Heavy flavour production in CMS and

outlook on combined treatment of heavy flavour measurements at HERA, LHC and elsewhere

- Selected heavy flavour results from CMS (and other LHC exp.)
- Charm/beauty and proton structure from HERA (+LHCb)
- (MSbar quark masses and running Higgs Yukawa couplings)
- HQHP Projects for discussion

3. 10. 19

Open Heavy Flavour production in CMS

other LHC collaborations covered in separate dedicated talks on tuesday -> see e.g. nice introduction in ATLAS talk

CMS forward covered by talk R. Ulrich on tuesday

CMS has rich program of heavy flavour measurements: - BPH, TOP, HIN, SMP, hundreds of CMS papers

(maybe not true, talk Masip?) Onia $(J/\psi, Y, ...)$ and rare decays barely contribute to cosmic ray physics -> concentrate on open heavy flavour production

Cosmic ray interactions are pA and AA interactions -> concentrate on selected pp vs pA vs AA comparisons

Charm in pp and PbPb @ 5.02 TeV

arXiv:1708.04962 Phys.Lett. B782 (2018)

same conclusions as for ATLAS, ALICE and LHCb results: data and theory are consistent, but theory unc. >> data unc. 3. 10. 19 A. Geiser, HQHP workshop 3

D⁰ nuclear modification factor

arXiv:1708.04962 Phys.Lett. B782 (2018)

Figure 3: R_{AA} as a function of p_T in the centrality range 0–100% (left) and 0–10% (right). The vertical bars (boxes) correspond to statistical (systematic) uncertainties. The global systematic uncertainty, represented as a grey box at $R_{AA} = 1$, comprises the uncertainties in the integrated luminosity measurement and T_{AA} value. The D⁰ R_{AA} values are also compared to calculations from various theoretical models [37–47].

Project for discussion 1:

Sven: Which further collider and/or fixed-target measurements would we suggest to decrease present uncertainties ?

combine LHC charm measurements in central region with very forward measurements (e.g. TOTEM, CASTOR, ...)?

e.g. 7 TeV Minimum Bias + CASTOR data (available as CMS Open Data)

Can we learn something for cosmic rays?

D⁰ from b decays

arXiv:1810.11102, Phys.Rev.Lett. 123 (2019) 022001

3. 10. 19

A. Geiser, HQHP workshop

Project for discussion 2:

Combine pp and pA heavy flavour measurements to p-air?

Top in p-Pb vs. pp

arXiv:1709.07411, Phys.Rev.Lett. 119 (2017) 242001

Project for discussion 3:

Sven: "How can we reduce theory uncertainties?"

get existing differential NNLO cross section predictions for top to work for charm and beauty?

-> expect general reduction of theory uncertainties by ~factor 2 w.r.t. NLO, also for extrapolation to cosmic ray predictions

Total ttbar pp cross section vs. NNLO+NNLL

see also talk Schwinn

Measured at almost all available CMS energies

(so far "unmeasured" at LHC; only strong extrapolations available)

NNLO total charm cross section: A. Accardi et al., Eur.Phys.J. C76 (2016) no.8, 471

A. Geiser, HQHP workshop

Similar considerations for total beauty cross section

D. D'Enterria Moriond QCD 2017

Compared to Charm, Beauty has:

smaller cross section

smaller branching fractions

longer lifetime, larger mass

Data and NNLO theory precision comparable,

~30%

3. 10. 19

Project for discussion 4:

Sven: Which further collider and/or fixed-target measurements would we suggest to decrease present uncertainties ?

- data points for c and b total cross sections at LHC so far dominated by extrapolation uncertainties
- close experimental "white spots" in LHC phase space?
- -> reduce extrapolation uncertainty to negligible level?

-> constrain PDFs, α_s , m_c and m_b to NNLO also from LHC total charm and beauty cross sections, as already done for top?

