

Study of the high-energy neutrino flux with the ANTARES and KM3NeT telescopes

Luigi Antonio Fusco Laboratoire APC, Paris

Heavy-Quark Hadro Production from Collider to Astroparticle Physics Mainz, Germany. Sep 30th – Oct 11th 2019

Neutrino astronomy in a nutshell

 $\nu_{\rm cosm}$

CR

GW

γ

CR

Instrumented volume L'att CR $\mathbf{v}_{\mathsf{atmo}}$ μ v-telescope Shower atmo

ν_μCC

Deep sea water

 $v_e^{\rm CC}$

v_vNC

The ANTARES neutrino telescope

The KM3NeT/ARCA neutrino telescope

2 Building blocks, 115 DU each, will constitute ARCA → ~km³ instrumented volume

Unprecedented reconstruction performances ~0.1° for tracks, ~2° for showers

L.A. Fusco

Diffuse neutrino fluxes

Diffuse neutrino fluxes

High-energy diffuse neutrino fluxes

- IceCube detection → highly significant, isotropic, in flavour equipartition
- Power-law spectral behaviour

– Too soft?

hard in the track channel/Northern Sky
soft in the shower channel/all-sky

ANTARES all-flavour searches for a diffuse flux of cosmic neutrinos

Track-like events (v_uCC + taus-to-tracks)

- \rightarrow large volume + good background rejection
- \rightarrow limited energy resolution + high threshold (>100 TeV)
- \rightarrow pure neutrino sample (99.7%)

Shower-like events ($v_x NC + v_e CC + taus-to-showers$)

- \rightarrow good energy reconstruction and lower background (>10 TeV)
- \rightarrow only in a limited fiducial volume (~1/20 km³)
- \rightarrow large CR muon contamination at the highest energies (20-40%)

ANTARES can be complementary to IceCube – even if less sensitive

New results (2007-2018, 3380d livetime)

Jan 2016 – Jun 2018 added to the previous sample from <u>ApJ Lett **853**, L7 (2018)</u>

Overall → data: 50 events (27 tracks + 23 showers) Overall → bkg MC: 36.1 ± 8.7 (stat.+syst.) of which 19.9 tracks and 16.2 showers

Null-cosmic rejected at 90% c.l. using counting statistics (*Conrad et al.* method, with syst.) Atmospheric background scaled up by ~25%

New results (2007-2018, 3380d livetime)

MC Error bands include

10/25

ICRC19 results

Likelihood fitting of the high-energy sample

Atmospheric (Honda + Enberg together) fitted simultaneously with the cosmic flux normalisation and spectral index of the *track and shower samples together*

Individual fitting of the separate samples

Tracks $\Phi^{1f}(100 \text{ TeV}) = (0.8^{+0.5}_{-0.4}) \ 10^{-18} \ (\text{GeV cm}^2 \text{ s sr})^{-1}$ $\Gamma = 2.0^{+0.8}_{-0.4}$ *Atmospheric flux:* **1.3 x (Honda+Enberg)**

Showers $\Phi^{1f}(100 \text{ TeV}) = (2.1\pm0.8) \ 10^{-18} (\text{GeV cm}^2 \text{ s sr})^{-1}$ $\Gamma = 2.4\pm0.4$ *Atmospheric flux:* 1 x (Honda+Enberg) Not really significant but still interesting

Preliminary

Atmospheric neutrinos

Reminder, the old unfolding result

2008-2011 data <% CR muon contamination SVD and Bayesian unfolding

(to be updated with full ANTARES dataset)

L.A. Fusco

Atmospheric & cosmic neutrinos

L.A. Fusco

ICRC19 results

Current work in ANTARES

- New MC with full-optimisation (expect better energy estimations, at least)
 - Reduce systematics on OM and Water properties
- Implement an updated shower selection
 - boost the statistics (x2?) + purer sample (~few% CR muon contamination)
 - Showers outperform tracks in energy resolution (~10% in ANTARES for semi-contained events) → boost sensitivity in energy-dependent analyses
- Better modelisation of atmospheric fluxes
 - MCEq fluxes now implemented in our MC chain

Current work in ANTARES

- Implement an updated shower selection
 - boost the statistics + purer sample
 - Showers outperform tracks in energy resolution (~10% in ANTARES for semi-contained events) → boost sensitivity in energy-dependent analyses
- <u>Electron neutrino unfolding expected by early next year</u>
 - Work on energy systematics and in general on the comparison between numu and nue results

- Under construction, expected completion (when funding granted): ~mid 20s
- Will outperform ANTARES in statistics (exp. 100k ev/yr) and reconstruction (energy resolution ~2 times better)
- High significance in both cascades and tracks for the observation of cosmic neutrino fluxes

27 / 25

Cascade Reconstruction

L.A. Fusco

- Optimised for cosmic source in the 10-100 TeV range
 - At the transition between conv-prompt-cosmic fluxes
 - High significance in the cascade channel where prompt is predominant

Studied so far only in the context of the HE cosmic diffuse searches

Analysis potential to be addressed O(10) better than ANTARES at least within few years of observation

Conclusions and outlook

- Underwater/sea neutrino telescopes offer a complementary view with respect to IceCube
 - Different effects at play (atmosphere)
 - Different systematics
 - Cascade channel bears larger uncertainties
 - Event reconstruction in water performs greatly
- Larger overburden implies differences in the analysis strategy (no veto, still fewer atmospheric muons)
 - Some large statistics in atmospheric neutrino is expected for KM3NeT/ARCA

The ANTARES 2007 – 2015 results

ApJ Lett **853**, L7

(2018)

Jan 2016 – Jun 2018 to be added to the previous sample

<u>Tracks</u>, optmised selection

1.5 signal events are expected for an E^{-2.5} signal spectrum with **6.4** background events **8 events in data**

Showers, optimised selection

2.0 additional signal events with 5.7 expected in the background hypothesis

9 events in data

Presented at ICRC19