Heavy-quarks in the QGP data and modelling

Francesco Prino INFN – Sezione di Torino

Heavy Quark hadroproduction from collider to astroparticle physics Mainz, October 4th 2019

Space-time evolution of heavy-ion collisions

- QGP lifetime ~ a few fm/c
- Expansion under strong pressure gradients
- Transition to hadrons when temperature drops below critical value

Initial state

- Spatial and momentum distribution of incoming partons
- Modification of the PDFs in bound nucleons (nPDF)
- Gluon saturation at small Bjorken-x / Color Glass condensate
- \Rightarrow k_T broadening

Collective expansion

System undergoes a rapid expansion

- After collision: high-density QGP droplet in vacuum
- Strong pressure gradient from center to boundary
- Particles (quarks and gluons in the QGP phase and hadrons in the hadronic phase) get pushed by this pressure gradient
- FLOW = Collective motion superimposed on top of the thermal motion
- Expanding medium can be described macroscopically with hydrodynamical models
 - Valid from the equilibration (hydrodynamization) time (<~1 fm/c) to the thermal-freeze out</p>

✓ Need model for initial state and freeze-out

Deduce conclusions on initial conditions, Equation of State... by data comparison

Hadronization

- Hadronization of the QGP medium at the pseudo-critical temperature
 - Transition from a deconfined medium composed of quarks, antiquarks and gluons to color-neutral hadronic matter
 - The partonic degrees of freedom of the deconfined phase convert into hadrons, in which partons are confined
- No first-principle description of hadron formation
 - Non-perturbative problem, not calculable with QCD

→ Hadronisation from a QGP may be different from other cases in which no bulk of thermalized partons is formed

"Chemical" composition

• At the chemical freeze-out

- → Inelastic collisions cease
- ⇒ Abundances of different hadron species fixed

Hadron yields (dominated by low-p_T particles) described by statistical/thermal models

Abundances follow expectation for hadron gas in chemical and thermal equilibrium

⇒ Yields depend on hadron masses and spins, chemical potentials and temperature: $\frac{dN}{dv} \sim e^{-m/T_{ch}}$

Setimate temperature, baryochemical potential at the chemical freeze-out

Andronic et al. Nature 561 (2018) 321

Final state: the "bulk"

- Multiplicity of produced particles depends on collision geometry
 ⇒ Decreases from central to peripheral collisions
- Large energy density in the created "fireball":
 ⇒ ε~12 GeV/fm³ at τ=1 fm/c in central Pb-Pb collisions at √s_{NN}=2.76 TeV

ALICE, PRC 94 (2016) 034903

Flowing "bulk" of soft particles

- Particle momentum spectra frozen at the kinetic freeze-out
 - \Rightarrow Even at LHC energy, 95% of produced particles have p_T<2 GeV/c
 - Bulk of particle production associated with "soft" physics in non-perturbative regime of QCD
- Hardening of spectral shapes with increasing centrality and particle mass
 - \Rightarrow Spectra "pushed" to higher p_T by the common velocity field v_{\perp} (radial flow)
 - Described by hydrodynamic expansion of the medium with velocity β_T~0.5-0.6c at freeze-out temperature T_{kin}~100 MeV

Flowing "bulk" of soft particles

- Particle momentum spectra frozen at the kinetic freeze-out
 - \Rightarrow Even at LHC energy, 95% of produced particles have p_T<2 GeV/c
 - Bulk of particle production associated with "soft" physics in non-perturbative regime of QCD
- Hardening of spectral shapes with increasing centrality and particle mass
 - \Rightarrow Spectra "pushed" to higher p_T by the common velocity field v_{\perp} (radial flow)
 - Described by hydrodynamic expansion of the medium with velocity β_T~0.5-0.6c at freeze-out temperature T_{kin}~100 MeV

Hard probes of the QGP medium

- Produced at the very early stage of the collision in partonic scattering processes with large momentum transfer
 - → Produced out-of-equilibrium
- Traverse the hot and dense medium interacting with its constituents
 - The hard-scattered parton interacts with the medium constituents -> energy loss through:
 - ✓ Elastic collisions
 - ✓ Gluon radiation
 - \Rightarrow Energy loss depends on:
 - ✓ Medium density
 - ✓ Path-length in the medium
 - Parton species (gluon vs. quark) and mass
- Unique probes of the properties of the QGP

→ Tomography of the medium

Nuclear modification factor

- Hadrons and jets from the hadronization of hard partons are unique probes of the QGP
- Observable: nuclear modification factor

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T} \sim \frac{QCD \text{ medium}}{QCD \text{ vacuum}}$$

- Hard processes in nuclear collisions expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)
- \Rightarrow If **no nuclear effects** are present $\rightarrow R_{AA}=1$
- QGP can modify the yield and distributions of final state hadrons and jets → R_{AA}≠1
- ⇒ Parton in medium energy loss → jet quenching →
 R_{AA}<1 at high p_T
- But also cold nuclear matter effects (e.g. nuclear modification of PDF) may lead to R_{AA}≠1
 - Need control experiments: medium-blind probes (photons, Z, W bosons) + p-A collisions

PbPb measurement

R_{AA} of hadrons

- - peripheral collisions
 - Smaller path length, lower medium density in peripheral collisions

- No evidence of jet quenching in p-A collisions
 - $rightarrow R_{pPb} \sim 1$ in **p-Pb collisions**
 - Suppression in A-A collisions due to hot and dense medium

Identified hadron R_{AA}

- Thermal regime
- Hydrodynamic expansion driven by pressure gradients
- Radial flow peak, mass ordering

High-p_T (>10 GeV/c) :

- Partons from hard scatterings
- Lose energy while traversing the QGP
- Hadronisation via fragmentation → same R_{AA} for all species

Intemediate-p_T (ca. 3<p_T<8 GeV/c) :

- Kinetic regime (not described by hydro)
- Different R_{AA} for different hadron species
 - Inconsistent with hard partons + energy loss + universal fragmentation
- Features described with in-medium hadronization via quark recombination

Hadronisation in medium

Phase space at the hadronization is filled with partons

Single parton description may not be valid anymore \Rightarrow No need to create $q\bar{q}$ pairs via splitting / string breaking ⇒ Partons that are "close" to each other in phase space (position

and momentum) can simply recombine into hadrons

10⁻⁷

10⁻⁸

baryon/meson ratios at intermediate рт

10

8

p_T (GeV)

Heavy quarks in the QGP

- Produced in the early stages of the collision in hard-scattering processes
 Initial production calculable with pQCD
 Produced out of equilibrium
 Thermal production in the QGP negligible
- Interaction of heavy quarks with the QCD medium constituents
 - ➡ Energy loss:
 - Elastic collisions with the medium constituents (-> collisional energy loss)
 - ✓ Gluon radiation
 - Momentum gain due to the "push" from medium collective expansion
 - ✓ Do low-p_T heavy quarks thermalize in the medium?
 - In-medium hadronization
 - ✓ Hadronization via (re)combination of the charm quark with a (light) quark from the medium ?