Double and triple cc and bb pair production

arXiv:1612.05582, Phys.Rev.Lett. 118 (2017) 122001 D. D'Enterria, S. Snigirev

(data/theory agreement improves with scale μ =m_Q)

around $\int s=100$ TeV, charm cross section equates total cross section!

p-Pb interactions

arXiv:1612.08112, Eur.Phys.J. C78 (2018) 359

FIG. 1: Charm (left) and bottom (right) cross sections in pPb collisions as a function of c.m. energy, in single-parton (solid line) and triple-parton (dashed line) parton scatterings, compared to the total inelastic pPb cross section (dotted line). Bands around curves indicate scale, PDF (and $\sigma_{\text{eff},\text{TPS}}$, in the TPS case) uncertainties added in quadrature. The pPb $\rightarrow c\overline{c} + X$ charm data on the left plot has been derived from [29].

p-air interactions

FIG. 2: Charm (left) and bottom (right) cross sections in p-Air collisions as a function of c.m. energy, in single-parton (solid line) and triple-parton (dashed line) parton scatterings, compared to the total inelastic p-Air cross section (dotted line). Bands around curves indicate scale, PDF (and $\sigma_{\text{eff},\text{TPS}}$, in the TPS case) uncertainties added in quadrature.

above E~10¹⁰ GeV, every cosmic ray interaction may contain (multiple) charm pairs already from the first interaction! -> significant energy loss to neutrinos? 3. 10. 19 A. Geiser, HQHP workshop 16

Project for discussion 5:

Sven: "How can we reduce theory uncertainties?"

further improve evaluation of multi-HQ production

(beyond simple effective cross section approach)

+ improve measurements of multiple heavy flavour final states at LHC

-> improve predictions for multi-heavyflavour pairs also in cosmic ray interactions

The HERA ep collider and experiments

Review of open charm at HERA

arXiv:1506.07519

Progress in Particle and Nuclear Physics 84 (2015) 1-72

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Charm, beauty and top at HERA

O. Behnke, A. Geiser^{*}, M. Lisovyi¹ DESY, Hamburg, Germany

ARTICLE INFO

DIS Photoproduction

ABSTRACT

Results on open charm and beauty production and on the search for top production in high-energy electron-proton collisions at HERA are reviewed. This includes a discussion of relevant theoretical aspects, a summary of the available measurements and measurement techniques, and their impact on improved understanding of QCD and its parameters, such as parton density functions and charm- and beauty-quark masses. The impact of these results on measurements at the LHC and elsewhere is also addressed.

© 2015 Elsevier B.V. All rights reserved.

(also includes discussion of different heavy flavour schemes)

CrossMar

Combined D* cross sections in DIS

arXiv:1503.06042, JHEP 1509 (2015) 149

20

customised choice: - reduced renormalisation scale
 - modified scale dependence of fragmentation
 3. 10. 19 - slightly lower charm mass (all within uncertainty)

Project for discussion 6:

NLO theory uncertainties much larger than experimental uncertainties Sven: "How can we reduce theory uncertainties?"

evaluate 'customized choice' of NLO theory parameters (scales, fragmentation & m_c), within uncertainties, also for LHC charm & beauty predictions? (LHCb, ALICE, ATLAS, CMS)

-> data driven uncertainty reduction on predictions for cosmic ray physics?

A. Geiser, HQHP workshop

Lambda_c production in LHCb

arXiv:1302.2864, Nucl.Phys. B871 (2013) 1

inconsistent with ALICE observation of nonuniversality at mid-rapity !?

consistent with e+e- and ep !

Project for discussion 7:

Lambda_c fragmentation fraction from LHCb (and e+e-, HERA, ...) seems in contradiction with findings by ALICE

-> clarify discrepancy ?

Parton density functions (PDF)

A. Geiser, HQHP workshop

A. Geiser, HQHP workshop

Heavy flavour contributions to σ_r

includes fit of inclusive charm + jet DIS data

Constraint of gluon at very low x

arXiv 1503.04581, Eur.Phys.J. C75 (2015) 396

Combined fit of

- HERA I inclusive data: main PDF constraint
- HERA charm and beauty data: constrain m_c, m_b and gluon at low x: 10⁻² -10⁻⁴
- LHCb charm and beauty data, constrain gluon at very low x: 10⁻³- 10⁻⁶

Input data sets

HERA I combined inclusive + HERA combined charm + ZEUS beauty + LHCb charm + LHCb beauty

combination of data sets "bridges" complete x range

Final comparison of gluon fits

gluon positive and well constrained down to x ~ 10⁻⁶

first constraint from data (March 2015) for x << 10⁻⁴

now many more already in use to constrain cosmic ray prompt neutrino spectrum (e.g. Ice Cube) -> talk O. Zenaiev

