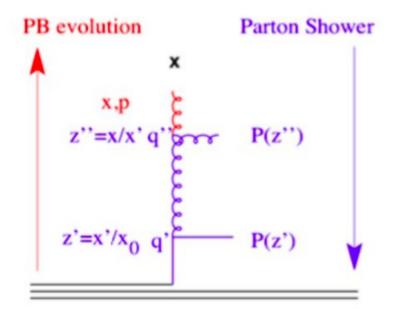
$$\Delta_s = \exp\left(-\int^{\boldsymbol{z}_M} dz \int^{\boldsymbol{\mu^2}}_{\boldsymbol{\mu^2_0}} \frac{\alpha_s}{2\pi} \frac{d\mu'^2}{\mu'^2} P(z)\right)$$

Parton Shower

• backward evolution from hard scale μ^2 to hadron scale μ^2_0 (for efficiency reasons)

$$\Delta_s = \exp\left(-\int^{\mathbf{z}_M} dz \int^{\boldsymbol{\mu^2}}_{\boldsymbol{\mu^2_0}} \frac{\alpha_s}{2\pi} \frac{d\mu'^2}{\mu'^2} P(z) \frac{\frac{x}{z} \mathcal{A}\left(\frac{x}{z}, k_\perp', \mu'\right)}{x \mathcal{A}(x, k_\perp, \mu')}\right)$$

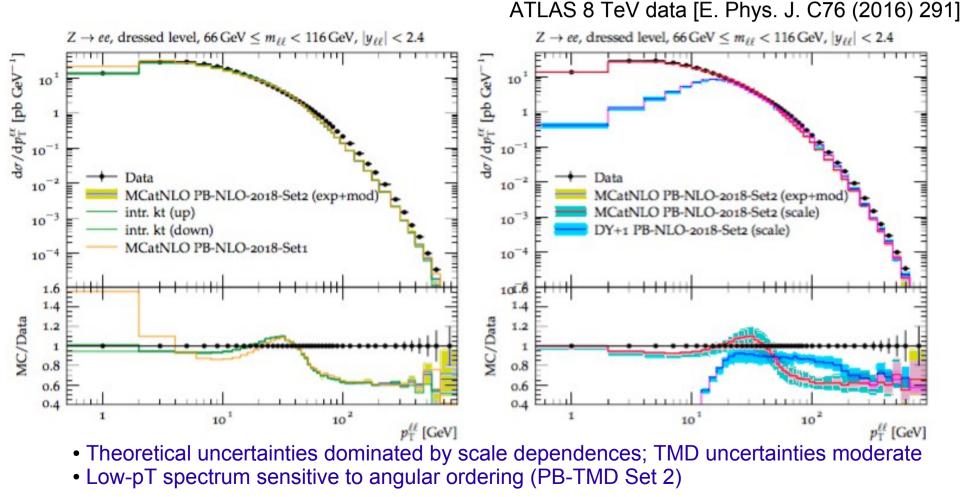
➔ in backward evolution, parton density (TMD) imposed further constraint !



Z-boson DY production at the LHC: TMDs fitted to inclusive DIS + NLO DY calculation

A Bermudez et al, arXiv:1906.00919

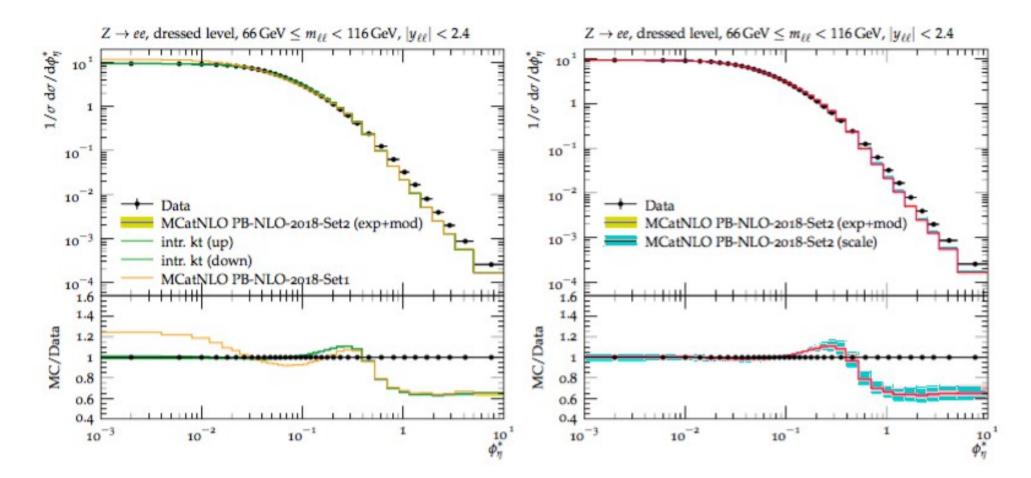
- Use MadGraph5_aMC-at-NLO
- Apply PB-TMD
- Set matching scale mu_m (kT < mu_m)



