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‣ Basics of threshold resummation: the Drell-Yan case

‣ Threshold factorization and resummation for heavy quark production 
(PIM, 1PI kinematics, boosted regime) 

‣ Top quark pair + Higgs/W/Z production at the LHC

‣ Sudakov resummation for WIMP dark matter annihilation
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1 Introduction

The weak-coupling expansion of QCD high-energy scattering fails near kinematic thresh-
olds due to the restricted phase space for real emission. The logarithmic enhancements
in the kinematic variable that characterizes the threshold must be resummed to all or-
ders in the coupling expansion to arrive at a reliable approximation. This has been
studied first [1, 2] and in greatest detail for the simplest such situation, the production
of a single uncoloured particle DY (Drell-Yan process) in the collision of two hadrons,
A(pA)B(pB) ! DY(Q) +X, where X denotes an unobserved QCD final state. The DY
process has always provided the first physically very relevant case on which to push the
accuracy of resummation to the next level, or explore new approaches to resummation [3].

The DY spectrum d�DY/dQ2 is given by the convolution of parton distributions in
the incoming hadrons with partonic short-distance cross sections �̂ab in partonic channels
ab. The parton scattering cross sections can be regarded as functions of z = Q2/ŝ, where
ŝ = xaxbs is the partonic center-of-mass (cms) energy squared, and xa, xb the momentum
fractions of the partons in the corresponding hadrons. Near the partonic threshold z = 1,
�̂ab has the singular expansion

�̂ab(z) =
1X

n=0

↵n

s

"
cn�(1� z) +

2n�1X

m=0

✓
cnm


lnm(1� z)

1� z

�

+

+ dnm lnm(1� z)

◆
+ . . .

#
.

(1.1)
In this expression the series with coe�cients cn, cnm encompass the leading power (LP)
singular terms, and, more specifically, the terms c0 and cn(2n�1) constitute the leading
logarithms (LL). The terms multiplied by dnm are suppressed by one power of (1 � z)
and are referred to as next-to-leading power (NLP). The NLP LL series is given by the
highest power NLP logarithms with coe�cients dn(2n�1) for n = 1, 2, . . ..

Existing approaches to soft gluon resummation of the DY threshold apply only to
the LP terms. The key result is the factorization of the partonic cross section

�̂(z) = H(Q2)QSDY(Q(1� z)) (1.2)

into the product of a hard function and the DY soft function [4]

SDY(⌦) =

Z
dx0
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expressed in terms of Wilson lines, as defined below. Both functions depend on a renor-
malization scale µ. This dependence is important to perform the resummation via a
renormalization group equation, but will not be indicated explicitly unless necessary. In
principle it is possible to sum arbitrary subleading logarithms at LP by computing the
hard and soft function and the evolution equation to su�ciently high order. Presently, LP
logarithms can be summed to the next-to-next-to-next-to-leading logarithmic order [3,5].

In contrast, much less is understood at NLP. The structure of NLP logarithms has
recently received increased interest with explicit calculations at fixed order n = 1, 2

1

‣ Threshold resummation and fixed-order expansions have been applied to many 
different processes: Drell-Yan, Higgs production, ttbar, ttbar+V, squarks and gluinos 
production…

‣ Goal: achieve better behaved predictions and estimate the size of the higher order 
corrections

‣ First case studied: production of a single uncoloured particle (Drell-Yan process)  
  (G. Sterman ’87, S. Catani, L. Trentadue ’89, L.Magnea ’91, G.Sterman, W. 
Vogelsang '00,S. Moch, A. Vogt ‘05, T. Becher, M. Neubert, G. Xu ’08, M.Bonvini,S.Forte,G.Ridolfi ’12,…)
A(pA)B(pB) → DY(Q) + X

LP NLP
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The relevance of the threshold region arises dynamically due to the 
steeply falling behaviour of the parton luminosity

Introduction: threshold limit

When real radiation is 
present in the final state

ŝ 6= M2
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Figure 10: Schematic representation of the scale separation and of the calculational procedure in
renormalization group improved perturbation theory.

called Renormalization Group Improved Perturbation Theory. The large logarithm counts

as 1/αs, as it can be seen from Eq. (5.11) remembering that β(αs) ∼ α2
s.

We observe that the fixed order expression of the Wilson coefficient C̃V (Eq. (5.5)),

becomes meaningless when µ≫ Q or µ≪ Q, since in these cases the logarithms are large

and the product αs ln(Q2/µ2) ∼ 1 cannot be used as an expansion parameter. In contrast,

if µh is taken approximately equal to the scale Q, the expression in Eq. (5.9) is valid for

any value of µ for which αs is perturbative.

5.2 Resummation

In the case of the Sudakov form factor, we integrated out the hard contribution and ab-

sorbed it in the Wilson coefficient C̃V
(
Q2, µ2

)
, but the decoupling also allows us to factorize

soft and collinear interactions, as it is shown in Fig. 7. The complete form factor can then

be written as

F
(
Q2, L2, P 2

)
= C̃V

(
Q2, µ2

)
J
(
L2, µ2

)
J
(
P 2, µ2

)
S
(
Λ2
s, µ

2
)
, (5.17)

where the J ’s are the collinear functions and S is the soft function characterized by the

scale Λ2
s = L2P 2/Q2.

Above, we have resummed logarithms in the hard function by solving its RG equation.

To achieve the resummation for the entire form factor, one solves the RG for each of the

terms in the r.h.s. of Eq. (5.17). All of them fulfill a RG equation of the same type as

the one satisfied by the Wilson coefficient. Therefore, each factor in Eq. (5.17) can be

calculated perturbatively at its own characteristic scale, and then evolved to a common

reference scale µ. The procedure is summarized in Fig. 10. Since each factor is evaluated at

its own natural scale, no large logarithms are present in the perturbative calculations; all

of the large logarithms are resummed in the evolution factors originating from the solution

of the RG equations.

The factorization formula puts constraints on the anomalous dimensions governing the

RG equation of the various factors in Eq. (5.17). The final result must be independent of
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p l
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C̃V (Q2)

J (P 2) J (L2)

S(Λ2
s)

+O
(
λ2
)

Figure 7: Diagrammatic representation of the Sudakov form factor in QCD; the diagrams illus-
trates the separation of the different scales present in the problem. The soft scale is Λ2

s = L2P 2/Q2.

Since

γµ = n/
n̄µ

2
+ n̄/

nµ

2
+ γµ⊥ , (4.63)

the only component surviving in Eq. (4.61) is γ⊥. When applying the decoupling transfor-

mations

χc(x) → Sn (x−)χ
(0)
c (x) ,

χc̄(x) → Sn̄ (x+)χ
(0)
c̄ (x) , (4.64)

the source term becomes

Jµ(x) =

∫
ds

∫
dtCV (s, t)χ̄

(0)
c (x+ sn̄)S†

n (x−)Sn̄ (x+) γ
µ
⊥χ

(0)
c̄ (x+ tn)

=

∫
ds

∫
dtCV (s, t)χ̄

(0)
c (x+ + x⊥ + sn̄)S†

n (0)Sn̄ (0) γ
µ
⊥χ

(0)
c̄ (x− + x⊥ + tn) + . . .

(4.65)

In the second line, we have used the multipole expansion to drop power-suppressed depen-

dence on xµ ∼ (1, 1, 1/λ). The scaling follows because xµ is conjugate to the sum of a

collinear and an anti-collinear momentum. We see that the soft interactions do not cancel,

and the Sudakov form factor receives low-energy contributions which describe a long-range

interaction between the fast moving ingoing and outgoing quarks. The situation is sum-

marized in diagrammatic form in Fig. 7, where pµ ∼ inµ, lµ ∼ in̄µ, and the double lines

represent the soft Wilson lines.

Do the soft corrections factorize? It depends on the precise meaning that one attributes

to the word factorization. Unfortunately, there are two different definitions of the word

factorization which are employed in this context:

i) Factorization = scale separation. In the source term in Eq. (4.65) the pieces associated

to different scales are separated, so according to this definition the form factor is

factorized.

ii) Factorization = no low energy interactions. The two collinear sectors in Eq. (4.65)

interact through soft interactions. The form factor is not factorized in this sense.
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Factorization & Resummation
‣ Resummation program schematically:

‣ large logarithmic corrections from soft emissions

‣ separation of scales (factorization)

‣ evaluate each (single scale) factor in fixed order perturbation theory at a 
scale for which it is free of large logs

‣ use Renormalization Group equations to evolve the factors to a common 
scale

Large logarithmic correctionsLarge logarithmic corrections

● The partonic cross section for top pair (+Higgs,W or Z) 
production receives potentially large corrections from soft gluon 
emission diagrams

● Schematically, the partonic cross section depends on 
logarithms of the ratio of two different scales: 

● It can be that                 

● One needs to reorganize the perturbative series: Resummation

● The resummation of soft emission corrections can be carried 
out by means of effective field theory methods    

Large logarithmic correctionsLarge logarithmic corrections

● The partonic cross section for top pair (+Higgs,W or Z) 
production receives potentially large corrections from soft gluon 
emission diagrams

● Schematically, the partonic cross section depends on 
logarithms of the ratio of two different scales: 

● It can be that                 

● One needs to reorganize the perturbative series: Resummation

● The resummation of soft emission corrections can be carried 
out by means of effective field theory methods    
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RG equations - Drell-Yan case

Renormalization Group equations for the hard and the soft functions

‣ for example for the soft function (in Laplace space)

‣ its solution (back) in momentum space

and can be neglected in the threshold limit. The anomalous dimension at first order in

the strong coupling constant is γfq = 3CFαs/(4π), the two-loop result can be found in

Appendix I. Up to terms which are power suppressed in the limit z → 1, we can rewrite

Eq. (6.41) in the form

dfq/N (z, µ)

d lnµ
=

∫ ∞

0
dx̄

∫ ∞

0
dȳ P (x) fq/N (y, µ) δ(z̄ − x̄− ȳ) , (6.43)

which is precisely the type of convolution which the Laplace transform turns into a product.

Using our result in Eq. (6.35), the transformed equation reads

df̃q/N (τ, µ)

d lnµ
= 2

[
CFγcusp(αs) ln τ + γfq(αs)

]
f̃q/N (τ, µ) . (6.44)

To derive the RG equation satisfied by the soft function, one observes that the differ-

ential cross section must be independent of the scale µ, so that one finds

d

d lnµ
σ̃(κ) = [ΓH + 2Γf + Γs] σ̃(κ) = 0 , (6.45)

where the Γ’s indicate schematically the anomalous dimensions of the hard function, the

parton distribution functions, and the soft function, respectively. The hard function is given

by the absolute value squared of CV . Its RG equation was discussed in detail in Section 5.1.

For the Drell-Yan process, the function CV (Q2, µ2) is evaluated at Q2 = −M2 − i0+ so

that

ΓH = ΓCV + Γ∗CV
= 2Re[ΓCV ] = 2

[
CFγcusp(αs) ln

M2

µ2
+ γV (αs)

]
. (6.46)

Using the explicit form of the anomalous dimension of the PDF in Eqs. (6.44) and solving

Eq. (6.45) with respect to Γs one then finds

Γs = −4CFγcusp(αs) ln

(
2κ√
s

)
− 4γfq(αs)− 2CFγcusp(αs) ln

(
M2

µ2

)
− 2γV (αs) ,

≃ −4CFγcusp(αs) ln

(
2κ

µ

)
− 2

(
2γfq(αs) + γV (αs)

)
︸ ︷︷ ︸

≡γW

. (6.47)

In the second line, we have used that M ≃ s in the threshold region to show that the

dependence on the hard scale cancels out.

The above anomalous dimension is relevant for the cross section Eq. (6.38) which is

proportional to s̃DY(2κ, µ). The RG equation satisfied by the Laplace transform of the soft

function itself is thus

d s̃DY(κ, µ)

d lnµ
=

[
−4CFγcusp(αs) ln

(
κ

µ

)
− 2γW (αs)

]
s̃DY(κ, µ) . (6.48)

The RG equation above can be solved in the same way as the RG equation for the Wilson

coefficient of the Sudakov form factor discussed in Section 5.1. One finds that the solution

of the equation is

s̃DY(κ, µ) = exp [−4CFS(µs, µ) + 2AγW (µs, µ)] s̃DY(κ, µs)

(
κ2

µ2
s

)η

, (6.49)
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where the functions S, AγW , and Aγcusp are defined in Eqs. (5.13) and η ≡ 2CFAγcusp(µs, µ).

In order to compute the resummed cross section in momentum space, we would like

to perform the inverse Laplace transform. To do so, we observe that the κ-dependence of

the solution is very simple. To any order in perturbation theory, the function s̃DY(κ, µs)

is a polynomial in the logarithm

L = ln
κ2

µ2
s

(6.50)

which is multiplied by a factor (κ2/µ2
s)

η from the RG evolution. In fact, powers of loga-

rithms can be obtained as derivatives with respect to η

Lm

(
κ2

µ2
s

)η

= ∂(m)
η

(
κ2

µ2
s

)η

. (6.51)

Because of this relation it is convenient to write the Laplace transformed function as

a function of the logarithm L and one can then replace s̃DY (L, µs) → s̃DY (∂η, µs) in

Eq. (6.49). The computation of the inverse Laplace transform now boils down to obtaining

the inverse of κ2η. By dimensional analysis, the inverse must be given by a function of η

times ω2η−1. To determine the prefactor, let us compute the Laplace transform of ω2η−1:

∫ ∞

0
dω e−ω/(κe

γE )ω2η−1 = Γ(2η) e2ηγE κ2η . (6.52)

From this result and our discussion above, we conclude that if one uses L as the first

argument in s̃DY the inverse transform can be written as [10]

WDY(ω, µ) = exp [−4CFS(µs, µ) + 2AγW (µs, µ)]s̃DY (∂η, µs)
e−2γEη

Γ(2η)

1

ω

(
ω

µs

)2η

. (6.53)

This expression for WDY(ω, µ) is well defined for η > 0, which is fulfilled for µs > µ.