Project for discussion 8:

extend PROSA HERA+LHCb fit (see talk
O. Zenaiev next week) to include also
ALICE (central low p_T) + ATLAS (7 TeV)
+ CMS (5 TeV) charm, as well as
ATLAS+CMS+LHCb top (large x!)
-> further improve low x and high x gluon
-> improved cosmic ray predictions

(PROSA = open collaboration of theorists and experimentalists)

Conclusions and outlook (part I)

- explore potential to improve heavy flavour theory predictions for cosmic ray physics by going to NNLO and/or by "tuning" NLO theory parameters to LHC + HERA data within uncertainties; explore synergies between c,b,t
- explore potential to further close "white spots" in measurements of heavy flavour measurements, in particular at LHC; relate central to forward measurements?
- further explore potential arising from combination of heavy flavour and non-heavy flavour measurements in pp, pA, AA and ep

... more ideas/projects/discussions later in the workshop?

Part II (no time today)

 detection of beauty, W,Z, top in cosmic rays through internal structure of air showers
 + lepton detection ?

application of low x gluon resummation including proper treatment of heavy flavour masses

proper treatment of heavy flavour masses in NLO + NNLO jet predictions (so far all jet predictions still use massless approximation)

measurement of c,b,t running masses, mass running, and running of corresponding Higgs Yukawa couplings

Conclusion

experimental representation of running Yukawa couplings obtained for the first time

heavy quark physics is also QCD + Higgs physics

so far, Higgs couplings and their running as obtained from quark masses are consistent with directly measured Higgs couplings

3. 10. 19

A. Geiser, HQHP workshop

Final HERA Charm combination

Comparison to FFNS QCD predictions

Comparison to VFNS QCD predictions

data description reasonable but not better than FF

overall, NLO better than appr. NNLO

beauty in backup: larger uncertainties -> all consistent

QCD fit: charm x slope

plot data/fit vs. <x> of incoming partons (rather than x_{Bj}) for each data point

<x> calculated at NLO using HVQDIS

-> common <x> trend for all Q²

arXiv:1804.01019

further discussion (gluon shape (?), low x resummation (?), ...) see backup

QCD fit with x_{Bi} > 0.01 for inclusive data

low x charm slope (no longer constrained by inclusive)

but **fails** to describe low x inclusive data

-> not a solution (but hint)

QCD fit with x_{Bi} > 0.01 for inclusive data

ZEU

arXiv:1804.01019

charm and beauty mass floating

gluon at x < 0.01 inconsistent with inclusive fit

FONLL-C fit of inclusive data

arXiv:1802.00064 (XFitter team): FONLL-C inclusive fit (no charm) with and without NLLx resummation

personal remark:

FONLL-C inclusive fit with NLLx qualitatively consistent with FF charm + x > 0.01 inclusive fit (compare previous slide)

-> combine both worlds by applying NLLx to light flavours only in FF scheme?

Figure 3 The up valence PDF xu_v , the gluon PDF xg and the total singlet PDF $x\Sigma$ for the final fits with (NNLO+NLLx) and without (NNLO) $\ln(1/x)$ resummation.

Project for discussion 9:

Clarify treatment of low-x resummation for HERA light and heavy flavour data?

Resummation formula cannot be correct for massive quarks -> use FFNS approach:

Proposal: combine nf=3 prediction with resummation (FF PDF + matrix elements) with heavy flavour predictions w/o resummation

-> improve consistency and reduce uncertainty for low-x gluon (relevant for cosmic ray predictions)

QCD fit

simultaneous NLO QCD fit of
 combined inclusive DIS data (arXiv:1506.06042), Q²_{min}=3.5 GeV²
 new combined charm and beauty DIS data

simultaneously fit PDF's (a la HERAPDF FF) in FFNS at NLO and charm guark and beauty guark "running" masses in MSbar scheme