Heavy-quark energy loss

• In-medium energy loss ΔE depends on:

- Properties of the medium (density, temperature, mean free path, ...) -> transport coefficients
- ⇒ Path length in the medium
- Properties of the parton (colour charge, mass) traversing the medium
 - ✓ Casimir coupling factor
 - $\rightarrow C_R = 3$ for gluons
 - -> $C_R = 4/3$ for quarks
 - ✓ Mass of the quark

- Expectation: hierarchy in energy loss: $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$
- Should be reflected in a R_{AA} hierarchy: $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

Charm vs. beauty vs. light flavours

CMS, PRL 119 (2017) 152301

p_T~20 GeV/c

CMS, EPJC 78 (2018) 509

CMS, arXiv:1810,11102

10

p_{_} (GeV/c)

10²

CMS, PLB 782 (2018) 474 ALICE, JHEP 10 (2018) 174

Centrality (system size) dependence

ALI-PREL-320119

- Suppression at high p_T decreases from central to peripheral collisions
 - Smaller in-medium path length (smaller size of the fireball) and lower medium density in peripheral collisions

Heavy-quark elliptic flow

- Initial geometrical anisotropy in non-central heavy-ion collisions
 - The impact parameter selects a preferred direction in the transverse plane

 Re-scatterings among produced particles convert the initial geometrical anisotropy into an observable momentum anisotropy

Anisotropies for **low-p_T** particles due to collective motion (**flow**)

- → Heavy quarks "pushed" by the flow of the medium
- In addition, anisotropic patterns induced (also at high p_T) by pathlength dependent energy loss in an almond-shaped medium
 ⇒ Longer path length → larger energy loss for particles exiting out-of-plane
- Observable: Fourier coefficients of the particle azimuthal distribution, in particular 2^{nd} harmonic v_2 , called **elliptic flow**

$$\frac{dN}{d\varphi} = \frac{N_0}{2\pi} \left\{ 1 + 2v_2 \cos\left[2(\varphi - \Psi_{RP})\right] + \dots \right\} \qquad v_2 = \left\langle \cos\left[2(\varphi - \Psi_{RP})\right] \right\rangle$$

Charm R_{AA} and v₂ phenomenology

- Simultaneous comparison of R_{AA} and v₂ to models can constrain QGP properties and the description of charm-quark interaction and diffusion in the medium
 - Interplay of CNM effects, collisional and radiative energy loss, hadronisation via coalescence and fragmentation and realistic underlying medium evolution required to describe data

Two regimes

High p_T (>~10 GeV/c)

- Dominant effect: energy loss of charm and beauty quarks in the medium
 - Radiative energy loss expected to dominate
 - "Early" signal: most of energy loss in the hottest (most dense) stages of the fireball
- Goal: study colour charge and quark mass dependence of inmedium energy loss
- ➡ Relevant transport coefficient: **q**

Two regimes

Low p_T (<~5 GeV/c)

Interplay of several effects:

- ✓ Energy loss (collisional)
- ✓ Radial flow "push"
- Hadronization via recombination
- ✓ Nuclear PDFs
- Goal: study how (if) heavy quarks **reach the equilibrium** with the medium
- Relevant transport coefficient: D_s (spatial diffusion coefficient)

Low p_T: approach to equilibrium

- Description of heavy-flavour observables at all p_T 's requires a setup allowing to deal with:
 - Partons produced off equilibrium
 - ➡ Interact with expanding medium
 - Thermalization time longer than that of light flavours and comparable to fireball lifetime
 - ✓ Heavy quarks preserve memory of their interaction history → gauge their interaction strength with the QGP
 - ➡ HF can provide insight on how particles would (asymptotically) approach equilibrium
- → Transport models

Transport setup

Initial production

- ⇒pQCD + possible "cold" (initial) nuclear effects: nPDF, k_T broadening
- Background medium
 - ➡ Hydrodynamics: T(x), u^µ(x), needed for local value of transport coefficients
 - Heavy quark dynamics in the medium
 - Interactions with medium constituents, transport coefficients
 - Hadronization
 - Fragmentation in vacuum, coalescence
- Hadronic phase

Transport models: ingredients

Model	Heavy-quark production	nPDFs	Medium modelling	Quark- medium interactions	Hadroni- zation	Hadron phase
		Trans	port models			
BAMPS [28, 38, 76]	MC@NLO	No	Boltzmann parton 3+1D	Boltzmann pQCD coll+rad	frag	no
Cao <i>et al</i> /Duke [83, 84, 212]	MC@NLO	EPS09	Hydro 2+1D viscous	Langevin coll +pQCD rad	frag+ reco	yes
MC@sHQ+EPOS [45, 73, 74]	FONLL	EPS09	Hydro 3+1D (EPOS)	Boltzmann pQCD coll+rad	frag+ reco	no
PHSD [40, 51]	PYTHIA* tuned to FONLL	EPS09	off-shell parton transport	off-shell trans DQPM coll	frag+ reco	yes
POWLANG [36, 48, 124]	POWHEG	EPS09	Hydro 2+1D viscous	Langevin pQCD coll	string- reco	no
TAMU [65, 77, 126]	FONLL	EPS09	Hydro 2+1D ideal	Langevin T-mat coll	frag+ reco	yes