For the effective field theory, this ordering is natural: one would first compute the soft

contributions at the relevant perturbative scale µs and then evolve down to a low scale µ

where the PDFs are evaluated. However, in fixed-order computations the scale µ in the

PDFs is typically chosen of order the hard scale and since the PDF fits were performed with

this scale choice, it is preferable to adopt the same choice in the effective theory. Therefore,

we need to be able to evaluate integrals with respect to ω for negative values of η; this is

done by analytic continuation. For instance, to obtain the result for −1/2 < η < 0, it is

necessary to employ the identity

∫ Ω

0
dω

f(ω)

ω1−2η
=

∫ Ω

0
dω

f(ω)− f(0)

ω1−2η
+

f(0)

2η
Ω2η , (6.54)

where f(ω) is a smooth test function. If necessary, it is possible to analytically continue

the integral on the l.h.s. of this Eq. (6.54) to the region η < −n/2 for an arbitrary positive

integer n. This can be done by subtracting an increasing number of terms from the Taylor

expansion of f(ω) at ω = 0 in the r.h.s. of Eq. (6.54).
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where the integration region over the parton momentum fractions is such that x1x2 ≥ τ , so
that z = τ/x1x2 ≤ 1. In the final step we introduce the Fourier transform of the position-space
Wilson loop at time-like separation via

WDY(ω, µf) =

∫
dx0

4π
eiωx0/2 ŴDY(x0, x⃗ = 0, µf) . (35)

This Wilson loop plays the role of the jet function in DIS in the sense that it describes the
properties of the hadronic final state. It has been introduced previously in [12, 39]. The
Drell-Yan cross section now takes the form

dσ

dM2
=

4πα2

3NcM2s
|CV (−M2, µf)|2

∑

q

e2
q

∫
dx1

x1

dx2

x2

[
fq/N1

(x1, µf) fq̄/N2
(x2, µf) + (q ↔ q̄)

]

×
√

ŝWDY(
√

ŝ (1 − z), µf) , (36)

and from comparison with (12) and (15) we identify the soft function as

S(
√

ŝ (1 − z), µf ) =
√

ŝ WDY(
√

ŝ (1 − z), µf ) . (37)

We should mention that at leading power in (1 − z) the argument of the soft function could
be simplified as

√
ŝ (1− z) = M(1 − z)/

√
z ≈ M(1 − z); however, since the exact expressions

(6) for the hard-scattering kernels at NLO contain the logarithm Lz = ln(ŝ(1 − z)2/µ2
f), we

prefer to keep the argument of the soft function in the form written above.

4 Momentum-space resummation at large z

At this point we have identified the two components in the factorized expression (15) for the
hard-scattering coefficient C(z, M, µf ) with field-theoretic objects defined in terms of operator
matrix elements. The resummation of threshold logarithms arising in the z → 1 region can
now be accomplished by solving the RG evolution equations obeyed by these quantities.

4.1 Evolution of the hard function

The evolution equation for the hard matching coefficient CV evaluated at time-like momentum
transfer and its solution can be obtained from the corresponding results valid for space-like
momentum transfer [21] by analytic continuation. This leads to

d

d lnµ
CV (−M2 − iϵ, µ) =

[
Γcusp(αs)

(
ln

M2

µ2
− iπ

)
+ γV (αs)

]
CV (−M2 − iϵ, µ) . (38)

We have reinserted the iϵ regulator, which determines the sign of the imaginary part of the
anomalous dimension. The appearance of the logarithm and its coefficient, the cusp anomalous
dimension Γcusp [45, 46], can be explained using arguments presented in [40]. This term in the
evolution equation is associated with Sudakov double logarithms. The remaining term, γV ,
accounts for single-logarithmic evolution.

15

z ⌘ M2

ŝ
[Becher, Neubert & Xu ’07]
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Resummation
‣ Resummed formula for the hard-scattering kernel

‣ Wilson coefficients and soft functions are free of large logarithms and can be 
computed in perturbation theory

‣ singular terms (plus distributions and delta functions) in fixed-order perturbation 
theory can be obtained by expanding in   (approximate result)αs

The factor (µs/ω)−2η in Eq. (6.72) can be moved to the left of the soft function s̃DY to

obtain

C(z,M, µf ) =
∣∣∣C̃V (−M2, µh)

∣∣∣
2
U(M,µh, µf , µs)

√
ŝ

ω

(
M

ω

)−2η
s̃DY

(
ln
ω2

µ2
s
+ ∂η, µs

)
e−2γEη

Γ(2η)
.

(6.74)

The explicit z dependence of the hard-scattering kernel can be obtained by inserting the

relation ω = M(1− z)/
√
z. Finally, one obtains

C(z,M, µf ) =
∣∣∣C̃V (−M2, µh)

∣∣∣
2
U(M,µh, µf , µs)

z−η

(1− z)1−2η

×s̃DY

(
ln

M2(1− z)2

µ2
sz

+ ∂η, µs

)
e−2γEη

Γ(2η)
. (6.75)

As it was observed after Eq. (6.53), the formula above is well defined for η > 0, which

corresponds to the case µs > µf . In the physically more relevant case in which µs < µf ,

η < 0; consequently the integrals of lnn(1−z)/(1−z)1−2η with test functions f(z) must be

defined using a subtraction at z = 1 and analytic continuation in η. This procedure gives

rise to plus distributions in the variable 1− z.

The resummed formula for the hard-scattering kernel, Eq. (6.75), is formally indepen-

dent from the hard scale µh and the soft scale µs. As long as µh ∼ M and µs ∼ ω, the

Wilson coefficient C̃V and the soft function s̃DY in Eq. (6.75) are free of large logarithms

and can be evaluated in perturbation theory. (We remind the reader that µs ≫ ΛQCD.) A

residual dependence on µs and µh in the hard-scattering kernel arises precisely form the

fact that the matching coefficients and the anomalous dimensions are evaluated only up to

a given order in perturbation theory. The residual higher-order scale dependence can be

employed to asses the perturbative uncertainty, as we will discuss in detail in Section 6.6.

The dependence on the factorization scale µf cancels formally in the convolution of the

hard-scattering kernel with the parton distribution functions.

The fixed-order expression for the hard scattering kernel in perturbative QCD includes

terms which are singular in the z → 1 limit (plus distributions and Dirac delta functions).

These singular terms can be obtained by setting µs = µf = µh in Eq. (6.75) and by

expanding the formula in powers of αs. In particular this implies that after taking the

derivatives with respect to η, one should take the limit η = 0. We further discuss the

derivation of these approximate formulas in fixed order perturbation theory in Section 6.7.

The resummed expression for the hard-scattering kernel can be evaluated at any desired

order in resummed perturbation theory. Different levels of accuracy require the evaluation

of the matching coefficients and anomalous dimensions at different orders in perturbation

theory; Table 1 summarizes the situation. There are two different ways to label the level

of accuracy at which a resummed formula is evaluated. In the counting scheme of RG-

improved perturbation theory, the LO approximation includes all terms of O(1), the NLO

approximation includes all of the terms of O(αs), and so on. In this framework, the

large logarithms are eliminated in favor of coupling constants at the different scales in the
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Evolution function which evolves 
the soft    and the hard    scale 

to a common factorization scale                          
μs μh

μf

The factor (µs/ω)−2η in Eq. (6.72) can be moved to the left of the soft function s̃DY to

obtain

C(z,M, µf ) =
∣∣∣C̃V (−M2, µh)

∣∣∣
2
U(M,µh, µf , µs)

√
ŝ

ω

(
M

ω

)−2η
s̃DY

(
ln
ω2

µ2
s
+ ∂η, µs

)
e−2γEη

Γ(2η)
.

(6.74)

The explicit z dependence of the hard-scattering kernel can be obtained by inserting the

relation ω = M(1− z)/
√
z. Finally, one obtains

C(z,M, µf ) =
∣∣∣C̃V (−M2, µh)

∣∣∣
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µ2
sz
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η < 0; consequently the integrals of lnn(1−z)/(1−z)1−2η with test functions f(z) must be
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Wilson coefficient C̃V and the soft function s̃DY in Eq. (6.75) are free of large logarithms

and can be evaluated in perturbation theory. (We remind the reader that µs ≫ ΛQCD.) A

residual dependence on µs and µh in the hard-scattering kernel arises precisely form the

fact that the matching coefficients and the anomalous dimensions are evaluated only up to

a given order in perturbation theory. The residual higher-order scale dependence can be

employed to asses the perturbative uncertainty, as we will discuss in detail in Section 6.6.

The dependence on the factorization scale µf cancels formally in the convolution of the

hard-scattering kernel with the parton distribution functions.

The fixed-order expression for the hard scattering kernel in perturbative QCD includes

terms which are singular in the z → 1 limit (plus distributions and Dirac delta functions).

These singular terms can be obtained by setting µs = µf = µh in Eq. (6.75) and by

expanding the formula in powers of αs. In particular this implies that after taking the

derivatives with respect to η, one should take the limit η = 0. We further discuss the

derivation of these approximate formulas in fixed order perturbation theory in Section 6.7.

The resummed expression for the hard-scattering kernel can be evaluated at any desired

order in resummed perturbation theory. Different levels of accuracy require the evaluation

of the matching coefficients and anomalous dimensions at different orders in perturbation

theory; Table 1 summarizes the situation. There are two different ways to label the level

of accuracy at which a resummed formula is evaluated. In the counting scheme of RG-

improved perturbation theory, the LO approximation includes all terms of O(1), the NLO

approximation includes all of the terms of O(αs), and so on. In this framework, the

large logarithms are eliminated in favor of coupling constants at the different scales in the
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where the quantities S and Aγ are defined as

S (ν, µ) = −
∫ αs(µ)

αs(ν)
dα
γcusp(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
,

Aγi(ν, µ) = −
∫ αs(µ)

αs(ν)
dα
γi(α)

β(α)
; (5.13)

with i ∈ {V, cusp}. It is straightforward to check that Eq. (5.9) with Eq. (5.12) indeed solves

the RG equation Eq. (5.6) by observing that

d

d lnµ
S (ν, µ) = −γcusp (αs(µ))

∫ αs(µ)

αs(ν)

dα′

β(α′)
,

d

d lnµ
Aγi (ν, µ) = −γi (αs(µ)) . (5.14)

Since dαs/β = d lnµ, one can conclude from Eqs. (5.13) that the functions Ai are responsi-

ble for the resummation of the single logarithms and the function S for the resummation of

the double logarithms. The explicit expression of these function can be obtained by insert-

ing the perturbative expansion of the beta function and of the γ functions in Eqs. (5.13).

By parameterizing the expansions of the beta function and of the anomalous dimensions

γi as follows

β (αs) = −2αs

[
β0
(αs

4π

)
+ β1

(αs

4π

)2
+O(α3

s)

]
,

γcusp(αs) = γcusp

0

(αs

4π

)
+ γcusp

1

(αs

4π

)2
+O(α3

s) ,

γV (αs) = γV0

(αs

4π

)
+ γV1

(αs

4π

)2
+O(α3

s) , (5.15)

and by inserting these expansions in the integrands of Eqs. (5.13), one obtains

AγV (ν, µ) =
γV0
2β0

ln
αs(µ)

αs(ν)
+O(αs) ,

Aγcusp (ν, µ) =
γcusp

0

2β0
ln
αs(µ)

αs(ν)
+O(αs) ,

S (ν, µ) =
γcusp

0

4β20

[
4π

αs(ν)

(
r − 1

r
− ln r

)
+

(
γcusp

1

γcusp

0

− β1
β0

)
(1− r + ln r)

+
β1
2β0

ln2 r

]

+O(αs) , (5.16)

where r = αs(µ)/αs(ν). Note that S (ν, µ) contains terms proportional to 1/αs. By

expanding S (ν, µ) in terms of a single coupling αs(µ), one would find that this expansion

produces terms of the form αn
s (µ) ln

2n(µ/ν): S (ν, µ) encodes the leading logarithmic terms.

The way we organize the computation, which consists in eliminating large logarithms in

favor of coupling constants at the different scales and then expanding in these couplings, is
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LL NLL

6.4 Resummation of Large Logarithms

The partonic Drell-Yan cross section factors into the product of the squared Wilson co-

efficient and the soft function, as shown in Eq. (6.26). The product of these two terms

describes the hard partonic scattering; the physical (hadronic) cross section is obtained by

integrating the product of the hard-scattering kernel and the parton distribution functions

over the appropriate domain. In Section 5 we solved the RG equation satisfied by the

Wilson coefficient C̃V (cf. Eqs. (5.9,5.12)), while the solution of the RG equation satisfied

by the soft function was presented in Section 6.2 above. By combining these two elements

we obtain a resummed formula for the hard scattering kernel.