- using xFitter [www.xfitter.org], 14 parameters (±1)
- NLO DGLAP [QCDNUM] and matrix elements [OPENQCDRAD], nf = 3
- = $\mu_F = \mu_R = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (for heavy flavour part only)
- free $m_c(m_c)$, $m_b(m_b)$
- $\alpha_s(M_Z)^{nf=3} = 0.106$, equivalent to $\alpha_s(M_Z)^{nf=5} = 0.118 \pm 0.002$
- = fit uncertainty using $\Delta \chi^2 = 1$
- -> HERAPDF-HQMASS

arXiv:1804.01019

QCD fit: charm subset

fully consistent with HERAPDF2.0 FF3A

uncertainty breakdown in backup

1.29

+0.05

 $m_c(m_c)$

PDG:

arXiv:1804.01019

3. 10. 19

A. Geiser, HQHP workshop

48

Comparison with other $m_c(m_c)$ determinations

this work: $m_c(m_c) = 1.29 + 0.05_{-0.04 \text{ exp/fit}}$ +0.06 -0.01 mod/scale +0.00 -0.03 par GeV

latest ABMP16 result: m_c(m_c) = 1.252±0.018±0.032 GeV S. Alekhin et al., arXiv:1701.05383, Phys. Rev. D96 (2017) 014011

previous results summarized in V. Bertone et al., arXiv:1605.01946, JHEP 1608 (2016) 050 :

scheme	$m_c(m_c) [{ m GeV}]$
FONLL (this work)	$1.335 \pm 0.043(\exp)^{+0.019}_{-0.000}(\operatorname{param})^{+0.011}_{-0.008}(\operatorname{mod})^{+0.033}_{-0.008}(\operatorname{th})$
FFN (this work)	$1.318 \pm 0.054 (\exp)^{+0.011}_{-0.010} (\operatorname{param})^{+0.015}_{-0.019} (\operatorname{mod})^{+0.045}_{-0.004} (\operatorname{th})$
FFN (HERA) [9]	$1.26 \pm 0.05(\text{exp}) \pm 0.03(\text{mod}) \pm 0.02(\text{param}) \pm 0.02(\alpha_s)$
FFN (Alekhin et al.) [24]	$1.24 \pm 0.03 (\exp)^{+0.03}_{-0.02} (\text{scale})^{+0.00}_{-0.07} (\text{th}) \text{ (approx. NNLO)}$
	$1.15 \pm 0.04 (\exp)^{+0.04}_{-0.00} (\text{scale}) \text{ (NLO)}$
S-ACOT- χ (CT10) [29]	$1.12_{-0.11}^{+0.05}$ (strategy 1)
	$1.18^{+0.05}_{-0.11}$ (strategy 2)
	$1.19_{-0.15}^{+0.06} \text{ (strategy 3)}$
	$1.24^{+0.06}_{-0.15}$ (strategy 4)
World average [53]	1.275 ± 0.025

arXiv:1804.01019

QCD fit: beauty subset

Running strong coupling "constant" $\alpha_{\rm s}$

e.g. from jet production at e+e-, ep, and pp at DESY, Fermilab and CERN

A. Geiser, HQHP workshop

running of α_s and quark masses

 $\alpha_{\rm s}$ running depends on number of coulours $N_{\rm C}$ and number of quark flavours $N_{\rm F}$

$$\alpha_{s}(Q^{2}) = \frac{\alpha_{s}(Q_{0}^{2})}{1 + \alpha_{s}(11N_{c}^{-2}N_{F})/12\pi \ln(Q^{2}/Q_{0}^{2})}$$

quark mass running depends on α_s , e.g.
m(pole) = m(m) (1 + 4/3 α_s/π)
= m(Q) (1 + α_s/π (4/3+ln(Q²/m_c²))

leading order QCD formulae

part of gluon field around quark not 'visible' any more when 'looking' at smaller distances/larger energy scales -> effective mass decreases

measurement of m_c running

Update reference

3. 10. 19

ZEUS

Prog. Part. Nucl. Phys. 84 (2015) 1

H1 and ZEUS preliminary

running mass concept in QCD is self-consistent !

> but mass is also manifestation of Higgs Yukawa couplings ! $y_Q = \sqrt{2m_Q}/v$

the running beauty quark mass

ZEUS

Top cross section vs. m_{tt}

Top quark mass running

Direct measurements of Higgs Yukawa couplings

ATLAS and CMS, JHEP08 (2016) 045

A. Geiser, HQHP workshop

Running of α_s and quark Yukawa couplings

update of PoS CHARM2016 (2017) 012

Project for discussion 10:

Update and finalize this plot

so far, Higgs couplings and their running as obtained from quark masses are consistent with directly measured Higgs couplings