Missing higher orders at high pT: see DY + 1 jet contribution

Z-boson DY production at the LHC: TMDs fitted to inclusive DIS + NLO DY calculation

A Bermudez et al, arXiv:1906.00919



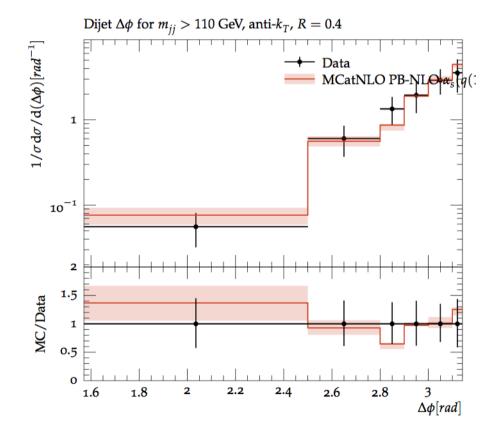
ATLAS 8 TeV data [E. Phys. J. C76 (2016) 291]

Heavy quark hadroproduction: b-jets at the LHC from PB TMDs + NLO

- Use MadGraph5_aMC-at-NLO
- Apply PB-TMD

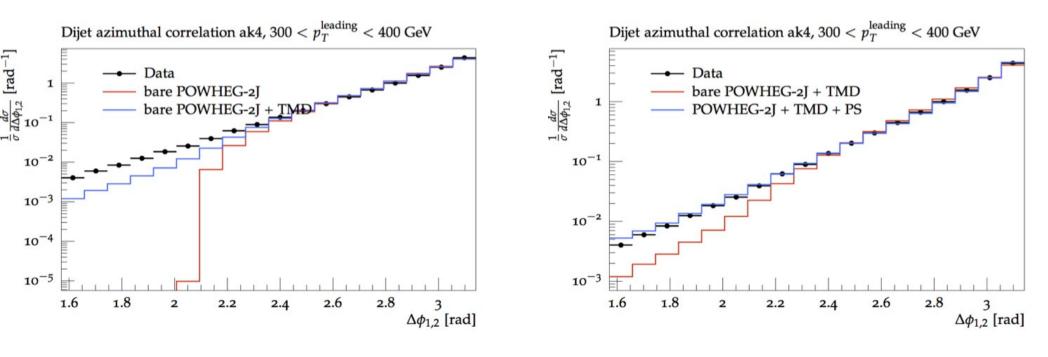
A Bermudez et al, in progress

Set matching scale mu_m (kT < mu_m)



ATLAS 7 TeV data [E. Phys. J. C71 (2011) 1846]