Heavy quark transport

- Space-time evolution of heavy quark phase space distribution function f_Q described in kinetic theory by Boltzmann equation
- For large quark masses and moderate temperatures:
 - Typical momentum transfers in scatterings between heavy quarks and medium constituents (heat bath) are small
 - Heavy quarks undergo soft and incoherent collisions -> Brownian motion
- Boltzmann equation reduces to Fokker-Plank equation:

$$\frac{\partial}{\partial t}f_Q(t,\mathbf{p}) = \frac{\partial}{\partial p^i} \left\{ A^i(\mathbf{p})f_Q(t,\mathbf{p}) + \frac{\partial}{\partial p^j} [B^{ij}(\mathbf{p})f_Q(t,\mathbf{p})] \right\}$$

Key ingredients are the transport parameters A and B
 In case of a medium in equilibrium, they simplify to three transport coefficients which are "a priori" independent among each other

$$A_i(\vec{p}) = A(p)p_i, \longrightarrow \text{FRICTION}$$

 $B_{ij}(\vec{p}) = B_0(p) P_{ij}^{\perp}(\vec{p}) + B_1(p) P_{ij}^{\parallel}(\vec{p}) \longrightarrow$

MOMENTUM

BROADENING

Transport coefficients

- Friction coefficient = heavy quark relaxation rate
 - Depend on temperature and heavy-quark momentum
 - Different models use different approaches to compute A(p,T)
 - ✓ Larger friction coefficient than results from LO pQCD calculations
 - ✓ POWLANG (Torino, pQCD-inspired): different momentum dependence as compared to MC@sHQ (Nantes, also pQCD inspired) and TAMU (T-matrix approach constrained to lattice QCD)
 - ✓ TAMU: stronger coupling near T_c (due to non-perturbative forces, remnants of the confining force above T_c -> formation of resonances)

Spatial diffusion coefficient

 Brownian motion of heavy quarks in QGP governed by the coupling of heavy quarks to the medium

 \Rightarrow Injecting a particle at x=0 and t=0, the mean squared position at time t is:

$$\left\langle x^2(t)\right\rangle = 6D_s t$$

$D_s =$ spatial diffusion coefficient

- Encodes the transport properties of the medium
 - Coupling strength of heavy quarks with the medium
 - ✓ Small values of D_s → strong coupling

Related to heavy-quark friction coefficient:

$$D_s \propto \frac{T}{m_Q A(p=0)}$$

• Scaling D_s by the thermal wavelength of the medium $\lambda_{th}=1/(2\pi T)$ → dimensionless quantity proportional to η /s (viscosity/entropy)

Relaxation time

 Spatial diffusion coefficient related to the relaxation time of heavy quarks in the medium:

$$\tau_Q = \frac{m_Q}{T} D_s \propto \frac{1}{A(p=0)}$$

- If relaxation time <~ expansion rate of the medium → heavy quarks will "follow" the medium → large flow of charm
- If relaxation time >> expansion rate of the medium → heavy quark will not follow the medium → small flow of charm

Extracting transport coefficients

- Extract D_s from data-to-model comparison

 \Rightarrow Large D_s \rightarrow long relaxation time \rightarrow high R_{AA} and small elliptic flow

Initial spectra

- Spectrum of produced charm quarks has an impact on the R_{AA} computed with models
- Most models use a spectrum of produced quarks from pQCD calcullations/event generators (FONLL, POWHEG)
 - ⇒ FONLL calculations with $m_c=1.3$ and "central" values for μ_F and μ_R give a good description of the data at LHC energies
- Important to include nuclear modification of PDFs (shadowing)

 ⇒ Reduction of the yield and R_{AA} at low p_T

EMMI, Rapid Reaction Task Force, NPA 979 (2018) 21

Hydrodynamic model of the bulk

• Compare two hydrodynamical models tuned to described Au-Au data at \sqrt{s} =200 GeV

Soft" Kolb-Heinz hydro vs. more explosive van Hees-Rapp

Heavy quark physics not decoupled from light quark physics
 Crucial to have precision tuning of the bulk evolution model to light-flavour data

Gossiaux et al., arXiv:1102.1114

Hydrodynamic model of the bulk

 Charm quark R_{AA} and v₂ calculations with the different evolution models and same transport coefficients
 All bulk evolutions tuned on soft observables

 \Rightarrow Significant difference in v₂ (and R_{AA}) from the bulk descriptions

 Heavy quark physics not decoupled from light quark physics
 Crucial to have precision tuning of the bulk evolution model to lightflavour data

Hadronization temperature

 Bulk evolution models differ also for the temperature T_c at which the QGP evolution ends

 \Rightarrow Little effect on R_{AA}

✓ Energy loss (density-driven) mostly in the **early stages** of the fireball ⇒ Significant (~20%) increase of v_2 when the QGP lasts longer

Charm elliptic flow is a "late" signal: the transfer of v₂ from the bulk to heavy quarks is most effective when the fireball v₂ is large, i.e. in the later phases of the evolution

Hadronization mechanism

Two competing mechanisms:

- Independent fragmentation
 - → Fast partons hadronize in vacuum
- In-medium hadronization
 - Instantaneous coalescence model, based on Wigner function (MC@sHQ, Catania, Duke, PHSD)
 - Resonance recombination model (TAMU)
 - In-medium string formation between heavy quark and a thermal light quark from the bulk (POWLANG)
- Recombination for heavy flavours relevant up to higher momenta than for light flavours
- Recombination for beauty extends up to higher p_T with respect to charm

Hadronization: R_{AA} and v₂

- Heavy-quark hadronization mechanism is an important ingredient to the phenomenology of heavy flavour R_{AA} and v_2
- Recombination with light quarks enhances R_{AA} and v_2 at intermediate p_T Inte
 - \Rightarrow Needed to describe the data at low and intermediate p_T
 - \Rightarrow D-meson v₂ and radial flow peak in R_{AA}

In-medium hadronization

📖 Rapp et al., NPA 979 (2018) 21
Charm hadrochemistry: D_s

- Hadronization of heavy quarks via recombination with light quarks from the medium expected to modify relative abundances of meson and baryon species
 - Strange quarks abundant in the QGP
 - \Rightarrow Enhance D_s (B_s) yield relative to non-strange mesons
- D_s/D⁰ ratio:
 - Enhanced at low p_T as compared to pp
 - ⇔ Compatible with pp for p_T>10 GeV/c
 - Captured by models with strangeness enhancement in QGP and hadronization via recombination