Project for discussion 10:

improve heavy flavour treatment in NLO and NNLO jet predictions at HERA and LHC

NLO/NNLO jet fits in DIS at HERA

At HERA, have massless NLO inclusive DIS, O(alphas), NF=3 (5) (1 loop) massive NLO inclusive DIS HQ, O(alphas²) (1 loop) combine -> 3F FFNS (NLO for both inclusive and HQ) fit mQ combine -> FONLL-B (additional free damping parameter)

massless NNLO inclusive DIS, O(alphas^2), NF=5 (2 loop)
massive NLO inclusive DIS HQ, O(alphas^2) (1 loop)
combine -> FONLL-C (NNLO for inclusive, NLO for HQ) fit mQ

massless NNLO inclusive DIS, O(alphas^2), NF=3 (2 loop)
massive NNLO inclusive DIS HQ (appr.), O(alphas^3) (2 loop)
combine -> 3F FFNS (NNLO for both inclusive and HQ)
fit mQ + alphas

3. 10. 19

A. Geiser, HQHP workshop

NLO/NNLO jet fits at HERA in DIS and PhP

At HERA, have massless NLO jets in DIS differential, NF=5 O(alphas^2) 1-loop -> fit alphas massive NLO differential DIS HQ (HVQDIS) O(alphas²) 1-loop -> can produce jets at 1 loop combine! -> evaluate correction to alphas fit w.r.t. massless only massless NLO jets in PhP differential, NF=5 O(alphas^2) 1-loop -> fit alphas massive NLO differential HQ (FMNR) O(alphas²) 1-loop -> can produce jets at 1 loop combine!

massless NNLO jets in DIS differential, NF=5 O(alphas^4) 2-loop -> fit alphas

3. 10. 19 combine with massive 99, HQHP workshop

NLO/NNLO jet fits at LHC

At LHC, have massless NLO jets, O(alphas^3), NF=5 massive NLO differential HQ (MNR),

O(alphas^3) 1-loop O(alphas^3) 1-loop

-> can produce jets at 1 loop

-> combine

FONLL (collinear resummation, single differential only)

massless NNLO jets O(alphas^4), NF=5 O(alphas^4) 2-loop massive NNLO differential HQ (top only!) O(alphas^4) 2-loop -> get to work for c and b and combine rule of thumb for cc, bb and tt pair production collisions at LHC energies (~10 TeV, E_cosmic ray ~ 10^8 GeV):
cc: ~ 10% of total cross section
bb: ~ 1% of total cross section
tt: ~ 0.01% of total cross section

Deep Inelastic ep Scattering at HERA

Comparison to NLO QCD

A. Geiser, HQHP workshop

ZEUS

Charm

at LHCb

Nucl.Phys. B871 (2013) 1-20

down to $p_T = 0$ GeV

large theory uncertainty at NLO (~factor 2) but also strong m_c dependence

directly sensitive to gluon down to $x \sim 10^{-5}$!

FONLL fits well (factor 2 scale uncertainty not shown)

Figure 4: Differential cross-sections for (a) D^0 , (b) D^+ , (c) D^{*+} , and (d) D_s^+ meson production compared to theoretical predictions. The cross-sections for different y regions are shown as functions of $p_{\rm T}$. The y ranges are shown as separate curves and associated sets of points scaled by factors 10^{-m} , where the exponent m is shown on the plot with the y range. The error bars associated with the data points show the sum in quadrature of the statistical and total systematic uncertainty. The shaded regions show the range of theoretical uncertainties for the GMVFNS prediction.

A. Geiser, HQHP workshop

Comparison to 'old' global PDFs

HERAPDF style parameterization with sizeable `negative gluon ' term (but net positive gluon)

xg(x,μ), comparison plot

NLO scale dependence

Comparison of uncertainties

Example: gluon PDF

HERA only

HERA + LHCb absol.

HERA absol. + LHCb norm.

fixed flavour number scheme (FFNS)

+ NLO (+partial NNLO) corrections,

no charm in proton

 full kinematical treatment of charm mass (multi-scale problem: Q², p_T, m_c -> logs of ratios)