Eqs. (5.12) is valid for space-like momenta; the solution of the RG equation for the

function C̃V needed in Drell-Yan scattering can be obtained from the one valid for space-

like momenta by analytic continuation. The sign of the imaginary part extracted from

the logarithm in the RG equation can be determined by writing explicitly the infinitesimal

imaginary part of M2. The RG equation becomes [10]

d

d lnµ
C̃V (−M2 − i0+, µ) =

[
CFγcusp(αs)

(
ln

M2

µ2
− iπ

)
+ γV (αs)

]
C̃V (−M2 − i0+, µ) ,

(6.68)

and its solution is

C̃V (−M2 − i0+, µf ) = exp
[
2CFS(µh, µf )−AγV (µh, µf ) + iπCFAγcusp(µh, µf )

]

×
(
M2

µ2
h

)−CFAγcusp (µh,µf )

C̃V (−M2, µh) . (6.69)

The functions S and Aγi are defined in Eq. (5.13).

Following the notation employed in [10], one can define the hard-scattering kernel as

C(z,M, µf ) ≡
∣∣∣C̃V (−M2, µf )

∣∣∣
2√

ŝWDY

(√
ŝ(1− z), µf

)
. (6.70)

To get the resummed result, we simply insert the solutions of RG equations of the soft

function, Eq. (6.53), and the hard function, Eq. (6.69), into Eq. (6.70). The result can be

simplified by making use of the relations

Aγi (µh, µf ) = Aγi (µh, µs) +Aγi (µs, µf ) ,

S (µh, µf )− S (µs, µf ) = S (µh, µs)−Aγcusp (µs, µf ) ln
µh

µs
, (6.71)

as well as γW = 2γfq + γV . In this way one finds

C(z,M, µf ) =
∣∣∣C̃V (−M2, µh)

∣∣∣
2
U(M,µh, µf , µs)

√
ŝ

ω

(
M

µs

)−2η
s̃DY (∂η, µs)

(µs

ω

)−2η e−2γEη

Γ(2η)
,

(6.72)

where the evolution function U is defined as

U(M,µh, µf , µs) = exp
[
4CFS (µh, µs) + 4Aγfq (µs, µf )− 2AγV (µh, µs)

]

×
(
M2

µ2
h

)−2CFAγcusp (µh,µs)

. (6.73)
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‣The top quark is the heaviest particle of the SM

‣the LHC is a Top factory ~3x107 top quark pairs produced

‣at LO two partonic production channels

‣    channel is the dominant at the Tevatron (85%),    channel is the dominant at the 
LHC   (90% for the LHC 14 TeV)

‣the method/formalism outlined for DY can be extended to the case of 4 external 
coloured particles:

‣the hard and soft functions are matrices in colour space 

‣the anomalous dimensions are non-diagonal matrices in colour space

‣more complicated kinematics: different soft limits can be studied (PIM, 1PI)

qq̄ gg

Top Quark Pair Hadroproduction

Top-quark pair production is a hard scattering process which can be
computed in perturbative QCD

X

f (x1)

f (x2)

H.S.

h1{p} t

t̄
h2{p, p̄}

q, g

q̄, g

σtt̄
h1,h2 =

∑

i ,j

∫ 1

0
dx1

∫ 1

0
dx2f

h1
i (x1, µF)f

h2
j (x2, µF)σ̂ij (s,mt ,αs(µR), µF, µR)

shad = (ph1 + ph2)
2 , s = x1x2shad

Andrea Ferroglia (City Tech) Top Pair Resummation Padova ’14 5 / 40

tron for a typical cut-based analysis. Finally, in Section 4 we briefly discuss some realistic
future improvements that can be made to our approach and end with some concluding
remarks.

2 Theoretical setup

Initially, the standard technique to study RG-improved predictions for hard-scattering
processes at hadron colliders has been to work in Mellin moment space. However, over
the last few years an alternative method [62, 63] based on SCET was developed. This
formalism allows to resum, directly in momentum space, soft gluon emissions to all orders
in the strong coupling constant ↵s. This method was successfully applied to several collider
processes, and, in particular, to the pair production of heavy quarks at the Tevatron and
LHC [47,49]. The formalism is rather flexible since it allows to obtain resummed predictions
at the level of the di↵erential distributions.

The SCET approach is based on the factorization of the partonic cross section in the
soft limit, in which it can be written as a convolution of hard and soft functions. The hard
functions contain the e↵ects of the virtual corrections, while the soft functions describe the
emission of the soft real radiation in the scattering processes. In fixed-order perturbation
theory, partonic cross sections contain both regular terms and singular distributions. The
singular pieces can be expressed as functions of a soft parameter which is closely related
to the energy of the soft gluons emitted. The details of the soft limit are sensitive to the
particular kinematic setup considered. In [47] the PIM kinematics was employed to inves-
tigate the invariant mass distribution of the top pair, while in [49] the 1PI kinematics was
used to derive improved predictions for transverse momentum and rapidity distributions
of the (anti-)top quark.

In [47] it was shown that after the convolution of the hard-scattering kernels with the
parton luminosities, the singular terms in the threshold region generally contribute for more
than 90% of the total NLO tt̄ cross section. In the threshold region the contributions of
the singular terms become large and therefore they eventually need to be resummed to all
orders in perturbation theory. The enhancement of the singular terms in the cross section
is known to be due to the steeply falling behaviour of the parton luminosities outside the
threshold region. This e↵ect is called dynamical threshold enhancement.

In this section we will summarize the main results of [47, 49] which are important for
our work and we will show how to extend these results to include the semi-leptonic decays
of the top quarks. In [47, 49] the authors studied the process

N1(P1) + N2(P2) ! t(pt) + t̄(pt̄) + X , (1)

where N1 and N2 are the incoming protons in the case of the LHC, or proton anti-proton
in the case of the Tevatron and X is an inclusive hadronic final state. In these works the
top quarks were always treated as stable on-shell partons and their decay was omitted.

The NWA, where the heavy particles produced in the scattering process are allowed to
decay to the physical final states whilst remaining on-shell, is the first natural step to go

5

beyond the stable top approximation. In this limit the amplitudes describing the process
factorize into a part describing the production of a pair of on-shell top quarks and parts
describing the decay of an on-shell top and anti-top quark. In the NWA the radiative
corrections to the process are given by the factorizable corrections to the production and
decay. In this work we use the SCET approach to perturbatively improve the production
subprocess beyond NLO, while keeping the accuracy of the decay subprocess at fixed NLO.

At LO in perturbation theory the two partonic channels contributing to the production
subprocess in Eq. (1) are

q(p1) + q̄(p2) ! t(pt) + t̄(pt̄) , (2)

g(p1) + g(p2) ! t(pt) + t̄(pt̄) , (3)

where the momenta of the incoming partons pi(i = 1, 2) are related to the momenta of
the initial state hadrons via the relation pi = xiPi. We also introduce some kinematical
invariants which are important for the description of the partonic scattering subprocesses:

s = (p1 + p2)
2, t1 = (p1 � pt)

2
� m2

t , u1 = (p2 � pt)
2
� m2

t ,

M2 = (pt + pt̄)
2, s4 = s + t1 + u1 = (pt̄ + k)2

� m2

t , (4)

where k is the 4-momentum of the hard-scattering products di↵erent from the tt̄ pair. At
Born level momentum conservation implies that M2 = s and s4 = 0.

2.1 PIM and 1PI kinematics

In this subsection we briefly summarize the main features of the PIM and 1PI kinematics
setups. In the case of PIM kinematics it is convenient to introduce the quantities

z =
M2

s
, �t =

r
1 �

4m2
t

M2
, (5)

where the threshold region is identified by the limit z ! 1. The doubly di↵erential partonic
cross section in M and in ✓ (the scattering angle of the top quark in the partonic centre
of mass frame) takes the following form

d2�̂

dMd cos ✓
=

⇡�t

sM

X

i,j

CPIM, ij(z, M, mt, cos ✓, µf ) , (6)

where µf is the factorization scale and the sum is over all possible incoming partons (i, j).
The functions CPIM, ij in Eq. (6) are usually called hard-scattering kernels and they can be
computed perturbatively. In fact, independently of the kinematics, the kernels Cij have an
expansion in powers of ↵s

Cij = ↵2

s


C(0)

ij +
↵s

4⇡
C(1)

ij +
⇣↵s

4⇡

⌘2

C(2)

ij + O(↵3

s)

�
. (7)
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‣Many groups contributed to this, be careful many different soft limits and kinematics 
[Catani,Mangano,Nason,Trentadue ’96, Bonciani, Catani, Mangano, Nason ’98, Kidonakis, Sterman 
’96-’97,Kidonakis, Laenen, Moch, Vogt ’01, Kidonakis, Vogt ’03-’08, Moch, Uwer ’08, Czakon, Mitov ’09, 
Langenfeld, Moch, Uwer ’09, Beneke, Falgari, Schwinn ’10, Czakon, Mitov, Sterman ’09, Beneke, 
Czakon, Falgari, Mitov, Schwinn ’09,…] 

‣Soft-gluon resummation in SCET at NNLL accuracy and approximate NNLO results 
for PIM and 1PI kinematics were computed here in Mainz by [Ahrens, Ferroglia, Neubert, 
Pecjak, Yang, ’10, ’11]

‣Computation of the two-loop soft anomalous dimensions [Ferroglia, Neubert,Pecjak,Yang 
’09] 

‣ Improved predictions for several observables: total cross section, invariant mass 
distribution, pT and rapidity distribution of (anti-)top, asymmetry

Heavy quark production
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PIM &1PI kinematics

One Particle Inclusive kinematics (1PI)

emphasized that in the PIM and 1PI threshold regions the top squarks are not forced to be
nearly at rest, as in case of the threshold region defined by the limit � =

p
1� 4mt̃1

/s ! 0,
which is often employed in the calculation of soft gluon corrections to the total cross section
[6, 17, 18]. In the rest of the paper, we refer to the � ! 0 limit as the production threshold
region.

Our goal is to employ both the PIM and 1PI kinematics to obtain approximate NNLO
formulas for the total top-squark pair-production cross section. Both approaches include the
numerically large contributions arising from the emission of soft gluons, but di↵er among them
and with the production threshold calculations in the kind of power suppressed terms which
are neglected.

2.1 PIM Kinematics

We focus first on the PIM kinematics approach. It is convenient to introduce the following
quantities

z =
M

2

s
, ⌧ =

M
2

S
, �t̃1

=

s

1�
4m2

t̃1

M2
. (5)

Consequently, the PIM threshold limit s ! M
2 corresponds to the limit z ! 1. According to

the QCD factorization theorem [23], the di↵erential cross section in M and ✓ (the scattering
angle of the top squark with respect to the incoming partons beam in the partons rest frame)
is given by

d
2
�

dMd cos ✓
=

⇡�t̃1

SM

X

i,j

Z
1

⌧

dz

z
ffij

⇣
⌧

z
, µf

⌘
CPIM,ij (z,M, cos ✓, µf ) , (6)

where µf is the factorization scale, and the sum runs over the incoming partons. In the
following we drop the subscript PIM (and the corresponding subscript 1PI) whenever there
is no ambiguity about the kinematic scheme employed, or when a formula applies to both
schemes. The parton luminosity ff is defined as the convolution of the non-perturbative
parton distribution functions (PDF) for the incoming partons i and j:

ffi,j(y, µf ) =

Z
1

y

dx

x
fi/N1 (x, µf ) fj/N2

⇣
y

x
, µf

⌘
⌘ fi/N1(y)⌦ fj/N2(y) . (7)

The functions Cij in Eq. (6) are the hard-scattering kernels, which are related to the partonic
cross sections and can be calculated in perturbation theory. In order not to make the notation
unnecessarily heavy, we do not indicate explicitly the fact that the hard scattering kernels
depend on the top squark masses mt̃1

and mt̃2
, the mass mq̃ of the first two families squarks

(which we assume to be degenerate), the top quark mass mt, the gluino mass mg̃, and the
t̃1-t̃2 mixing angle ↵. The expansion of the Cij functions in powers of ↵s has the generic form

Cij = ↵
2

s


C

(0)

ij
+

↵s

4⇡
C

(1)

ij
+
⇣
↵s

4⇡

⌘2

C
(2)

ij
+O(↵3

s
)

�
. (8)

4

to study the invariant mass distribution
to study the transverse momentum and 

rapidity distributions

in the literature. One of the main results of this paper is the calculation of the coe�cients
D

(2,PIM)

i
(i = 0, · · · , 3) both in the quark annihilation and gluon fusion channel. We can also

evaluate all of the scale dependent terms in C
(2,PIM)

0
in both channels, but due to the ambiguity

on the choice of the normalization scale in the argument of these logarithms we drop part of
these terms in the numerical implementation of our formulas. We will return to this issue
below.