Charm hadrochemistry: A_c

Hadronization of heavy quarks via recombination with light quarks from the medium expected to modify relative abundances of meson and baryon species

 \Rightarrow Enhanced production of baryons relative to mesons

- ✓ Sensitive also to the existence of [ud] diquarks in the QGP
- Λ_c/D^0 ratio:
 - \Rightarrow Enhanced at low p_T with respect to pp
 - \Rightarrow Compatible with pp for $p_T > 10 \text{ GeV/c}$
 - \Rightarrow Consistent with a scenario of baryon enhancement due to hadronization via recombination

Open question:

⇒ Λ_c/D⁰ in pp higher than in e⁺e⁻, not fully understood

Spatial diffusion coefficient

- Challenging for models to describe R_{AA} and v_2 at all p_T 's
- Estimation of spatial diffusion coefficient: D_s=1.5-7 at T_c
 - From models that describe the measured v₂ for p_T<8 GeV/c</p>
 - Compatible with the values from lattice QCD

Calculation	Effects	$2\pi T D_s$	χ^2/ndf
BAMPS-el [47]	coll.	1–2	1.9
BAMPS-el+rad [47]	coll., rad.	6-10	6.73
LBT [49]	coll., rad., reco.	2-6	0.75
MC@sHQ [46]	coll., rad., reco.	1.5-4.5	0.46
PHSD [45]	coll., rad., reco.	4–9	0.81
POWLANG [48]	coll., reco.	7–18	0.52
TAMU [41]	coll., reco.	4-10	4.12

ALICE, PRL 120 (2018) 102301 ALICE, JHEP10 (2018) 174

Summary and remarks

 HF phenomenology in heavy-ion collisions provides a unique opportunity to extract QGP transport coefficients

Close connection between theory, phenomenology and experiment

- Significant uncertainties on the extraction of the transport coefficients from the "other" modelling components
 ⇒ Bulk evolution, hadronization, CNM effects …
- For astroparticle application:
 - ⇒ Models capture sufficiently well the features of the data
 - Can be used as "effective" models to estimate possible QGP effects on charm and beauty production in cosmic-ray interactions in atmosphere
 - ⇒QGP effects should be small
 - ✓ A central Fe-O collision should produce a system with similar size as a peripheral (60-70%) Pb-Pb collision
 - Not all models can compute predictions at forward rapidity (in the center-of-mass frame)

Heavy-ion collisions and QCD

- Goal: study the properties of strongly-interacting matter at extreme conditions of temperature and energy density
 - Explore the rich phase diagram of QCD matter
 - Transition to a state where quarks and gluons are deconfined (Quark Gluon Plasma, QGP)

Cold nuclear matter effects: p-Pb collisions

GOAL: assess the role of cold nuclear matter (CNM) effects

➡ Initial-state effects:

- ✓ Nuclear modification of the PDFs → shadowing at low Bjorken-x is the dominant effect at LHC energies
- ✓ Initial-state energy loss
- *k_T* broadening due to multiple collisions of the parton before the hard scattering
- ⇒ Final-state effects
 - ✓ Final-state energy loss
 - ✓ Interactions with the particles produced in the collision → collective expansion? → Mini QGP?
- Crucial for interpretation of Pb-Pb results

D-meson R_{AA}: LHC vs. RHIC

ALICE, JHEP1603 (2016) 081
 STAR, PRL 113 (2014) 142301

 D-meson R_{AA} factor at √s_{NN}=0.2 and 2.76 TeV
 ⇒ Similar R_{AA} for p_T >3 GeV/c
 ⇒ Maybe different trend at lower p_T
 Many effects are different at different collision energies:

- \Rightarrow Different p_T shape of produced charm quarks / pp reference
- ➡ Different shadowing
- Different radial flow
- Different medium density and energy loss
- Some theoretical models can describe both measurements reasonably well

- D-meson and pion R_{AA} compatible within uncertainties
- Described by models including
 - \Rightarrow energy loss hierarchy ($\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c}$)
 - \Rightarrow different p_{T} shapes of produced partons

different fragmentation functions of gluons, light and charm quarks

- Expectation: $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$
- Is this reflected in a R_{AA} hierarchy: $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$?

 Clear indication for R_{AA}(B)>R_{AA}(D)

- \Rightarrow Consistent with the expectation $\Delta E_{\rm c} > \Delta E_{\rm b}$
- Described by models including quark-mass dependent energy loss

□ ALICE, JHEP 1511 (2015) 205
 □ CMS, EPJC77 (2017) 252

High p_T: energy loss calculations

pQCD calculations of (radiative) energy loss

- ⇒ Early RHIC results for HFE showed larger suppression than what expected from hadron R_{AA}
- ➡ Difficult to describe R_{AA} of light hadrons and HFE within a "radiative only" energy loss scenario

Armesto et al., arXiv:0907.0667

- Described by models including:
 - ➡ Collisional energy loss
 - In-medium formation and dissociation of resonances
 - Q Wicks et al., NPA784 (2007) 426
 - □ Van Hees et al., PRC 73 (2006) 034913
 - Adil, Vitev, PLB 649 (2007) 139

Energy loss and fragmentation

Flavour dependence at high-p_T?

Same suppression for bjets and inclusive jets at high $p_{\rm T}$

➡Within (large) uncertainties

- Quark mass effect on energy loss negligible at high p_T
- What about colour charge effect?
 - ➡ For high-p_T bb pairs from gluon splitting the early stages of the medium are probed by the parent gluon
 - *R_{AA}* determined by gluon energy loss?