"natural" scale: $Q^2 + 4m_c^2$

no resummation of logs
m_c fit and uncertainties

H1-prelim-14-071, ZEUS-prel-14-006, + S. Moch

Variation of the factorisation and renormalization scales of heavy quarks by factor 2 -> Outer error bar

sensitivity to $m_c(m_c)$ decreases with increasing scale $\mu^2 = Q^2 + 4m_c^2$

'in reality', have measured $m_c(\mu)$ at each scale

the running b quark mass at LEP

Fig. 6. The energy evolution of the \overline{MS} -running b-quark mass $m_b(Q)$ as measured at LEP. DELPHI results from $R_3^{b\ell}$ [7] at the M_Z scale and from semileptonic B-decays [31] at low energy are shown together with results from other experiments (ALEPH [4], OPAL [5] and SLD [6]). The masses extracted from LO and approximate NLO calculations of $R_4^{b\ell}$ are found to be consistent with previous experimental results and with the reference value $m_b(Q)$ (grey band) obtained from evolving the average $m_b(m_b) = 4.20 \pm 0.07 \text{ GeV}/c^2$ from [17] using QCD RGE (with a strong coupling constant value $\alpha_s(M_Z) = 0.1202 \pm 0.0050$ [30])

LEP: Z -> bb + gluons, measurement of phase space/ angular distributions

 $m_{(Q)} = m_{(Q_0)} (1 - \alpha_s / \pi \ln(Q^2 / Q_0^2))$

charm and top mass running not explicitly measured (so far)

m_b from reduced beauty cross section

JHEP 1409 (2014) 127

A. Geiser, HQHP workshop

3. 10. 19

the running beauty quark mass

arXiv:1506.07519

Higgs couplings

This costs too much energy! I think I'll hang out down the relate m_t, m_b, m_c to associated Higgs Yukawa couplings

LO EW (+NLO QCD) formula: $y_Q = \sqrt{2m_Q}/v$

source: vixra blog

Final HERA charm (and beauty) combinations in DIS

Beauty combination

Comparison to FFNS predictions

beauty:

3. 10. 19

Comparison to FFNS and VFNS predictions

Beauty:

Predictions w/o and with log 1/x resummation

NLL resummation of log 1/x terms improves x_{Bj} slope but deteriorates normalisation

overall, NNPDF3.1sx (fitted charm, arXiv:1710.05935) either with or w/o log 1/x resummation not better than HERAPDF (FONLL-C + NLLx see below)

arXiv:1804 01019

χ^2 and p-values for various QCD predictions

arXiv:1804.01019

central predictions

Dataset	PDF (scheme)	$\chi^2 [p-value]$	
1	HERAPDF20_NLO_FF3A (FFNS)	59 [0.23]	
charm [38]	ABKM09 (FFNS)	59 [0.23]	
	ABMP16_3_nlo (FFNS)	61 [0.18]	
	ABMP16_3_nnlo (FFNS)	70 [0.05]	
	HERAPDF20_NLO_EIG (RTOPT)	71 [0.04]	
$(N_{data} = 52)$	HERAPDF20_NNLO_EIG (RTOPT)	66 [0.09]	
	NNPDF31sx NNLO (FONLL-C)	106 [1.5 · 10 ⁻⁶]	
$(N_{data} = 47)$	NNPDF31sx NNLO+NLLX (FONLL-C)	71 [0.013]	
	HERAPDF20_NLO_FF3A (FFNS)	86 [0.002]	
	ABKM00 (EENS)	82 [0.005]	
charm,	ABMP16_3_nlo (FFNS)	90 [0.0008]	
this analysis	ABMP16_3_nnlo (FFNS)	109 [6 · 10-6]	
	HERAPDF20_NLO_EIG (RTOPT)	99 $[9 \cdot 10^{-5}]$	
$(N_{data} = 52)$	HERAPDF20_NNLO_EIG (RTOPT)	$102 [4 \cdot 10^{-5}]$	
	NNPDF31sx NNLO (FONLL-C)	140 [1.5 · 10 ⁻¹¹]	
$(N_{data} = 47)$	NNPDF31sx NNLO+NLLX (FONLL-C)	114 [5 - 10-7]	
	HERAPDF20_NLO_FF3A (FFNS)	33[0.20]	
beauty,	ABMP16_3_nlo (FFNS)	37 [0.10]	
this analysis	ABMP16_3_nnlo (FFNS)	41 [0.04]	
877	HERAPDF20_NLO_EIG (RTOPT)	33 [0.20]	
(N _{data} = 27)	HERAPDF20_NNLO_EIG (RTOPT)	45 [0.016]	

previous combined charm

new combined charm

beauty

Table 4: The χ^2 , *p*-values and number of data points of the charm and beauty data with respect to the NLO and approximate NNLO calculations using various PDFs as described in the text. The measurements at $Q^2 = 2.5 \text{ GeV}^2$ are excluded in the calculations of the χ^2 values for the NNPDF3.1sx predictions, by which the number of data points is reduced to 47, as detailed in the caption of figure 12.