2.2 1PI Kinematics

The 1PI kinematics approach allows one to describe observables in which a single particle,
rather than a pair, is detected. One can then write the top squark rapidity (y) and transverse
momentum (pT ) distribution as

d
2
�

dpTdy
=

2⇡pT
S

X

ij

Z
1

x
min
1

dx1

x1

Z
1

x
min
2

dx2

x2

fi/N1(x1, µf )fj/N2(x2, µf )C1PI,ij (s4, s, t1, u1, µf ) . (20)

The expansion of the 1PI hard scattering kernels C1PI in powers of ↵s has the same structure
shown in Eq. (8) for the PIM case. Obviously, also in this case only the qq̄ channel and gg

channel give a non vanishing contribution at lowest order in ↵s. The hadronic Mandelstam
variables T1 and U1 are related to the stop rapidity and transverse momentum through the
relations

T1 = �

p

Sm?e
�y

, U1 = �

p

Sm?e
y
, (21)

where m? =
q
p
2

T
+m

2

t̃1
. Therefore the variables s, s4, t1, and u1, which are arguments of the

1PI hard functions, can be written in terms of pT , y, x1, and x2. The lower limits of integration
in Eq. (20) are

x
min

1
= �

U1

S + T1

, x
min

2
= �

x1T1

x1S + U1

. (22)

In order to obtain the total cross section it is necessary to integrate the double-di↵erential
distribution with respect to the top squark rapidity and transverse momentum over the range

0  |y| 
1

2
ln

1 +
p
1� 4m2

?/S

1�
p
1� 4m2

?/S
, 0  pT 

r
S

4
�m

2

t̃1
. (23)

As in the case of PIM kinematics, in the 1PI kinematics soft emission limit s4 ! 0, the
hard scattering kernels factor into the product of hard and soft functions:

Cij (s4, s
0
, t

0
1
, u

0
1
, µ) = Tr [Hij (s

0
, t

0
1
, u

0
1
, µ)Sij (s4, s

0
, t

0
1
, u

0
1
, µ)] +O(s4) . (24)

As emphasized in [21], the Mandelstam invariants s
0
, t

0
1
, and u

0
1
can di↵er from s, t1, and u1

by power corrections proportional to s4. For example explicit results for the hard and soft
functions can be rewritten by employing either the relation s

0+ t
0
1
+u

0
1
= 0 or s0+ t

0
1
+u

0
1
= s4.

The di↵erence between the two choices is due to terms suppressed by positive powers of s4. A
detailed description of the way in which we deal with this ambiguity can be found in Section
4 of [21].

7

Soft gluon Energy Soft gluon Energy

N1(P1) +N2(P2) ! t(pt) + (t̄+X)(pt̄ + pX)N1(P1) +N2(P2) ! (t+ t̄)(pt + pt̄) +X(pX)

Mtt̄ = (pt + pt̄)
2 s4 = (pt̄ + pX)2 �m2

t

Es =
s4⇣

2
p

m2
t + s4

⌘Es =
(1� z)Mtt̄

2
p
z

The Pair Invariant Mass kinematics (PIM) 

(1� z) = 1�
M2

tt̄

s
! 0 s4 ! 0

‣ large logarithms appear in the partonic cross section when the “soft variable” is small

‣ the difference between PIM and 1PI comes from which combinations of momenta are counted 
as “small”. In PIM                               , in 1PI   (p3 + p4) · k ⌧ M2 p4 · k ⌧ m2

t̃1

[Kidonakis, Laenen, Moch, Sterman] [Ahrens, Ferroglia, Neubert, Pecjak, Yang]
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Figure 3: Top left: Ratio of the one-loop correction from the soft function over the leading-
order result for top pair production at the Tevatron, as a function of µs/M , for M = 400GeV
(dark), M = 700GeV (medium), and M = 1000GeV (light). Top right: The scale µs/M
determined by the point where the one-loop correction from the soft function is minimal,
as a function of the invariant mass M . Bottom: Analogous plots for the LHC, but with
M = 400GeV (dark), M = 1000GeV (medium), and M = 2000GeV (light).

running in the MS scheme with five active flavors, and employ the value mt = 173.1GeV for
the top-quark mass defined in the pole scheme. Using a fixed set of PDFs helps to elucidate
more clearly the behavior of the perturbative expansion of the hard-scattering kernels in higher
orders of perturbation theory. When presenting our phenomenological results in Sections 6.2–
6.5, we will change the PDF sets according to the order of perturbation theory employed, and
we will also study the theoretical uncertainties related to the parameterization of the PDFs.
Finally, in Section 6.6, we will explore different schemes for the definition of the top-quark
mass and study their impact on the phenomenological results.

6.1.1 Determination of the matching and factorization scales

We begin by examining the corrections from the NLO soft matching coefficient as a function of
µs. We isolate this contribution by picking out the piece of the NNLL approximation to (92)
proportional to s̃(1), evaluating the differential cross section using only this piece, and dividing
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Figure 4: Left: Ratio of the one-loop correction the from hard function over the leading-
order result at the Tevatron, as a function of µh/M , at M = 400GeV (dark), M = 700GeV
(medium), andM = 1000GeV (light). Right: Analogous plot for the LHC, withM = 400GeV
(dark), M = 1000GeV (medium), and M = 2000GeV (light).

the result by that at NLL, for the choice µf = µh = M . The results are shown in the left-hand
plots of Figure 3 for the Tevatron and the LHC with

√
s = 7TeV, for several different values

of M . We note that the corrections are larger at the LHC than at the Tevatron, especially at
high values of M . This behavior appears to be a property of the gluon channel, which gives
the dominant contribution at the LHC. The correction is generally at its minimum between
M/4 and M/10, and moves to lower values of µs at higher values of M . The exact position
of the minimum as a function of M is shown in the right-hand plots of Figure 3. To a good
approximation, the numerical results for µs can be fitted by the function

µdef
s =

M(1− τ)

(a + b τ 1/4)c
(105)

with a = −33, b = 150, and c = 0.46 for the Tevatron, and a = −1.3, b = 23, and c = 0.98 for
the LHC at

√
s = 7TeV. In Section 6.3 we will also study the total cross section at the LHC

with
√
s = 10, 14TeV, and in those cases we use a = 0.95, b = 6.7, and c = 1.6.

The most appropriate choice of the hard scale µh is not immediately apparent, since the
invariant mass spectrum depends on the two hard scales mt and M . As a guide to an appro-
priate choice we look at the size of the correction from the hard matching function for different
choices of µh. We show in Figure 4 the correction obtained by isolating the contribution of
H(1) to the differential cross section at NNLL, and dividing it by the NLL result, for the
choice µf = M and µs determined according to (105). We see that at lower values of µh closer
to mt the correction typically gets smaller and can even become negative. In this lower range
of µh, however, the correction depends very strongly on the scale. The results are more stable
in the range M/2 < µh < 2M , where the correction is generally below 30% at the Tevatron
and between 20 − 40% at the LHC. In what follows we shall choose µh = M by default, in
order to avoid the instability at lower µh. In the case of Higgs production, a negative hard
scale squared µ2

h ∼ −m2
H − iϵ was chosen to minimize the logarithms arising from time-like

kinematics [65,66]. In the tt̄ case, however, there are both time-like and space-like momentum
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• Numerical results for   has a function of   can be fitted by this function with 
  for the LHC 7 TeV

• This is a difference with the “Direct QCD” approach, one can choose the soft scale in 
Mellin space (see later)

μs M
a = − 1.3, b = 23, c = 0.98

Ahrens, Ferroglia, Neubert, Pecjak, Yang, ’10 [arXiv:1003.5827]

× s̃

(
ln

M2

µ2
s

+ ∂η,M,mt, cos θ, µs

)]
e−2γEη

Γ(2η)

z−η

(1− z)1−2η
. (92)

For values µs < µf the parameter η < 0, and one must use a subtraction at z = 1 and
analytic continuation to express integrals over z in terms of star (or plus) distributions [86].
Formula (92) can be evaluated order-by-order in RG-improved perturbation theory, using the
standard counting lnµh/µs ∼ ln(1− z) ∼ 1/αs. The perturbative solutions for the RG factors
needed to evaluate the evolution matrix U to NLO in this counting scheme are given in
(A.2), (A.3), and (A.5) of the Appendix. The correspondence between this counting and the
standard counting of logarithms (e.g. NLL, NNLL), along with the accuracy of the anomalous
dimensions and matching functions needed at a given order, can be summarized as follows:

RG-improved PT log accuracy Γcusp γh, γφ H , s̃

LO NLL 2-loop 1-loop tree-level

NLO NNLL 3-loop 2-loop 1-loop

In the remainder of the paper we will use the logarithmic counting (e.g. NNLL) when referring
to the resummed results obtained in this section. These results are valid for the leading-
order term in the threshold expansion in (1 − z), whereas the full result at NLO in fixed-
order perturbation theory also contains information on subleading terms. In phenomenological
applications we can match the resummed results with the NLO fixed-order results to achieve
an NLO+NNLL precision. The method for doing this is described in Section 6.

5.2 Approximate NNLO results

In the previous subsection we derived a formula for the resummed differential cross section,
which is valid up to NNLL order. Starting from (92), it is also possible to obtain expressions
for the differential cross section which are valid in fixed-order perturbation theory [56]. Indeed,
our results allow one to obtain analytic expression for all of the coefficients multiplying singular
plus distributions in the variable (1−z) appearing in the hard-scattering kernels up to NNLO.
With the same method, which is outlined below, it is also possible to determine analytically,
up to O(α4

s), the scale-dependent parts of the coefficient multiplying δ(1− z).
In order to derive fixed-order formulas from (92), we first set µh = µs = µf = µ. In that

case the evolution matrix U is equal to unity, and η = 2aΓ(µf , µs) → 0. The formula for the
hard-scattering kernels then becomes

C(z,M,mt, cos θ, µ) = c̃(∂η,M,mt, cos θ, µ)

(
M

µ

)2η e−2γEη

Γ(2η)

z−η

(1− z)1−2η

∣∣∣∣∣
η=0

, (93)

where

c̃(L,M,mt, cos θ, µ) = Tr
[
H(M,mt, cos θ, µ) s̃(L,M,mt, cos θ, µ)

]
. (94)
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The evolution for the momentum-space soft function is then

d

d lnµ
S(ω,M,mt, cos θ, µ) = −

[
2Γcusp(αs) ln

ω

µ
+ γs†(M,mt, cos θ,αs)

]
S(ω,M,mt, cos θ, µ)

− S(ω,M,mt, cos θ, µ)

[
2Γcusp(αs) ln

ω

µ
+ γs(M,mt, cos θ,αs)

]

− 4Γcusp(αs)

∫ ω

0

dω′ S(ω
′,M,mt, cos θ, µ)− S(ω,M,mt, cos θ, µ)

ω − ω′ , (88)

where we have defined

γs(M,mt, cos θ,αs) = γh(M,mt, cos θ,αs) + 2γφ(αs) 1 . (89)

As in [64], the non-local evolution equation for the soft function can be turned into a local
one by the Laplace transformation (63). The evolution equation for the Laplace-transformed
function reads

d

d lnµ
s̃

(
ln

M2

µ2
,M,mt, cos θ, µ

)
=

−
[
Γcusp(αs) ln

M2

µ2
+ γs†(M,mt, cos θ,αs)

]
s̃

(
ln

M2

µ2
,M,mt, cos θ, µ

)

− s̃

(
ln

M2

µ2
,M,mt, cos θ, µ

)[
Γcusp(αs) ln

M2

µ2
+ γs(M,mt, cos θ,αs)

]
. (90)

This can be solved using the same methods as for the hard function. Transforming the results
back to momentum space, we find

S(ω,M,mt, cos θ, µf) =
√
ŝ exp

[
−4S(µs, µf) + 4aγφ(µs, µf)

]

× u†(M,mt, cos θ, µf , µs) s̃(∂η,M,mt, cos θ, µs)u(M,mt, cos θ, µf , µs)
1

ω

(
ω

µs

)2η e−2γEη

Γ(2η)
,

(91)

where η = 2aΓ(µs, µf). The soft scale µs should be chosen such that the contribution from
the soft function to the cross section is perturbatively well-behaved, and will be discussed in
detail in Section 6.

Combining the results for the hard and soft functions, our final resummed expression for
the hard-scattering kernel is

C(z,M,mt, cos θ, µf) = exp
[
4aγφ(µs, µf)

]

× Tr

[

U(M,mt, cos θ, µh, µs)H(M,mt, cos θ, µh)U
†(M,mt, cos θ, µh, µs)
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Approximate results

By solving iteratively the RG equations one can obtain approximate NNLO 
predictions
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distributions up to a given power of αs in fixed-order perturbation theory. To be specific,

one can write

C(z, µ) = α2
s

[
C(0)(µ) +

αs

4π
C(1)(z, µ) +

(αs

4π

)2
C(2)(z, µ) +O

(
α3
s

)]
, (3.3)

where we have set µf = µr = µ, with µr the renormalization scale.5 The NNLO term

in (3.3) has the following structure

C(2) (z, µ) =
3∑

i=0

Di(µ)Pi(z) + C0(µ)δ(1− z) +R(z, µ) , (3.4)

where the Pn distributions are defined as

Pn(z) ≡
[
lnn(1− z)

1− z

]

+

. (3.5)

In (3.3), (3.4) we dropped all arguments with the exception of µ and z. The approximate

NNLO formulas for the partonic cross sections which we obtain in this work include the

complete set of functions Di, some of the scale dependent terms in the function C0 as well

as partial information on the function R(z) which is non singular in the z → 1 limit. In

particular, here we follow exactly the same procedure employed in [17, 46]. That is, the

terms included in R(z) arise from the transformation of logarithms in Laplace space back

to momentum space. A complete list of those transformations for PIM kinematics can be

found for example in eq. (33) of [46]. As pointed out in [17], the C0 term is ambiguous; in

fact, in order to completely determine the coefficients multiplying the delta functions in the

NNLO hard-scattering kernels, one would need to know the complete NNLO hard and soft

matrices. Only the scale-dependent part of C0 can be exactly determined, and one needs

to specify which contributions are included there. One contribution to C0 comes from the

conversion of powers of Laplace-space logarithms according to eq. (33) of [46]. Since these

formula are exact, they are not a source of ambiguity for C0 and those terms are included.