Gluon splitting

 Gluon splitting contribution to heavy quark production relevant for interpretation the R_{AA}

In-medium gluon energy loss before the splitting

- Key factor is the lifetime of the gluon before it splits
- PYTHIA based estimations of gluon lifetime

Short lifetime compared to QGP formation time \rightarrow small effect on the D-meson R_{AA} \square Cao et al., arXiv:1511.04009

Gluon splitting

- Gluon splitting contribution to heavy quark production relevant for interpretation the $\rm R_{AA}$
 - ⇒In-medium gluon energy loss before the splitting
 - Key factor is the lifetime of the gluon before it splits
- PYTHIA based estimations of gluon lifetime
 - Short lifetime compared to QGP formation time \rightarrow small effect on the D-meson R_{AA} \square Cao et al., arXiv:1511.04009
- Soft-Collinear Effective Theory
 - Splitting functions of partons in vacuum and in QCD matter
 - ⇔Different R_{AA} for p_T<50 GeV/c

✓ Effect more pronounced for B mesons

➡Note: at low p_T the model still needs some improvements ➡ Kang et al., arXiv:1610.02043

Einstein relation

In non-relativistic limit of momentum independent transport coefficients:

 $\gamma \equiv A(p) = \text{const}$ $D_p \equiv B_0(p) = B_1(p) = \text{const}$

The solution of Fokker-Plank equation for large times is:

$$f_Q(t, p) = \left(\frac{2\pi D_p}{\gamma}\right)^{3/2} \exp\left(-\frac{\gamma \vec{p}^2}{2D_p}\right)$$

Asymptotically the solution tends to a thermal distribution

• Einstein relation, aka fluctuation-dissipation theorem: $D_p = m_Q \gamma T$

Relation between friction and momentum diffusion coefficients -> imprint the temperature of the heat bath to heavy quarks

- In practice, the Einstein relation is not satisfied by the calculated coefficients A(p), B₁(p) and B₂(p)
 - To ensure that heavy quark distributions converge to correct equilibrium distributions, Einstein relation is enforced

✓ E.g. by expressing $B_2(p)$ through A(p)

Heavy flavour transport

 Space-time evolution of heavy quark phase space distribution function f_Q described in kinetic theory by Boltzmann equation:

$$\left[\frac{\partial}{\partial t} + \frac{\vec{p}}{E_p}\frac{\partial}{\partial \vec{x}} + \vec{F}\frac{\partial}{\partial \vec{p}}\right]f_Q(t, \vec{x}, \vec{p}) = C[f_Q]$$

 \Rightarrow E_p = on-shell heavy quark energy

- \Rightarrow F = force induced by an external (mean) field
- \Rightarrow C[f_Q] = collision integral (2 \rightarrow 2 processes)
 - ✓ Dilute medium: can be calculated using particle cross sections
 - Dense medium: formulation in terms of scattering probabilities
 - Challenging to include radiative processes due to interference effects between successive scatterings
- In a static medium in equilibrium at temperature T, f_Q approaches the Boltzmann distribution $f_Q \propto exp[-E_p/T]$

The Boltzmann equation makes heavy quarks relax to a thermal distribution at the same temperature of the medium

 Smaller drag coefficient in Langevin than in Boltzmann to have the same RAA

 \Rightarrow But then v₂ is lower with Langevin than with Boltzmann

 Almost no difference between Langevin and Boltzmann for beauty

Das et al., PRC90 (2014) 04491
 Scardina et al., arXiv:1707.05452

Friction coefficient, D_s and \hat{q}

 Conversion from heavy quark friction coefficient to q²:

 $\hat{q} \propto rac{TE_p^2 A(p)}{p}$ \square Gubser, Nucl. Phys. B 790 (2008) 175

- In MC@sHQ, which describes the high-p_T R_{AA}:
 - ✓ A(p=10 GeV) = 0.25-0.3 fm⁻¹ at T=300-400 MeV
 - ✓ q[^]≈2.5±1.1 Gev²/fm at T=350 MeV
- Spatial diffusion coefficient depends on A(p) at low momentum:

$$D_s \propto \frac{T}{m_Q A(p=0)}$$

➡ Different physics mechanisms and approximation schemes than what is relevant for q

Prino, Rapp, J. Phys. G43 (2016) 093002

Collisional vs. radiative

- TAMU approach with only elastic interactions describes the measured D-meson R_{AA} and v_2 up to $p_T \approx 5$ GeV/c and has significant deviations at higher p_T
 - First (rough) estimate of the momentum region in which the elastic interaction dominate the charm quark coupling with the medium

BAMPS results for v₂ indicate that elastic collisions are more effective in building v₂ at low p_T ALICE, PRL 120 (2018) 102301 ALICE, JHEP10 (2018) 174

Independent fragmentation

- Inclusive hadron production at large Q^2 :
 - ⇒ Factorization of PDFs, partonic cross section (pQCD), fragmentation function

$$\sigma_{pp \to hx} = PDF(x_a, Q^2)PDF(x_b, Q^2) \otimes \sigma_{ab \to q\bar{q}} \otimes D_{q \to h}(z, Q^2)$$

- Fragmentation functions $D_{q \rightarrow h}$ are phenomenological functions to parameterise the non-perturbative parton-to-hadron transition \Rightarrow z = fraction of the parton momentum taken by the hadron h \Rightarrow Do not specify the hadronisation mechanism
- Parametrised on data and assumed to be "universal"

In A-A collisions:

Energy-loss of hard-scattered partons while traversing the QGP $\Rightarrow \mbox{Modified fragmentation function } D_{q \rightarrow h}(z) \mbox{ by "rescaling" the variable z} \\ \checkmark \mbox{ Would affect all hadron species in the same way}$

Hadronisation: string models

- On a microscopic level hadronisation of jets modeled with:
 - Perturbative evolution of a parton shower with DGLAP down to a lowvirtuality cut-off Q₀
 - Final stage of parton shower interfaced to a non perturbative hadronization model

• String fragmentation (e.g. Lund model in PYTHIA)

- \Rightarrow Strings = colour-flux tubes between q and \overline{q} end-points
- Gluons represent kinks along the string
- Strings break via vacuum-tunneling of (di)quark-anti(di)quark pairs