QCD fit: systematic uncertainties

arXiv:1804.01019

Parameter	Variation	$m_c(m_c)$ uncertainty	$m_b(m_b)$ uncertainty
		[GeV]	[GeV]
	Experim	ental / Fit uncertainty	2
Total	$\Delta \chi^2 = 1$	$^{+0.046}_{-0.041}$	$^{+0.104}_{-0.109}$
	М	odel uncertainty	
f_s	$0.4^{+0.1}_{-0.1}$	-0.003 + 0.004	-0.001 + 0.001
$Q^2_{\rm min}$	$3.5^{+1.5}_{-1.0}{ m GeV^2}$	-0.001 + 0.007	-0.005 + 0.007
$\mu_{r,f}$	$\mu_{r,f} \stackrel{\times 2.0}{_{\times 0.5}}$	$^{+0.030}_{+0.060}$	-0.032 +0.090
$\alpha^{n_f=+}(M_Z)$	$0.1060\substack{+0.0015\\-0.0015}$	-0.014 +0.011	+0.002 -0.005
Total		$^{+0.062}_{-0.014}$	$^{+0.090}_{-0.032}$
	PDF parar	neterisation uncertaint	у
$\mu_{f,0}^2$	$1.9 \pm 0.3 \text{ GeV}^2$	+0.003 -0.001	$^{-0.001}_{+0.001}$
$E_{u_{\psi}}$	set to 0	-0.031	-0.031
Total		+0.003 -0.031	+0.001 -0.031

Table 5: List of uncertainties for the charm- and beauty-quark mass determination. The PDF parameterisation uncertainties not shown have no effect on $m_c(m_c)$ and $m_b(m_b)$.

QCD fit: charm

arXiv:1804.01019

ZEUS

QCD fit: beauty

fully consistent with HERAPDF2.0FF3A

A. Geiser, HQHP workshop

arXiv:1804.01019

ZEUS

QCD fit: inclusive data subset

PDFs consistent with those of inclusive data only (and c, b masses fixed to PDG)

-> inclusive data (and c,b mass values) dominate in fixing PDF

arXiv:1804.01019

A. Geiser, HQHP Workshop

QCD fit: inclusive data, parametrisation uncert.

-> inclusive HERA data alone cannot constrain HQ masses reliably -> interplay of PDFs and HQ masses needs careful treatment

QCD fit: beauty x slope

plot data/fit vs. <x> of incoming partons (rather than x_{Bj}) for each data point

LO:
$$x = x_{Bj} \cdot \left(1 + \frac{\hat{s}}{Q^2}\right)$$

 calculated at NLO
using HVQDIS

-> beauty consistent with charm but does not add information

arXiv:1804.01019

A. Geiser, HQHP workshop

χ^2 as function of min. x_{Bj} cut

arXiv:1804.01019

ZEUS

Comparison of HERAPDF with FONLL-C + NLLx

from arXiv:1506.06042:

inclusion of NLLx resummation with FONLL-C achieves similar performance as HERAPDF2.0 FF3B

HERAPDF	$Q^2_{\rm min}[{ m GeV^2}]$	χ^2	d.o.f.	$\chi^2/d.o.t$
2.0 NLO	3.5	1357	1131	1.200
2.0HiQ2 NLO	10.0	1156	1002	1.154
2.0 NNLO	3.5	1363	1131	1.205
2.0HiQ2 NNLO	10.0	1146	1002	1.144
2.0 AG NLO	3.5	1359	1132	1.201
2.0HiQ2 AG NLO	10.0	1161	1003	1.158
2.0 AG NNLO	3.5	1385	1132	1.223
2.0HiQ2 AG NNLO	10.0	1175	1003	1.171
2.0 NLO FF3A	3.5	1351	1131	1.195
2.0 NLO FF3B	3.5	1315	1131	1.163
2.0 Jets $\alpha_s(M_Z^2)$ fixed	3.5	1568	1340	1.170
2.0 Jets $\alpha_s(M_Z^2)$ free	3.5	1568	1339	1.171

Table 4: The values of χ^2 per degree of freedom for HERAPDF2.0 and its variants.