Further contributions to C0 arise from i) the product of the one-loop hard function with

the one-loop soft function in Laplace space, ii) the product of the tree-level hard function

with the two-loop soft function in Laplace space, and iii) the product of the two-loop

hard function with the tree-level soft function in Laplace space. The contribution in i)

is known exactly and therefore included while the term in ii) is unknown and dropped.

One can reconstruct the scale dependent part of the contribution iii). However, it was

observed in [15, 17, 46] that by including these extra µ-dependent terms one runs the risk

of artificially reducing the scale dependence, rendering it an ineffective means of estimating

theoretical uncertainties. Therefore, here again we follow [17, 46] and drop completely the

contributions of the two-loop hard function.

The information obtained from approximate NNLO formulas can be added to the

complete NLO calculation of a given observable in order to obtain what we refer to as

approximate NNLO predictions for a physical quantity. The matching of the approximate

5Note that it is possible to keep these two scales separate using the RG equations for αs.
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NNLO calculation to complete NLO calculations is straightforward; for example, for the

total cross section one finds

σNLO+ approx NNLO = σNLO + σapprox. NNLO − σapprox. NLO , (3.6)

where the subtraction of the last term avoids double counting of NLO terms proportional

to plus distributions and delta functions. It must be observed that all of the terms on

the r.h.s. of (3.6) must be evaluated with NNLO PDFs. To avoid lengthy superscripts, in

the following we indicate matched NLO + approx. NNLO calculations with the symbol

“nNLO”. In contrast to resummed calculations, nNLO calculations show a residual depen-

dence on the factorization scale only. As usual, the residual dependence of the observable

on the factorization scale can be exploited in order to study and estimate the theoretical

uncertainty affecting physical predictions.

The use of approximate formulas offers an additional advantage: the numerical evalu-

ations of the total cross section and distributions to approximate NNLO accuracy require

shorter running times than the evaluation of the corresponding resummed formulas. For

this reason, in this work we present predictions based upon approximate NNLO formulas.

4 Numerical analysis

In this section we present results obtained from the numerical evaluation of the nNLO

formulas and discuss their implications. We cover the total cross section in section 4.1 and

differential distributions in section 4.2.

A central issue is that the soft limit z → 1 is only guaranteed to provide accurate

predictions for observables where ŝ → s, with
√
s the collider energy; an example would

be the case where M →
√
s. More realistic observables such as the total cross section or

differential distributions at their peaks are also sensitive to regions of phase space far away

from z → 1. Thus, in order for corrections in the soft limit to be dominant also in those

cases, the mechanism of dynamical threshold enhancement [15, 31] must occur. This simply

means that the parton luminosities appearing in (2.5) should drop off quickly enough away

from the integration region where z → 1, that an expansion under the integrand of the

partonic cross section in the soft limit is justified.

In order to address this issue we begin both of the following subsections with a com-

parison of approximate NLO calculations, valid in the soft limit, with the full NLO calcu-

lation. Approximate NLO calculations are obtained by re-expanding the NNLL resummed

partonic cross section to NLO; consequently they reproduce completely all of the terms

singular in the z → 1 limit in the NLO partonic cross section, but they miss terms which

are subleading in the soft limit. We verify in all cases that the soft approximation works

quite well at NLO. This obviously does not immediately imply that the same holds at

higher orders, but is an important sanity check nonetheless. After these initial studies at

NLO we then present the main results of this paper, namely numerical results from the

NNLO approximations. We will see that these NNLO corrections tend to enhance both the

total cross section and differential distributions to the top of the NLO uncertainty band,

and also greatly decrease the uncertainties associated with scale variations. In fact, the

– 11 –

Matching

where the IR poles are removed by the matrices Z
�1

ij (✏) [66, 67].
The hard function matrices have a perturbative expansion in ↵s

Hij = ↵2

s

1

dR

⇣
H

(0)

ij +
↵s

4⇡
H

(1)

ij + . . .
⌘

, (19)

where dR = N for the qq̄ channel and dR = N2
� 1 for the gg channel. The matrix

elements HIJ (for simplicity we drop the subscript ij labelling the production channel) can
be expressed in terms of the renormalized colour-decomposed QCD amplitudes as

H(0)

IJ =
1

4

X

{�}

⇣
M

ren (0) {�}
I

⌘⇤ ⇣
M

ren (0) {�}
J

⌘
, (20)

H(1)

IJ =
1

4

X

{�}

h⇣
M

ren (0) {�}
I

⌘⇤ ⇣
M

ren (1) {�}
J

⌘
+
⇣
M

ren (1) {�}
I

⌘⇤ ⇣
M

ren (0) {�}
J

⌘i
, (21)

where we have summed over all possible external helicities. After including the tree-level
decays, the hard functions Hij({pi}

8

1
, mt, µf ) depend explicitly on the external momenta

which are subject to the constraints in Eqs. (14) and (15). It would be straightforward
to extend these results and compute the hard functions where the one-loop corrections to
the decay are included in the NWA. This would be needed to implement some improved
prediction at the decay level, but for the moment we focus on adding the decay corrections
strictly at fixed order (LO/NLO). Hence the computation of these additional pieces is not
needed for the present work.

Since we work in the NWA and the decay is added at fixed order, the soft functions
SPIM and S1PI are not changed by the inclusion of the tree-level top decays. Therefore, we
make use of the results for the PIM and 1PI NLO soft functions which are available in the
literature. The calculation of the PIM soft functions at NLO was carried out in [47] while
the results for the 1PI soft functions can be found in [49].

2.3 Structure of the hard-scattering kernels

The hard Hij and soft Sij functions for the production subprocess satisfy renormalization-
group equations (RGEs) whose precise form was derived in [47] for the PIM case and
in [49] for 1PI. The relevant two- and three-loop anomalous dimensions which enter the
RGEs can be found in [67–69]. Amongst these, the two-loop anomalous dimensions for
massive partons [67] are a key ingredient of this approach. Given full knowledge of the
NLO hard and soft functions, it is possible to exploit the information from the RGEs
to derive fixed-order approximate O(↵2

s) expressions for the hard-scattering kernels. The
procedure to obtain approximate NNLO results from the NNLL resummation formula was
described in detail in [47, 49]. We do not repeat the derivation here and instead focus
on the results of this procedure that are relevant for our case. In general the NNLO
hard-scattering kernels have the following expansion in terms of hard and soft functions
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ij = Tr
h
H
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ij S
(1)

ij

i
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h
H
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ij S
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i
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h
H
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Boosted tT production at NNLO+NNLL’ 
M. Czakon, A. Ferroglia, D. Heymes, A. Mitov, B.D. Pecjak, D.J. Scott, X. Wang, L.L. Yang,

[arXiv:1803.0723] 

ŝ, M2
tt̄ � m2

t � ŝ(1� z)2

lnmt/Mtt̄

‣ The LHC enables us to study the kinematic regime where the energy of the 
produced top quark is much larger than the top quark mass

‣ For            large logs of the type                appear in the soft resummation 
formula. One can resum soft and small mass logs (joint soft-small mass 
resummation)

‣ In this framework the resummation can be pushed to NNLL’ accuracy 
(NNLO soft and hard functions known for zero top quark mass)

‣ One can match the NNLL’ to the NNLO calculation of Czakon, Fiedler, 
Heymes, Mitov.

mt ! 0
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NNLO+NNLL` top pair invariant mass 
M. Czakon, A. Ferroglia, D. Heymes, A. Mitov, B.D. Pecjak, D.J. Scott, X. Wang, L.L. Yang,

[arXiv:1803.0723] 
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Figure 5. Results for the absolute (left) and normalized (right) top-pair invariant mass

distribution at the LHC with
p

s = 13 TeV as a ratio to the NNLO result evaluated using

µf = HT /4. The uncertainty bands are obtained through scale variations as described at the

beginning of section 5 and in eqs. (5.1) and (5.2).

result (with either scale choice) and the NNLO result with µf = HT/4 is a highly

non-trivial fact. This provides an important confirmation of the result of [24], which

favors the choice µf = HT/4 for the fixed-order calculation of the Mtt̄ distribution. The

overall picture emerging from the above analysis is that the perturbative description of

the top-quark pair invariant mass distribution is under good control.

Results for the absolute (normalized) average top/anti-top (pT,avt) distribution at

NNLO and NNLO+NNLL0 are shown in the left (right) panel of figure 6. The NNLO

results (with which resummation is matched) have been calculated using the definition

d�

dpT,avt
=

1

2

✓
d�

dpT,t
+

d�

dpT,t̄

◆
, (5.3)

where pT,t (pT,t̄) denotes the transverse momentum of the top (anti-top) quark, and we

have labeled the distributions in figure 6 accordingly. The pT distribution is calculated

using the scale choice µf = mT/2 (where mT refers to the transverse mass of either

the top or anti-top quark depending on the distribution under consideration), which is

favored by the study [24]. The resummed results use µh = mT and µs = 2mT/N̄ by de-

fault, as justified in the previous section. The bands refer to perturbative uncertainties

estimated through scale variations using the same procedure as for the Mtt̄ distribution

above. We see that the NNLO+NNLL0 result is consistent with the NNLO one. On

the other hand, we show in appendix A that upgrading matching with fixed-order from
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Figure 4. Results for the absolute (left) and normalized (right) top-pair invariant mass

distribution at the LHC with
p

s = 13 TeV. In all cases the ratio is to the NNLO result with

µf = HT /4. The uncertainty bands are obtained through scale variations as described at the

beginning of section 5 and in eqs. (5.1) and (5.2).

5 Results and discussion

In this section we give our main results for the top-pair invariant mass and (anti) top-

quark pT distributions, as well as the total cross section, with a focus on comparing

NNLO results with NNLO+NNLL0 ones. Some further comparisons across di↵erent

perturbative orders are presented in appendix A. Although we present only a limited

set of results for the LHC operating at a center-of-mass energy of 13 TeV, distributions

with alternate binning and at di↵erent collider energies can be produced on request

from the authors.

Results for the absolute (normalized) Mtt̄ distribution are shown in left (right)

panel of figure 4. The NNLO results use µf = HT/4 by default (we shall always set the

renormalization scale appearing in the NNLO calculation to µr = µf unless otherwise

specified), which is the scale favored by the analysis of perturbative convergence of

the fixed-order series performed in [24]. The NNLO+NNLL0 results are obtained from

the matching relation eq. (2.5). All pieces of that equation must be evaluated at a

common µf , which is also chosen as µf = HT/4 by default. In addition, we draw on

the analysis of the previous section and use µh = HT/2 and µs = HT/N̄ by default, as

well as µdh = mt and µds = mt/N̄ . In both the NNLO and the NNLO+NNLL0 results,

the bands in figure 4 represent perturbative uncertainties estimated through scale vari-

ations. For the NNLO calculation, we obtain the bands by keeping the factorization

– 31 –

The NNLO+NNLL’ prediction is significantly less sensitive to the choice of 
factorization scale compared to fixed order predictions, even at NNLO

In the tail of the invariant mass distribution the relevant hard scale is 
proportional to HT

µh = HT /2 µs = HT /N̄ µf = {HT /4, Mtt̄/2}
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Top quark and Higgs boson

the two heaviest Standard Model (SM) particles
mt~173 GeV, mH~125 GeV
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Higgs production channels
– 16–
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Figure 3: The SM Higgs boson production
cross sections as a function of the center of mass
energy,

√
s, for pp collisions. The theoretical

uncertainties [39] are indicated as a band.

the quark and Higgs boson masses, the cross section has been

calculated at the next-to-leading order (NLO) in αs [42,43]. To

a very good approximation, the leading top-quark contribution

can be evaluated in the limit mt → ∞ by matching the Stan-

dard Model to an effective theory. The gluon-fusion amplitude

is then evaluated from an effective Lagrangian containing a local

HGa
µνG

a µν operator [19,20]. In this approximation the cross

section is known at NLO [44] and at next-to-next-to-leading

order (NNLO) [45], and a strong effort is under way to extend

the calculations to NNNLO. The validity of the large top-quark

mass approximation in NNLO calculations has been established

at the percent level by means of approximate calculations of

the mt dependence based on asymptotic expansions [46].

The NLO QCD corrections increase the leading-order pre-

diction for the cross section by about 80%, and the NNLO

corrections further enhance the cross section by approximately

20% (at µf = µr = mH). The convergence of the perturbation

series can be improved by lowering the factorization and renor-

malization scales. Electroweak radiative corrections have been

computed at NLO and increase the cross section by about 5%
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The peculiar behavior of the quartic coupling does not

exclude the possibility that the SM might be all what is there

up to the quantum gravity scale [29] or it could be the result

of a special dynamics or a new symmetry at high energies, such

as supersymmetry with possible flat directions. Still, physics at

lower energies is desirable to solve other mysteries of the universe

such as dark matter or the matter-antimatter asymmetry. The

Higgs boson discovery at the LHC leaves all these options open.