• Cluster decay in HERWIG

- ⇒ Shower evolved up to a softer scale
- \Rightarrow All gluons forced to split into $q\overline{q}$ pairs
- Identify colour-singlet clusters of partons following color flow
- Clusters decay into hadrons according to available phase space


~~~~

000000000000000000

### Leading particle effect



- 📖 E791, PLB 371 (1996) 157
- Measurements of charm production in pionnucleon collisions
- At large x<sub>F</sub>: favoured production of hadrons sharing valence quarks with beam hadrons
  - ⇒ D<sup>-</sup> ([cd], leading meson shares the d quark with the π<sup>-</sup> projectile) favored over D<sup>+</sup> [cd]
  - Break-up of independent fragmentation

 $\rightarrow$  A reservoir of particles leads to significant changes in hadronisation

#### Hadronisation via quark coalescence

#### Instantaneous coalescence approach:

Formalism originally developed for light-nuclei production from coalescence of nucleons on a freeze-out hypersurface

#### Scheibl and Heinz, PRC 59 (1999) 1585

➡ Extended to describe meson and baryon formation from the quarks of a hadronising a QGP through 2→1 and 3→1 recombination processes



#### **Baryon/meson ratios**





- Peak more pronounced and shifted to higher p<sub>T</sub> with increasing centrality
- $p_T$  integrated  $\Lambda/K^0$  ratio does not change with centrality
- Peak position shifted to higher  $p_{T}$  with increasing  $\sqrt{s}_{NN}$
- Hydrodynamics describes the data for  $p_T < 2 \text{ GeV/c}$
- Recombination describes the shape at intermediate  $\ensuremath{p_{\text{T}}}$

STAR, PRL 108 (2012) 072301
 ALICE, PRL 111 (2013) 222301



#### **Baryon/meson ratios**

• Different modelling ingredients needed for a quantitative description of the data:

 $\Rightarrow$  Coalescence (dominant at low  $p_T$ ) + fragmentation (dominant at high  $p_T$ )

⇒ Radial flow of partons (from blast-wave)

Recombination of thermal soft partons with mini-jet partons

➡ Contribution of resonance decays

• Still lack of baryon yield in the  $p_{\rm T}$  region where fragmentation starts to be dominant





A Minissale et al., PRC92 (2015) 054904



Baryon enhancement mostly from the bulk

✓ Connected to collective expansion and hadronisation of bulk

 $\Rightarrow$  Ratio of  $\Lambda/K^0$  in-jet is similar in pp and Pb-Pb

✓ Fragmentation of the jet not modified by the medium

primary particles

#### Quarkonia

#### • Quarkonium production in A-A collisions:

- Quarkonium dissociation in the QGP due to colour screening of the qq potential
  - Different quarkonium states melt at different temperatures, depending on their binding energy
    - $\rightarrow$  sequential suppression

Matsui, Satz, PLB178 (1986) 416
 Digal et al., PRD64 (2001) 094015



- Quarkonium production can occur also via quark (re)combination / regeneration in the QGP or at the phase boundary
  - ✓ Charm and beauty production cross section increase with √s → higher recombination contribution with increasing √s
  - Smaller recombination contribution for bottomomium than for charmonium



Braun-Munzinger, Stachel, PLB 490 (2000) 196
 Thews et al., PRC 63 (2001) 054905





- Low p<sub>T</sub>
  - Less suppression at LHC (√s=2.76, 5.02 TeV) than at RHIC (√s=200 GeV)
  - $\rightleftharpoons Larger charm cross section with increasing \sqrt{s} \rightarrow larger regeneration contribution$



- High p<sub>T</sub>
  - ➡ Hint for more suppression at LHC (√s=2.76 TeV) than at RHIC (√s=200 GeV)
  - ➡ Higher temperature reached at higher √s → larger dissociation rate

 $\rightarrow$  as expected in a scenario with dissociation + cc recombination





- $p_T$  differential J/ $\psi$  R<sub>AA</sub>
  - $\Rightarrow$  Less suppression at low  $p_T$  than at high  $p_T$
  - $\rightleftharpoons$  Different  $p_T$  dependence of J/ $\psi$  R\_{AA} at RHIC and LHC
- Described by transport models with dissociation and recombination
  - $\Rightarrow$  About 50% of low  $p_T J/\psi$  from recombination
  - $\Rightarrow$  Recombination negligible at high p<sub>T</sub>

TM1: Zhao, Rapp, NPA859 (2011) 114
 TM2: Zhou et al., PRC89 (2014) 054911





• Significant J/ $\psi$  elliptic flow observed at the LHC

 $\rightleftharpoons$  Confirms the contribution of J/ $\psi$  production from recombination

- $J/\psi v_2$  at intermediate  $p_T$  (>6 GeV/c) not described by transport models
  - $\Rightarrow$  J/ $\psi$  v<sub>2</sub> of similar magnitude in this p<sub>T</sub> range observed in p-Pb collisions  $\Rightarrow$  Same (unknown) origin?  $\square$  Du, Rapp NPA943 (2015) 147

□ Zhou et al., PRC89 (2014) 054911

#### **Bottomonium** R<sub>AA</sub>



- Sequential suppression pattern:  $R_{AA}^{\Upsilon(3S)} < R_{AA}^{\Upsilon(2S)} < R_{AA}^{\Upsilon(1S)}$  $\Rightarrow$  Ordered by binding energy, as expected from dissociation in QGP
- Described by transport models
  - $\Rightarrow$  Small contribution from bb recombination
  - Presence of open-bottom bound states when approaching the (pseudo)critical temperature allow for a better description of the data
  - 📖 CMS, PLB790 (2019) 270

Du et al., PRC96 (2017) 054901



- Elliptic flow of Y compatible with zero
   ⇒ Smaller than J/ψ v<sub>2</sub>
- A small v<sub>2</sub> was predicted by transport model simulations
  - Small contribution from bb recombination
  - ⇒ Longer relaxation times for b quarks as compared to charm quarks
  - Regeneration occurs at earlier times for bottomonium than for charmonium

#### Du et al., PRC96 (2017) 054901

### **Open HF hadrons**

Hadronization of heavy quarks via recombination with light quarks from the medium expected to modify:

#### Momentum distributions

- HF hadrons pick-up the radial and elliptic flow of the light quark
- ➡ In simple quark coalescence formalism: quarks with different mass coalesce if have similar velocities, not momenta

□ Lin, Molnar, PRC 68 (2003) 044901 □ Greco, Ko, Rapp, PLB 595 (2004) 202

Relative abundances of meson and baryon species

Enhanced production of **baryons** relative to mesons

✓ Sensitive also to the existence of [ud] diquarks in the QGP

Oh et al., PRC79 (2009) 044905
 Ghosh at al., PRD 90 (2014) 054018
 He, Rapp et al. arXiv:1905.9216

⇒ Strange quarks abundant in the QGP → enhance  $D_s$  ( $B_s$ ) yield relative to non-strange mesons Andronic et al., PLB659 (2008) 149

# Charm R<sub>AA</sub> and v<sub>2</sub> phenomenology

- Heavy-quark hadronization mechanism is an important ingredient to the phenomenology of heavy flavour  $R_{AA}$  and  $v_2$
- Different aspects of the hadronization modelling have significant impact on the results
  - E.g. Improved space-momentum correlations between c quarks and underlying hydro medium in latest TAMU calculations
    - ✓ Larger reach in  $p_T$  of the recombination contribution
    - ✓ Better description of the measured D-meson  $v_2$  up to higher  $p_T$


# Charm-chemistry: D<sub>s</sub>/D<sup>o</sup> at RHIC





- $D_s/D^0$  ratio enhanced at low  $p_T$  as compared to pp
- Measured value compatible with Statistical Hadronizaion Model
- Described by models with charm quark recombination
  - TAMU with improved space-momentum correlations between c quarks and underlying hydro medium
  - ⇒ Zhao model with and without sequential coalescence
    - $\checkmark$  D<sub>s</sub> forming at higher temperature with respect to D<sup>0</sup>



🖵 Zhao et al., arXiv:1805.10858

## Charm-chemistry: D<sub>s</sub>/D<sup>o</sup> at LHC



• Enhanced  $D_s/D^0$  at low  $p_T$  with respect to pp

 $\Rightarrow$  D<sub>s</sub>/D<sup>0</sup> at low p<sub>T</sub> consistent with Statistical Hadronization Model

- Compatible with pp results at high p<sub>T</sub> (>10 GeV/c)
- Qualitatively as expected in a scenario with strangeness enhancement in the QGP and hadronization via recombination

 $\Rightarrow$  Magnitude of D<sub>s</sub>/D<sup>0</sup> enhancement relative to pp different in different models

📖 Catania: EPJC78 (2018) 348 📖 TAMU: PLB735 (2014) 445 📖 PHSD: PRC93 (2016) 034906



- ALI-PREL-321702
- $\Lambda_c/D^0$  enhanced at low  $p_T$  (<6 GeV/c) with respect to pp
- $\Lambda_c/D^0$  consistent with pp results at high  $p_T$  (>10 GeV/c):
  - $\Rightarrow \Lambda_c/D^0$  in pp higher than in e<sup>+</sup>e<sup>-</sup> and not fully understood
    - ✓ Described by PYTHIA with color reconnection
    - Described by FONLL + statistical hadronisation with excited charm-baryon states

Christiansen, Skands, JHEP 08 (2015) 003

Rapp, arXiv:1902.08889

# $\Lambda_c/D^0$ at RHIC vs. models

•  $\Lambda_c/D^0 \sim 1$  at low  $p_T$  (<6 GeV/c)

Enhanced with respect to PYTHIA

- ⇒ Λ<sub>c</sub>/D<sup>0</sup> larger than expectation from statistical hadronisation model
- Consistent with models with charm quark hadronization via coalescence



 $\square Cho et al., arXiv:1905.09774$ 

STAR (10-80% centrality)



Ko et al., PRC79 (2009) 044905
 Plumari et al., EPJC78 (2018) 348

# $\Lambda_c/D^0$ at LHC vs. models

### • $\Lambda_c/D^0 \sim 0.7$ at low $p_T$ (<6 GeV/c)

⇒ Enhanced with respect to pp (LHC) and PYTHIA

#### • Measured ratio described by:

Statistical hadronisation model with core+corona

#### Andronic et al., arXiv:1901.09200

Transport model with hadronization via coalescence+fragmentation



Plumari et al., EPJC78 (2018) 348



# **Open beauty:** R<sub>AA</sub> and v<sub>2</sub>



- B-meson R<sub>AA</sub> in Catania's model better described with coalescence+fragmentation
- Hint of  $v_2 > 0$  for e<sup>±</sup> and J/ $\psi$  from beauty

⇒ Magnitude transport model predictions

- $\checkmark$  Smaller v<sub>2</sub> of b quarks with respect to c quarks
- ✓ Recombination for beauty important up to higher p<sub>T</sub> than for charm
- ✓ Large mass difference between coalescing b and light quark → B meson  $v_2$  slowly rising with  $p_T$



## **Beauty-chemistry**

• B<sub>s</sub> and B<sup>+</sup> mesons measured in Pb-Pb collisions at the LHC

Uncertainties too large to allow to conclude on the B<sub>s</sub> / B<sup>+</sup> enhancement expected from recombination

• Baryon enhancement with flatter  $p_T$  shape and reaching higher  $p_T$  predicted from recombination in the beauty sector

➡ Look forward to the upcoming large LHC data sets



## Medium blind probes: γ, W, Z<sup>0</sup>

- Control experiment: no suppression for photons, W and Z<sup>0</sup> bosons
  - Production of particles w/o color charge not modified by the QGP medium
  - ➡ NOTE: R<sub>AA</sub> of W<sup>±</sup> expected to deviate from unity due to isospin effect in Pb-Pb collisions

✓ Enhancement of W<sup>-</sup> and suppression of W<sup>+</sup> relative to pp



## String formation and fragmentation

- Description of hadronic final state requires a cocktail of different physics effects (MPI, ropes, beam remnants, decays ...)
- E.g.: need to define between which partons the strings are formed
  - ⇒ Leading-color approximation describes results from e<sup>+</sup>e<sup>-</sup> collisions
  - Colour-reconnection (string topologies beyond leading color) relevant in pp collisions, especially at LHC energies (MPI)
  - E.g.: a colour-connection mechanism with 3-leg string junctions can improve the description of baryon production in pp collisions at the LHC



#### Christiansen, Skands, JHEP 08 (2015) 003



### Baryons vs. mesons

- Baryon formation enhanced in recombination with respect to string fragmentation