The role of TMD densities and TMD showers: inclusive jets

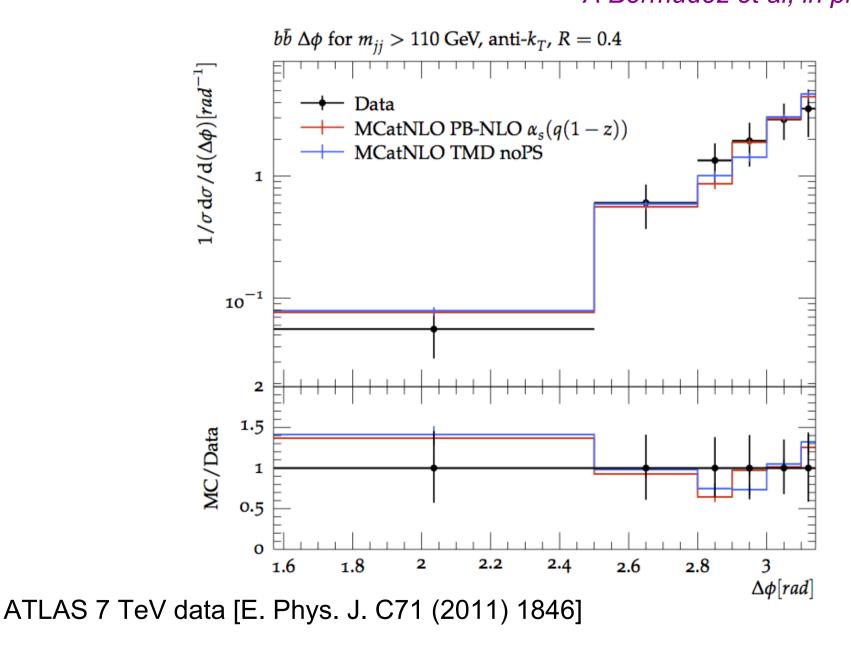


Events by NLO POWHEG 2 jets

A Bermudez et al, in progress

- PB TMD (with angular ordering)
- TMD parton shower

The role of TMD densities and TMD showers: b-jets A Bermudez et al, in progress



Conclusions

- PB method to take into account simultaneously soft-gluon emission at z -> 1 and transverse momentum qT recoils in the parton branchings along the QCD cascade
- potentially relevant for calculations both in collinear factorization and in TMD factorization
 - -> cf. parton shower calculations and analytic resummation
- terms in powers of In (1 zM) can be related to large-x resummation? -> relevant to near-threshold, rare processes to be investigated at high luminosity
- systematic studies of ordering effects and color coherence

-> helpful to analyze long-time color correlations?

EXTRA SLIDES

Predictions for 13 TeV

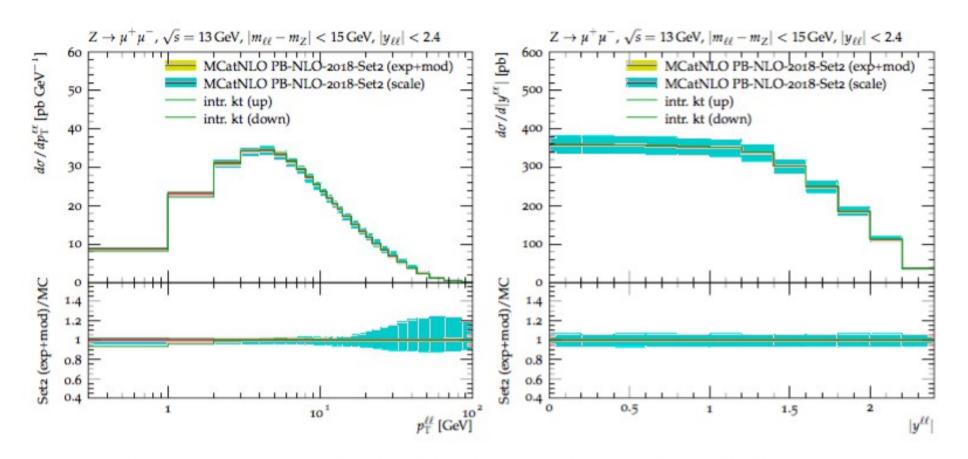
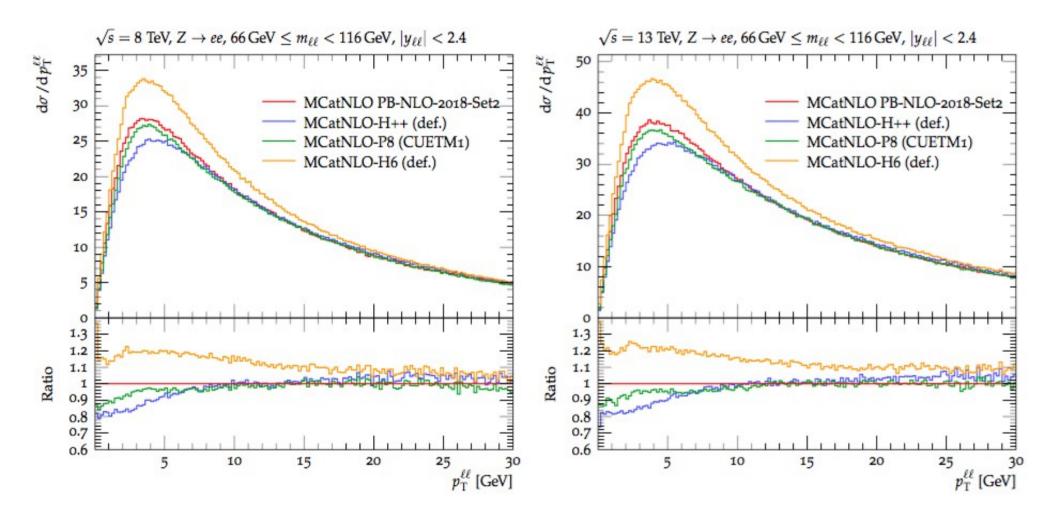