II.4. Higgs production and decay mechanisms

Reviews of the SM Higgs boson’s properties and phe-

nomenology, with an emphasis on the impact of loop corrections

to the Higgs boson decay rates and cross sections, can be found

in Refs. [32–38].

II.4.1. Production mechanisms at hadron colliders

The main production mechanisms at the Tevatron and the

LHC are gluon fusion, weak-boson fusion, associated production

with a gauge boson and associated production with top quarks.

Figure 2 depicts representative diagrams for these dominant

Higgs production processes.
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Figure 2: Generic Feynman diagrams con-
tributing to the Higgs production in (a) gluon
fusion, (b) weak-boson fusion, (c) Higgs-strahlung
(or associated production with a gauge boson)
and (d) associated production with top quarks.
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Observation  ATLAS [arXiv:1806.00425]

Observation CMS: [arXiv:1804.02610]

direct measurement of the top Yukawa coupling
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−90

+110
−100 fb
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‣ Cross section and some distributions computed to NLO QCD  (Beenakker, 
Dittmaier, Kraemer, Plumper, Spira, Zerwas ’01-’02 and Dawson, Reina, Wackeroth, Orr, Jackson 
’01-’03)

‣ top pair + Higgs benchmark process to test automated NLO multileg codes 
(Frixione et al. ’11; Hirschi et al ’11; Garzelli et al ’11; Bevilacqua et al. ’11)

‣ EW corrections to the parton level cross section are known (Frixione, Hirshi, 
Pagani, Shao, Zaro ’14; Zhang, Ma, Chen, Guo ’14; Frixione, Hirshi, Pagani, Shao, Zaro ’15)

‣ NLO QCD corrections were interfaced with SHERPA and POWHEG BOX 
(Gleisberg, Hoeche, Krauss, Schonherr, Schaumann ’09; Hartanto, Jaeger, Reina, Wackeroth ’15)

‣ NLO QCD corrections to                                          (Denner, Feger ’15)

‣ NLO+NLL resummation of soft gluon emissions for the total cross section 
(production threshold limit) (Kulesza, Motyka,Stebel,Theeuwes ’15)

‣ nNLO in the “PIM” threshold limit from NNLL resummation formula (AB, A. 
Ferroglia, B. Pecjak, A. Signer, L. Yang ’15)

 16

top pair + Higgs calculations

pp ! e
+
⌫eµ

�
⌫̄µbb̄H
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and the list continues…

‣ NLO+NNLL resummation in “TIM” kinematics, RG-evolution in Mellin space 
(AB, A. Ferroglia, B. Pecjak, A. Signer, L. Yang ’16)                        

‣ NLO EW and QCD corrections with off-shell top-antitop pairs (A.Denner, J. Lang, 

M. Pellen, S. Uccirati ’16) 

‣ NLO+NNLL resummation in “TIM” kinematics with direct QCD approach 
(invariant mass distribution of the triplet) (Kulesza, Motyka,Stebel,Theeuwes ’17)
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“Triplet” Invariant Mass kinematics
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from soft-gluon corrections derived in the PIM threshold limit. Obvious examples would

be the cross section differential in the invariant mass of the tt̄H final state at values far

away from the machine threshold, or the total cross section obtained by integrating this

distribution. Moreover, given that results in the PIM threshold limit are fully differential

in the Mandelstam variables characterizing the Born process, we can equally well use them

to estimate the NNLO corrections to any differential distribution which is non-vanishing

at Born level.

We take advantage of this fact in the present work by implementing our results in an

in-house parton level Monte Carlo, which can be used to calculate arbitrary tt̄H differential

distributions along with the total cross section. To illustrate its use, we study approximate

NNLO corrections to the pT of the Higgs, the pT of the top quark, the invariant mass of

the tt̄ pair, and the rapidities of the top quark or Higgs boson, in addition to the total cross

section and differential cross section with respect to the tt̄H final state. By matching our

NNLO approximation in the PIM threshold limit with the complete NLO calculation from

MadGraph5_aMC@NLO [33], we obtain the currently most complete result for QCD corrections

to differential tt̄H cross sections. Such a procedure is very much in the spirit of [34], and

as in that work could be extended to include the effects of top-quark decays by retaining

information on the spins of the final state particles.

The paper is organized as follows: in section 2 we review the factorization properties of

the partonic cross section in the soft emission limit. Furthermore, we discuss the evaluation

of the various components which contribute to the approximate NNLO formulas derived

in this work. In section 3 we illustrate the structure of the approximate NNLO formulas

obtained by considering the soft limit of the partonic cross section. Section 4 contains

numerical calculations of the total tt̄H production cross section and of some differential

distributions for the LHC operating at center of mass energy of 13TeV. The calculations

include the approximate NNLO formulas discussed in this work as well as the full set of

NLO QCD corrections. The residual perturbative uncertainty affecting these results is

discussed. Finally, we present our conclusions in section 5.

2 Soft-gluon resummation for tt̄H hadroproduction

We consider the partonic processes

i(p1) + j(p2) −→ t(p3) + t̄(p4) +H(p5) +X , (2.1)

where the incoming partons i, j ∈ {q, q̄, g} and X is a partonic final state. Furthermore,

we define the Mandelstam invariants

ŝ = (p1 + p2)
2 = 2p1 · p2 , s̃ij = 2pi · pj , (i = 1, 2 ; j = 3, 4) ,

s34 = (p3 + p4)
2 = s̃34 + 2m2

t . (2.2)

The invariant mass of the tt̄H final state,

M2 = (p3 + p4 + p5)
2 , (2.3)

– 3 –

Invariant mass of the tTH final 
state

“TIM” soft limit

q(p1) + q̄(p2) ! t(p3) + t̄(p4) +H(p5)

g(p1) + g(p2) ! t(p3) + t̄(p4) +H(p5)
Tree Level subprocesses

p
r
o
o
f
s
 
J
H
E
P
_
1
6
6
P
_
1
0
1
5

from soft-gluon corrections derived in the PIM threshold limit. Obvious examples would

be the cross section differential in the invariant mass of the tt̄H final state at values far

away from the machine threshold, or the total cross section obtained by integrating this

distribution. Moreover, given that results in the PIM threshold limit are fully differential

in the Mandelstam variables characterizing the Born process, we can equally well use them

to estimate the NNLO corrections to any differential distribution which is non-vanishing

at Born level.

We take advantage of this fact in the present work by implementing our results in an

in-house parton level Monte Carlo, which can be used to calculate arbitrary tt̄H differential

distributions along with the total cross section. To illustrate its use, we study approximate

NNLO corrections to the pT of the Higgs, the pT of the top quark, the invariant mass of

the tt̄ pair, and the rapidities of the top quark or Higgs boson, in addition to the total cross

section and differential cross section with respect to the tt̄H final state. By matching our

NNLO approximation in the PIM threshold limit with the complete NLO calculation from

MadGraph5_aMC@NLO [33], we obtain the currently most complete result for QCD corrections

to differential tt̄H cross sections. Such a procedure is very much in the spirit of [34], and

as in that work could be extended to include the effects of top-quark decays by retaining

information on the spins of the final state particles.

The paper is organized as follows: in section 2 we review the factorization properties of

the partonic cross section in the soft emission limit. Furthermore, we discuss the evaluation

of the various components which contribute to the approximate NNLO formulas derived

in this work. In section 3 we illustrate the structure of the approximate NNLO formulas

obtained by considering the soft limit of the partonic cross section. Section 4 contains

numerical calculations of the total tt̄H production cross section and of some differential
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Partonic center of 
mass energy squared 

z =
M2

ŝ
! 1When real radiation is 

present in the final state ŝ 6= M2

In the soft emission limit a scale hierarchy emerges

ŝ, M2, m2
t
, mH � ŝ(1� z)2 � ⇤2

QCD

Soft scaleHard scales
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Mellin space

‣ Resummation can also be carried out in Mellin space by taking the Mellin 
transform of the factorized cross section, similar to “direct QCD” 
resummation

‣ The total cross section can be recovered with an inverse Mellin transform

‣ Hard and soft functions are evaluated at values of the scale where the large 
corrections are absent                                    

J
H
E
P
0
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Xs production in the process initiated by the two partons i and j, where Xs indicates the

unobserved soft gluons in the final state. The hard functions Hij , which are matrices

in color space, are obtained from the color decomposed virtual corrections to the 2 → 3

tree-level process. The soft functions Sij (which are also matrices in color space) are

related to color-decomposed real emission corrections in the soft limit; they depend on plus

distributions of the form

P ′
n(z) ≡

[
1

(1− z)
lnn

(
M2(1− z)2

µ2z

)]

+

, (2.6)

as well as on the Dirac delta function of argument (1−z). The parton luminosity functions

ff ij are defined as the convolutions of the parton distribution functions (PDFs) for the

partons i and j in the protons N1 and N2:

ff ij (y, µ) =

∫ 1

y

dx

x
fi/N1

(x, µ) fj/N2

(y
x
, µ

)
. (2.7)

In the soft limit the indices ij ∈ {qq̄, q̄q, gg}, as at LO. The hard and soft functions

are two-by-two matrices for qq̄-initiated (quark annihilation) processes, and three-by-three

matrices for gg-initiated (gluon fusion) processes. Contributions from other production

channels such as q̄g and qg are subleading in the soft limit. We shall refer to such processes

collectively as the “quark-gluon” or the “qg” channel in what follows.

The hard functions satisfy renormalization group equations governed by the soft anom-

alous dimension matrices Γij
H , which depend on the partonic channel considered. These

anomalous dimension matrices, which are needed to carry out the resummation of soft

gluon corrections, were derived in [22, 23]. The hard functions, soft functions, and soft

anomalous dimensions must be computed in fixed-order perturbation theory up to a given

order in αs. In this work we study the resummation up to NNLL accuracy. For this task

we need to evaluate the hard functions, soft functions and soft anomalous dimensions to

NLO. All of these elements were already evaluated to the order needed here [16, 22–24].

In particular, the NLO hard functions were evaluated by customizing two of the one-

loop provider programs available on the market, GoSam [25–29] and Openloops [30]. The

numerical evaluation of the hard functions for this work has been performed by using a

modified version of Openloops in combination with Collier [31–35]. GoSam in combination

with Ninja [29, 36, 37] was used to cross-check our results.

The resummation formula for the associated production of a tt̄H final state in Mellin

space is similar to the one which was derived for the production of a tt̄W final state in [19]

and reads

σ(s,mt,mH) =
1

2s

∫ 1

τmin

dτ

τ

1

2πi

∫ c+i∞

c−i∞
dNτ−N

∑

ij

ff̃ ij (N,µ)

∫
dPStt̄H c̃ij (N,µ) , (2.8)

where we introduced the Mellin transform of the luminosity functions ff̃ ij , and

c̃ij (N,µ) ≡ Tr

[
Hij ({p}, µ) s̃ij

(
ln

M2

N̄µ2
, {p}, µ

)]
. (2.9)
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µh = M, µs = M/N̄

the rest of the paper) [26] and are labeled for convenience “nNLO” predictions. We

are able to obtain numerical results at this level of accuracy for the total tt̄W cross

section as well as for several di↵erential distributions. A detailed description of what

is included in the nNLO predictions, in particular in relation to the terms proportional

to ↵2

s
�(1 � z) and to power suppressed terms which can be reconstructed in part by

means of SCET based methods, can be found in Section 3 of [8] and we do not repeat

it here. The matching procedure to NLO calculations is described in Section 4.

However, the main result of the present paper is a numerical implementation of the

resummation to NNLL accuracy. For this purpose we developed an in-house parton-

level Monte Carlo code which allows us to evaluate several di↵erential distributions

in a single run. The associated production of a top pair and a W boson in the soft

limit involves only the quark annihilation channel; consequently the corresponding

Monte Carlo code requires comparatively limited running time with respect to other

processes such as tt̄H and tt̄Z production. For this reason the program we developed

and optimized for this work provides a valid template which can in principle be extended

to the evaluation of NNLL resummation corrections to tt̄H and tt̄Z production.

The NNLL resummation for the tt̄W production process was already carried out

in momentum space in [25]. In that work, the authors did not develop a parton level

Monte Carlo but obtained predictions for the total cross section at the LHC for center

of mass energies of 7, 8, 13 and 14 TeV and the invariant mass distribution at 8 and

13 TeV. In this work we decided to carry out the resummation in Mellin space, following

the procedure adopted in [23, 24, 32]. In the rest of this section we describe the various

elements which enter the resummation formula in Mellin space.

The Mellin transform of a function f and its inverse are defined by

ef(N) ⌘ M[f ](N) =

Z
1

0

dxxN�1f(x) , f(x) = M
�1[ ef ](x) = 1

2⇡i

Z
c+i1

c�i1
dNx�N f̃(N) .

(3.3)

The constant c in the extrema of integration of the inverse Mellin transform is chosen

so that the integration contour lies to the right of all singularities of the function f̃(N).