   ⇒ No need to create two qq pairs from the QCD vacuum
- Probability of meson (baryon) formation proportional to single parton distribution squared (cubed)

$$\frac{dN_{meson}}{dp_T} \propto \int f_q(x_q, p_q)^2 f_W(x_1, x_2; p_1, p_2) \qquad \frac{dN_{baryon}}{dp_T} \propto \int f_q(x_q, p_q)^3 f_W(x_1, x_2, x_3; p_1, p_2, p_3)$$

- ⇒ Meson spectrum from recombination determined by  $f_q(p_T/2)$ ⇒ Baryon spectrum from recombination determined by  $f_q(p_T/3)$
- $\Rightarrow$  Enhances baryon/meson ratios at intermediate p<sub>T</sub>
- $\Rightarrow$  Kinematic properties of the hadron spectrum due to radial flow extend to higher  $p_T$  for baryons as compared to mesons

## Elliptic flow from coalescence

#### • Assumptions:

Recombination of quarks with same velocity

- $\Rightarrow$  Universal partonic v<sub>2</sub>
- Coalescence is a rare process, i.e. moderate parton phase space density

#### ✓ Intermediate $p_T$ interval

 $\rightleftharpoons$  Effective parton density independent of  $\phi$ 

Constituent quark scaling:

$$v_{2,M}(p_T) = 2v_{2,q}(p_T/2) \frac{1}{1 + 2v_{2,q}^2(p_T/2)} \qquad \qquad v_{2,M}(p_T) \approx 2v_{2,q}\left(\frac{p_T}{2}\right)$$
$$v_{2,B}(p_T) = 3v_{2,q}(p_T/3) \frac{1 + v_{2,q}^2(p_T/3)}{1 + 6v_{2,q}^2(p_T/3)} \qquad \qquad v_{2,B}(p_T) \approx 3v_{2,q}\left(\frac{p_T}{3}\right)$$

Molnar, Voloshin, PRL91 (2003) 092301
 Pratt, Pal, PRC71 (2005) 014905

## Identified hadron R<sub>AA</sub> at RHIC

#### PHENIX, PRC 83 (2011) 024909



- Different suppression pattern for Φ mesons, kaons, protons, pions and η mesons
- Pattern qualitatively similar to the one observed at the LHC



## **Charm hadrochemistry**

 Hadronization via recombination expected to modify the charm hadron abundances relative to pp case

| Particle                           | e⁺e⁻  | PYTHIA | Thermal<br>model | Coalescence<br>(w/o diquark) | Coalescence<br>(with diquark) |
|------------------------------------|-------|--------|------------------|------------------------------|-------------------------------|
| f(c→D <sup>0</sup> )               | 0.542 | 0.607  | 0.435            | 0.348                        | 0.282                         |
| f(c→D+)                            | 0.225 | 0.196  | 0.205            | 0.113                        | 0.091                         |
| $f(c \rightarrow D_s^+)$           | 0.092 | 0.121  | 0.179            | 0.113                        | 0.123                         |
| $f(C \rightarrow \Lambda_{c}^{+})$ | 0.057 | 0.076  | 0.118            | 0.288                        | 0.378                         |
| Ratio                              | e⁺e⁻  | PYTHIA | Thermal<br>model | Coalescence<br>(w/o diquark) | Coalescence<br>(with diquark) |
| D+/D <sup>0</sup>                  | 0.41  | 0.32   | 0.47             | 0.32                         | 0.32                          |
| $D_{s}^{+}/D^{0}$                  | 0.17  | 0.20   | 0.41             | 0.32                         | 0.44                          |
| $\Lambda_{c}^{+}/D^{0}$            | 0.11  | 0.13   | 0.27             | 0.83                         | 1.34                          |

Dh et al, PRC79 (2009) 044905

Andronic et al, J. Phys G35 (2008) 104155



- D<sub>s</sub> less suppressed than non-strange D mesons at low p<sub>T</sub>
- $R_{AA}$  of  $D_s$  and non-strange D mesons compatible at high  $p_T$  (>10 GeV/c)
- Qualitatively as expected in a scenario with strangeness enhancement in the QGP and hadronization via recombination

## Charm: thermal + blast wave



- Thermal model abundances from Oh et al.
- Blast wave parameters from pion, kaon, proton measurements by ALICE

📖 Oh et al, PRC79 (2009) 044905



- Λ<sub>c</sub>/D<sup>0</sup> at low/intermediate p<sub>T</sub> increases from peripheral to central events
  - Value in peripheral collisions slightly higher than the one measured in pp collisions at the LHC, even though compatible within uncertainties

## **Charm hadrochemistry from TAMU**



- Charm quark transport in hydrodynamic medium
- Generalized resonance recombination model
  - Extended to 3-body case to treat hadronization into baryons
  - Improved space-momentum correlations between c quarks and underlying hydro medium
  - Improved charm-hadron chemistry with baryon states beyond PDG

He, Rapp, arXiv:1905.09216

## **Charm baryons from Catania**

 $\Lambda_{c}/D^{0}$  ratio

0.1



- Coalescence probability decreases with increasing p<sub>T</sub>

   At high p<sub>T</sub> fragmentation takes over
- Al low  $p_T$  the probability of udc quarks to coalescence into a  $\Lambda_c$  is higher than that of cu to form a D<sup>0</sup>

Coalascence+fragmentation with Wigner function tuned to reproduce thermal model ratio at low  $p_T$ 

p<sub>T</sub> (GeV)

Thermal spectra of  $\Lambda_c$  and D<sup>0</sup>

STAR (10-60)%

coalescence

coal+fragm fragmentation

Blast Wave model

Blast Wave for p<sub>T</sub><1 GeV

coalescence:

Plumari et al., EPJC78 (2019) 348

## **Open beauty v<sub>2</sub>**

- Hint of  $v_2 > 0$  for electrons and  $J/\psi$  from beauty-hadron decays
- Magnitude of v<sub>2</sub> consistent with transport model prediction
  - $\Rightarrow$  Smaller v<sub>2</sub> of b quarks with respect to charm quarks
  - $\Rightarrow$  Recombination for beauty important up to higher  $p_T$  than for charm
  - ⇒ Large mass difference between the coalescing b and light quark →  $v_2$  of B meson slowly rising with  $p_T$



## D<sub>s</sub> / D<sup>o</sup> from Catania



- Data close to the coalescence only prediction
- The coalescence+fragmentation calculation underestimates the measured ratio