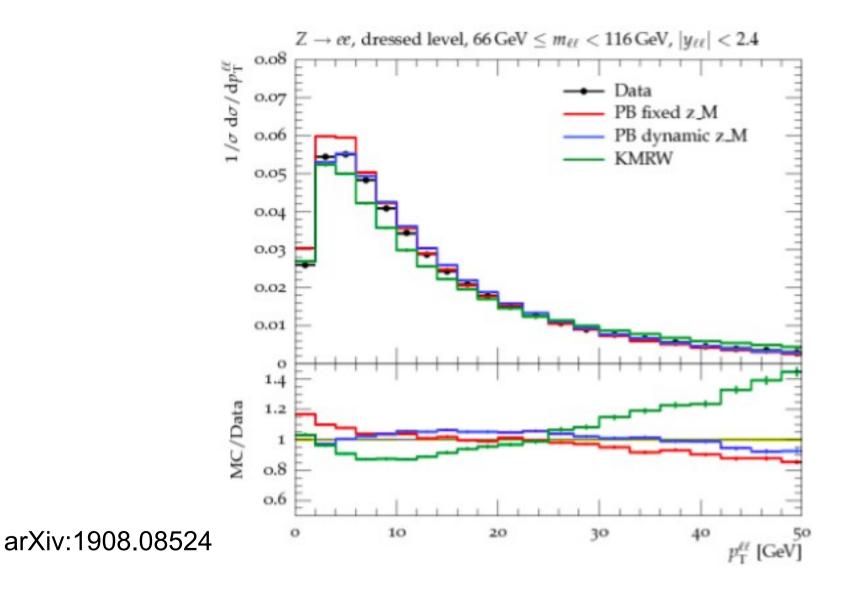
Figure 7: Transverse momentum p_T (left) and rapidity y spectra of Z-bosons at $\sqrt{s} = 13$ TeV from the prediction after including TMDs. The pdf (not visible) and the scale uncertainties are shown. In addition shown are predictions when the mean of the intrinsic gauss distribution is varied by a factor of 2 up and down.

Fine binning at low pT?



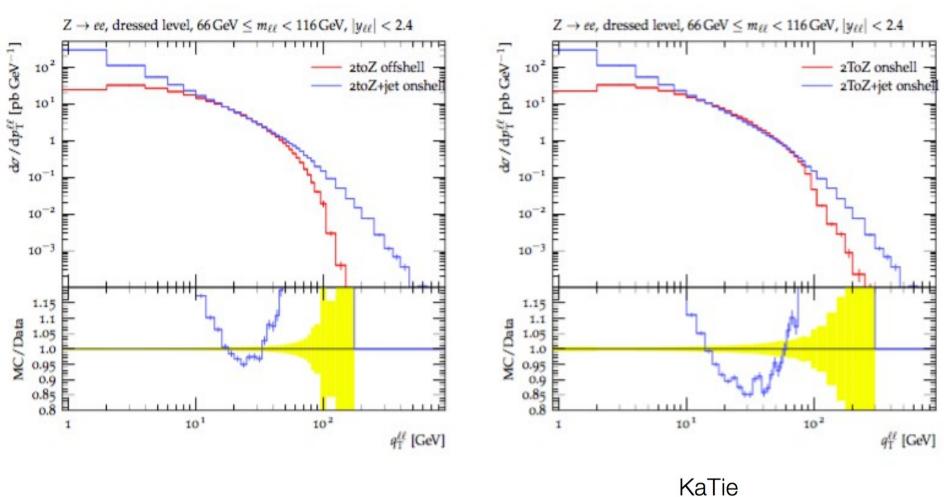
• dedicated measurements in the region of Z-boson pT < 5 - 10 GeV?

Sensitivity to branching-scale dependent soft-gluon resolution scales



Toward new approaches to matching/merging, locally in kT

Matching to hard process: off-shell ME with KaTie



[A. Van Hameren, talks at DESY MCEG Workshop, February 2019 and DIS2019 Workshop, April 2019]

van Hameren, A. CPC, 224, 371, 2018, arXiv 1611.00680