The total cross section of (2.4) can be rewritten as

�(s,mt,mW ) =
1

2s

Z
1

⌧min

d⌧

⌧

1

2⇡i

Z
c+1

c�i1
dN⌧�N

X

ij

eff
ij
(N, µ)

Z
dPStt̄Wecij(N, µ) , (3.4)

where f̃f is the Mellin transform of the luminosity while

ecij(N, µ) = Tr

"
Hij ({p}, µ)esij

 
ln

M2

N̄µ2

f

, {p}, µ

!#
. (3.5)

– 7 –
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Mellin space

‣ RG evolution to obtain the hard-scattering kernels at the factorization scale

‣ Differences with the “Direct QCD” approach can still be present in the evolution 
of the hard function
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Since the soft limit z → 1 corresponds to the limit N → ∞ in Mellin space, we neglected

terms suppressed by powers of 1/N in (2.8). Furthermore, in (2.9) we employed the notation

N̄ = NeγE . The function s̃ij is the Mellin transform of the soft function Sij found in (2.4).

The hard and soft functions in (2.8) can be evaluated in fixed order perturbation theory

at scales at which they are free from large logarithms. We indicate these scales with µh

and µs, respectively. Subsequently, by solving the renormalization group (RG) equations

for the hard and soft functions one can evolve the hard scattering kernels in (2.9) to the

factorization scale µf . One obtains

c̃ij(N,µf ) = Tr

[
Ũij(N̄ , {p}, µf , µh, µs)Hij({p}, µh) Ũ

†
ij(N̄ , {p}, µf , µh, µs)

× s̃ij

(
ln

M2

N̄2µ2
s
, {p}, µs

)]
. (2.10)

Large logarithmic corrections depending on the ratio of the scales µh and µs are resummed

in the channel-dependent matrix-valued evolution factors Ũ. The expression for the evo-

lution factors is

Ũ
(
N̄ , {p}, µf , µh, µs

)
= exp

{
2SΓcusp(µh, µs)− aΓcusp(µh, µs) ln

M2

µ2
h

+ aΓcusp(µf , µs) ln N̄
2

+ 2aγφ(µs, µf )

}
× u ({p}, µh, µs) , (2.11)

which is formally identical to the expression found for the corresponding quantity in carry-

ing out the resummation for tt̄W production. For the definition of the various RG factors

appearing in (2.11) we refer the reader to [19]. However, while for tt̄W production one

needs to consider the evolution factor in the quark-annihilation channel only, for tt̄H pro-

duction one also needs to evaluate the appropriate anomalous dimensions and evolution

factor for the gluon fusion channel.

The functions U in (2.11) depend on αs evaluated at three different scales: µh, µs

and µf . In practice, it is convenient to rewrite the evolution factors in terms of αs(µh)

only. This can be done by employing the running of αs at three loops [38]. By doing this,

logarithms such as ln(µh/µs) appear explicitly in the formula for the evolution matrix,

which becomes [19]

Ũ
(
N̄ , {p}, µf , µh, µs

)
= exp

{
4π

αs(µh)
g1 (λ,λf ) + g2 (λ,λf ) +

αs(µh)

4π
g3 (λ,λf ) + · · ·

}

× u({p}, µh, µs) , (2.12)

with

λ =
αs(µh)

2π
β0 ln

µh

µs
, λf =

αs(µh)

2π
β0 ln

µh

µf
. (2.13)
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Ũ
(
N̄ , {p}, µf , µh, µs

)
= exp

{
2SΓcusp(µh, µs)− aΓcusp(µh, µs) ln

M2

µ2
h

+ aΓcusp(µf , µs) ln N̄
2

+ 2aγφ(µs, µf )

}
× u ({p}, µh, µs) , (2.11)

which is formally identical to the expression found for the corresponding quantity in carry-

ing out the resummation for tt̄W production. For the definition of the various RG factors

appearing in (2.11) we refer the reader to [19]. However, while for tt̄W production one

needs to consider the evolution factor in the quark-annihilation channel only, for tt̄H pro-

duction one also needs to evaluate the appropriate anomalous dimensions and evolution

factor for the gluon fusion channel.

The functions U in (2.11) depend on αs evaluated at three different scales: µh, µs

and µf . In practice, it is convenient to rewrite the evolution factors in terms of αs(µh)

only. This can be done by employing the running of αs at three loops [38]. By doing this,

logarithms such as ln(µh/µs) appear explicitly in the formula for the evolution matrix,

which becomes [19]

Ũ
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Soft scale is set in
Mellin space

Soft function (color matrix)

Hard function (color matrix), obtained 
using self-modified versions of 

Openloops and Gosam
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Ingredients of the calculation

‣ NLO soft function: similar to the ttbar soft function, we had to recompute it for a 
general kinematics

‣ Two loop soft anomalous dimension, adapted to a 2 to 3 kinematics from the t-tbar 
calculation (more general kinematics) [Ferroglia, Neubert, Pecjak, Yang 09’]

‣ The calculation of the NLO hard function requires the one loop amplitudes for a 2 to 
3 process, separating out the various color components

• It is convenient to take advantage of the automated tools available on the market

•However none provided the hard functions out of the box and all require a 
certain level of customization

Modified versions of Gosam, Openloops (+ Collier), Madloop
(with the help of the developers)

Soft function at NLOSoft function at NLO
The soft function can 
be calculated by 
evaluating diagrams 
involving the 
emission of soft 
gluons from the 
external legs

The soft function can 
be calculated by 
evaluating diagrams 
involving the 
emission of soft 
gluons from the 
external legs

Eikonal 
vertex
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Total cross section tTH

Uncertainties

J
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E
P
0
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0
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results is estimated by varying separately all the three scales around their default values

in the interval µi ∈ [µi,0/2, 2µi,0] for i ∈ {s, f, h}. The scale uncertainty above (below) the

central value of a resummed observable O, which can be the total cross section or the value

of the differential cross section in a given bin, is determined as follows. First one evaluates

the quantities

∆O+
i = max{O (κi = 1/2) , O (κi = 1) , O (κi = 2)}− Ō ,

∆O−
i = min{O (κi = 1/2) , O (κi = 1) , O (κi = 2)}− Ō , (3.5)

for i ∈ {s, f, h}. In (3.5) we defined κi = µi/µi,0, and Ō indicates the observable evaluated

at κi = 1 for all i-s. The scale uncertainty above (below) Ō is then obtained by combining

in quadrature ∆O+
i (∆O−

i ) for i ∈ {s, f, h}.

3.2 Total cross section

In this section we analyze the total cross section for the associated production of a top

quark pair and a Z boson at the LHC operating at a center-of-mass energy of 13TeV.

The relevant results are collected in table 2. We first compare the approximate NLO

cross section, obtained by expanding the resummation formula to NLO (second row of

table 2) with the complete NLO cross section (fourth row) and the NLO cross section

without the contribution of the quark-gluon channel (third row). The difference between

the approximate NLO result and the NLO result without the qg channel is due to terms

in the quark annihilation and gluon fusion channels which are subleading in the partonic

threshold limit. We see that the impact of these terms is around 1%. The difference

between these two results is therefore small in spite of the fact that the NLO corrections

are large, as can be seen by comparing them with the LO result. However, we see that

the approximate NLO result shows a smaller scale uncertainty than the NLO result with

the contribution of the qg channel. We conclude that the soft emission corrections provide

the bulk of the NLO corrections for this choice of the factorization scale. This motivates

us to study the effect of the resummation of these corrections, keeping in mind that by

matching the resummed results to NLO calculations we consider both power corrections

and the contribution of the qg channel to that order.

The NLO+NLL and NLO+NNLL cross sections, shown in the sixth and seventh line

of table 2 are main results of this paper. By looking at the NLO, NLO+NLL, NLO+NNLL

results we see that the cross section is progressively increased, but the central value of each

prediction falls in the scale uncertainty band of the predictions of lower accuracy. One

might also want to evaluate the NLO+NNLL total cross section by employing NLO PDFs;

this leads to a total cross section of σ = 787.3+63.4
−67.4 fb. This result has a central value which

is ∼ 10 fb larger than the NLO+NNLL calculation carried out with NNLO PDFs and a

scale uncertainty interval which is almost identical to the one obtained by using NNLO

PDFs. A comparison of the of the NLO+NNLL total cross section evaluated with NLO

PDFs with the NLO total cross section in table 2 allows one to assess directly the numerical

impact of the higher-order logarithms which are included in the resummed calculation.

One can then look at the NNLO expansions of the NNLL resummation formula, which

are shown in the last two lines of table 2. By comparing these results to the NLO+NNLL

– 7 –

LUX QED PDFs

2 Calculational framework

In this section we describe the calculational framework on which the phenomenological
predictions presented in Section 4 are based. In Sections 2.1 and 2.2 we briefly summa-
rize the calculation of the complete-NLO corrections of QCD and EW origin [31, 32] and
the resummation of soft-gluon effects at NNLL accuracy [33–36], respectively. In Section
2.3 we explain how the combination and matching of complete-NLO and resummation of
soft-gluon effects is carried out. We will denote the class of processes considered in this
work as tt̄V , where V can be W+,W�, Z or H. In Section 2.4 we recall the most rele-
vant phenomenological features of the different contributions entering the complete-NLO
calculation, and comment on the implications for soft gluon resummation.

2.1 Complete-NLO

The fixed order expansion of a generic observable ⌃ for the processes pp ! tt̄V (+X) (where
X indicates that the process is inclusive over extra QCD and QED radiation) in powers of
↵s and ↵ can be expressed as

⌃tt̄V (↵s,↵) =
X

m+n�2

↵m

s ↵n+1⌃tt̄V

m+n+1,n , (2.1)

with m and n positive integers. LO contributions consist of ⌃tt̄V

m+n+1,n
terms with m+n = 2

and involve tree-level diagrams only. NLO corrections correspond to the terms with m+n =

3 and are induced by the interference among all the possible one-loop and tree-level Born
diagrams as well among all the possible tree-level diagrams involving one additional quark,
gluon or photon in the final state.

In this work, “complete-NLO” is used to indicate the quantity ⌃tt̄V (↵s,↵), in which all
terms ⌃tt̄V

m+n+1,n
with m + n = 2, 3 are included. On the other hand, a more user-friendly

notation can be used to refer to any individual term in Eq. (2.1). We denote tt̄V observables
at LO as ⌃tt̄V

LO
and further redefine the individual perturbative orders as

⌃tt̄V

LO (↵s,↵) = ↵2

s↵⌃
tt̄V

3,0 + ↵s↵
2⌃tt̄V

3,1 + ↵3⌃tt̄V

3,2

⌘ ⌃LO1 + ⌃LO2 + ⌃LO3 . (2.2)

Similarly, NLO corrections and their individual perturbative orders can be defined as

⌃̌tt̄V

NLO(↵s,↵) = ↵3

s↵⌃
tt̄V

4,0 + ↵2

s↵
2⌃tt̄V

4,1 + ↵s↵
3⌃tt̄V

4,2 + ↵4⌃tt̄V

4,3

⌘ ⌃̌NLO1 + ⌃̌NLO2 + ⌃̌NLO3 + ⌃̌NLO4 . (2.3)

In contrast to the notation used in previous works [27, 31, 32, 41–44], here and in the
rest of the text ⌃̌ indicates a quantity that does not include any LO contribution, while
⌃ indicates a quantity that does include LO contributions. In particular, all the LOi are
included for predictions beyond the LO, unless the subscript “QCD” is present; in this case
only the ⌃LO1 is included. Consequently, with this convention an observable ⌃ evaluated
at complete-NLO accuracy can be written as

⌃NLO = ⌃LO + ⌃̌NLO . (2.4)
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m(tt̄H)-based scales

Order � [fb] AC [%]

LOQCD 327.65(4)
+94.18(+28.7%)
�68.46(�20.9%)

+7.11(+2.2%)
�7.11(�2.2%) 0

NLOQCD 463.70(8)
+45.1(+9.7%)
�49.72(�10.7%)

+11.08(+2.4%)
�11.08(�2.4%) 0.84(2)

+0.19(+22.2%)
�0.13(�15.8%)

+0.04(+4.2%)
�0.04(�4.2%)

NLO 475.68(8)
+46.94(+9.9%)
�51.11(�10.7%)

+11.21(+2.4%)
�11.21(�2.4%) 1.01(2)

+0.19(+19.0%)
�0.14(�13.6%)

+0.04(+4.0%)
�0.04(�4.0%)

nNLOQCD 490.38(8)
+18.46(+3.8%)
�9.61(�2.0%)

+11.82(+2.4%)
�11.82(�2.4%) 0.79(5)

+0.30(+38.5%)
�0.00(�0.0%)

+0.04(+5.1%)
�0.04(�5.1%)

nNLO 502.36(8)
+20.27(+4.0%)
�10.99(�2.2%)

+11.95(+2.4%)
�11.95(�2.4%) 0.95(5)

+0.28(+29.5%)
�0.00(�0.0%)

+0.05(+4.7%)
�0.05(�4.7%)

NLOQCD+NNLL 479.1(1)
+29.0(+6.1%)
�24.2(�5.0%)

+11.5(+2.4%)
�11.5(�2.4%) –

NLO+NNLL 491.1(1)
+27.8(+5.7%)
�24.0(�4.9%)

+11.6(+2.4%)
�11.6(�2.4%) –

HT -based scales

Order � [fb] AC [%]

LOQCD 344.86(4)
+101.38(+29.4%)
�73.22(�21.2%)

+7.61(+2.2%)
�7.61(�2.2%) 0

NLOQCD 472.22(7)
+41.31(+8.7%)
�48.83(�10.3%)

+11.41(+2.4%)
�11.41(�2.4%) 0.92(2)

+0.22(+23.9%)
�0.16(�17.1%)

+0.04(+4.2%)
�0.04(�4.2%)

NLO 484.31(7)
+43.15(+8.9%)
�50.24(�10.4%)

+11.55(+2.4%)
�11.55(�2.4%) 1.09(2)

+0.23(+20.9%)
�0.16(�14.7%)

+0.04(+4.0%)
�0.04(�4.0%)

nNLOQCD 490.17(8)
+15.35(+3.1%)
�8.95(�1.8%)

+11.92(+2.4%)
�11.92(�2.4%) 0.94(5)

+0.003(+0.3%)
�0.09(�9.4%)

+0.04(+4.6%)
�0.04(�4.6%)

nNLO 502.26(7)
+17.19(+3.4%)
�10.37(�2.1%)

+12.06(+2.4%)
�12.06(�2.4%) 1.11(5)

+0.03(+2.5%)
�0.11(�9.6%)

+0.05(+4.3%)
�0.05(�4.3%)

NLOQCD+NNLL 489.58(9)
+34.35(+7.0%)
�22.54(�4.6%)

+11.91(+2.4%)
�11.91(�2.4%) –

NLO+NNLL 501.67(9)
+33.34(+6.6%)
�22.54(�4.5%)

+12.05(+2.4%)
�12.05(�2.4%) –

Combined scales

Order � [fb] AC [%]

LOQCD 336.25(3)
+109.98(+32.7%)
�77.07(�22.9%)

+7.42(+2.2%)
�7.42(�2.2%) 0

NLOQCD 467.96(5)
+45.57(+9.7%)
�53.98(�11.5%)

+11.31(+2.4%)
�11.31(�2.4%) 0.88(1)

+0.25(+28.9%)
�0.17(�19.2%)

+0.04(+4.2%)
�0.04(�4.2%)

NLO 479.99(5)
+47.46(+9.9%)
�55.42(�11.5%)

+11.45(+2.4%)
�11.45(�2.4%) 1.05(1)

+0.27(+25.5%)
�0.18(�16.8%)

+0.04(+4.0%)
�0.04(�4.0%)

nNLOQCD 490.27(6)
+18.56(+3.8%)
�9.50(�1.9%)

+11.93(+2.4%)
�11.93(�2.4%) 0.87(4)

+0.23(+26.4%)
�0.01(�1.5%)

+0.04(+5.1%)
�0.04(�5.1%)

nNLO 502.31(6)
+20.32(+4.0%)
�10.95(�2.2%)

+12.06(+2.4%)
�12.06(�2.4%) 1.03(4)

+0.20(+19.5%)
�0.03(�2.6%)

+0.05(+4.7%)
�0.05(�4.7%)

NLOQCD+NNLL 484.33(7)
+39.60(+8.2%)
�29.43(�6.1%)

+11.78(+2.4%)
�11.78(�2.4%) –

NLO+NNLL 496.36(7)
+38.64(+7.8%)
�29.35(�5.9%)

+11.92(+2.4%)
�11.92(�2.4%) –

Table 3. Total cross section and charge asymmetry for tt̄H production. Same structure as in
Table 1.

to +6%

�3%
for the combined-scales prediction. In this case, the uncertainties coming from the

PDFs can no longer be neglected, since they are similar in size the scale uncertainties
(±2.9% for tt̄W+ production). Similar remarks apply to the charge asymmetry calculation
in tt̄W� production.
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be used as an estimate of the uncertainty associated to the truncation of the perturbative
series. In this work, we consider both HT and m(tt̄V ) based scale choices. In particular,
when relating the central value of the three scales µf , µh, µs involved in the calculations to
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The uncertainty associated to missing higher-order corrections can be estimated by
considering the dependence of the predictions for a given observable on the non-physical
scales that enter the calculation. At fixed order, this is done by varying the renormalization
and factorization scales in the range µi 2 {µ0

i
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i
} (i = r, f). The uncertainty estimate

is then given by the bin-by-bin envelope of the 9 predictions obtained in this way. For
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In contrast to the case of NLO calculations, in Eq. (3.5) no distinction is made between
the renormalization and factorization scales. One can then define an upper and lower scale
uncertainty for the variation of each scale in Eq. (3.5) as follows
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for i 2 {f, h, s}. In Eqs. (3.6) the two scales that are not varied are kept fixed to their central
values: j = 1 if j 6= i. The residual theoretical uncertainty affecting a given resummed
observable is then obtained by combining in quadrature the uncertainties associated to each
of the three scale variations in each of the histogram bins as done in Refs. [34–36]. With
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As discussed in Section 4, results with the two scale choices in Eqs. (3.3) and (3.4) are

compatible with each other at the level of total cross sections, although somewhat less so
at the level of differential distributions. Since there is no conclusive argument in favor of
either scale choice, we opt for taking the bin-by-bin average of the two results as the best
prediction for the central value of each given observable. Moreover, we use the envelope of
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Distributions tTH
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Figure 2. Distribution of the invariant mass of the tt̄V system at 13 TeV. The upper plots refer to
tt̄W+ (left) and tt̄W� (right), while the lower ones to tt̄H (left) and tt̄Z (right). In the first inset
we focus on the resummation effects (NLO vs. NLO+NNLL), in the second one on the difference
between the additive and multiplicative approach (NLO + NNLL vs. NLO ⇥ NNLL) including
only scale uncertainties, and in the third on the impact of EW corrections (NLOQCD + NNLL vs
NLO+NNLL). More details can be found in the main text.

in the middle inset, the additive and multiplicative approaches lead to slightly different
shapes for the m(tt̄H/Z) invariant mass distribution. This difference is marginal, though,
and remains well within the uncertainty band. Nevertheless, for large values of m(tt̄H/Z),
this difference in shape amounts to a few percent. In this phase-space region, predictions
in the multiplicative approach can be preferred, as discussed in Section 2.3.
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Figure 6. Distributions differential w.r.t. the transverse momentum of the EW boson. Same
structure as in Figure 2.

which is dominated by the product of these two corrections, is not negligible.

4.2.3 Rapidities

Figures 7 and 8 show the predictions for the distributions differential w.r.t. the top-quark
and top-antiquark rapidities, respectively. In each individual process, antitop quarks are
produced more centrally than top quarks. This fact is particularly evident for the tt̄W+

and tt̄W� processes. Indeed, this property is responsible for the large charge asymmetry
for these processes.
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Top pair + W or Z boson

‣ tTW and tTZ are the two heaviest set of particles measured at the LHC with c.o.m. energy 
of 7,8,13 TeV

‣ Important to detect anomalies in the top couplings of the Z boson, and can be considered 
background processes in new physics searches

‣ Both processes were calculated to NLO QCD accuracy by several groups (A. Lazopoulos, T. 
McElmurry, K. Melnikov, F. Petriello ’07 - ’08, M.V. Garzelli, A. Kardos, C.G. Papadopoulos, Z. Trocsanyi ’12, 
J.M. Campbell, R.K. Ellis ’12, F. Maltoni, M.L. Mangano, I. Tsinikos, M. Zaro ’14, R. Roentsch and M. Schulze 
’14 - ’15)

‣ EW corrections are also known (Frixione, Hirshi, Pagani, Shao, Zaro ’15)

‣ NLO+NNLL for tTW in momentum space (Li, Li and Li ’14)

‣ NLO+NNLL for ttW and ttZ in the direct QCD approach (A. Kulesza, L. Motyka, D. 
Schwartlaender, T. Stebel, V. Theeuwes ‘18)
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Top pair + W or Z production

Total cross section at complete NLO 
(mg5_aMC@NLO)

and at complete NLO+NNLL. 
The crosses reflect only scale uncertainty

and not PDFs uncertainty

SM theory vs ATLAS data
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Sudakov resummation for WIMP dark 
matter annihilation
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Introduction

‣ Dark matter (DM) candidate as Weakly Interacting Particle with mass in the 100 
GeV to 10 TeV range (WIMP)

‣ The pair annihilation of WIMPs into two photons or a photon + Z boson is loop 
suppressed but provides a clear signature as a monochromatic component of high-
energy cosmic gamma rays
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Introduction

‣ TeV-scale DM annihilation is not accurately described by the LO rate, it is modified 
by the Sommerfeld effect generated by the EW Yukawa force on the DM particles 
before their annihilation

‣ In addition to the Sommerfeld effect, large logarithmically enhanced quantum 
corrections (Sudakov logarithms) arise due to restrictions on the emission of soft 
radiation

‣ EW Sudakov logarithms in DM annihilation into photons have been identified as 
potential source of large corrections [Hryczuk, Iengo ’12] and need to be resummed to 
all orders in perturbation theory [Baumgart, Rothstein, Vaidya ’15], [Bauer, Cohen, Hill, Solon ’14], 
[Baumgart, Vaydia ’15], [Ovanesyan, Slatyer, Stewart ’14], [Ovanesyan, Rodd, Slatyer, Stewart  ’16], [Baumgart, 
Cohen, Moult, Rodd, Slatyer, Solon, Stewart, Vaidya  ’17]

O((m�↵2/mW )n)

O((↵2 ln
2(m�/mW ))n)
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The wino-like triplet model

tive field theory (EFT) treatment of the single-inclusive photon spectrum d(�v)/dE� in
DM pair annihilation near the kinematic endpoint. For the DM model we refer to the
widely discussed pure wino model, which features an electroweak triplet whose electri-
cally neutral component is the DM particle, although some results apply more generally
to DM particles in an isospin-j multiplet. We then present and discuss our result for the
all-order resummed spectrum including both the Sommerfeld and Sudakov corrections.
A more detailed exposition of the formalism as well as extensions will be reported in
a longer article. While this work was being finalized, a similar EFT calculation of the
endpoint of the � + X spectrum has appeared [13]. The present EFT formulation refers
to a finer photon energy resolution, but includes the one-loop corrections to all matching
coe�cients, soft and jet functions thus achieving NLL’ rather than NLL accuracy for the
observable in question.

2 The resummed energy spectrum

We add to the Standard Model (SM) Lagrangian a fermionic multiplet � (which can be
of Majorana or Dirac type) in an arbitrary isospin-j representation of the electroweak
(EW) SU(2) gauge group. For the Majorana case, only integer j are allowed, while for
the Dirac case also half-integer j are possible. In both cases we assume zero hypercharge
(Y = 0). The DM particle is the electrically neutral member �

0 of the 2j+1 dimensional
multiplet. The Lagrangian is

L = LSM + �(i /D � m�)� (1)

when � is a Dirac fermion. For the Majorana case, � is self-conjugate and its Lagrangian
is multiplied by 1/2. The SU(2) covariant derivative is Dµ = @µ � ig2A

C

µ
T

C where T
C ,

C = 1, 2, 3, are the SU(2) generators in the isospin-j representation and A
C

µ
are the

EW gauge bosons. In these models the dark matter particle obtains the correct relic
density from thermal freeze-out for m� in the 1-10 TeV range [14] for the favoured small
representations j = 1

2
, 1, 3

2
, 2.

2.1 E↵ective theory framework

We consider the process

�
0(p1) + �

0(p2) ! �(p�) + X(pX) (2)

for nearly maximal photon energy. Since the kinetic energy of the dark matter particles
is negligible, E

�

max
= m�. Assuming an energy resolution E

�

res
of the �-telescope, we are

interested in the quantity

h�vi(E�

res
) =

Z
m�

m��cE
�
res

dE�

d(�v)

dE�

, (3)

2

Add to the SM Lagrangian a fermionic multiplet χ (of Majorana or Dirac type) with arbitrary 
isospin-j representation of the EW SU(2) gauge group and zero hypercharge (Y=0)

The DM particle is the electrically neutral member of the 2j+1 multiplet

Dirac

�(p1) + �(p2) ! �(p�) +X(pX)We consider the process

The photon endpoint spectrum depends on 4 scales: mχ (hard scale), the small invariant 
mass                           of the unobserved energetic final state, the EW scale                     
and the energy resolution scale        

mX =
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�
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1 Introduction

High-energy photons may constitute an important signal for the particle nature of dark
matter (DM) through the pair annihilation of DM particles. In order to distinguish the
DM component from the astrophysical �-ray background, one searches for the line signal
of the two-body annihilation �

0
�
0

! �� (or �Z) at (or very close to) E� = m�, where
m� is the mass of the dark matter particle, to be determined.

In particular, the paradigmatic WIMP with mass in the 100 GeV to 10 TeV range and
electroweak charge is expected to be observed or ruled out by the Cherenkov Telescope
Array (CTA) [1] under construction even under conservative assumptions on astrophys-
ical uncertainties, especially due to the dark matter density profile near the Galactic
center. Precise theoretical computations of the photon yield from DM annihilation are
therefore well motivated.

Recent theoretical work has focused on two aspects of the problem. First, for dark
matter annihilation into energetic particles, electroweak Sudakov (double) logarithms
O((↵2 ln2(m�/mW ))n) are large and should be summed to all orders [2–5], in addition to
the summation of ladder diagrams known as the Sommerfeld e↵ect. Second, since �-ray
telescopes do not measure two photons from a single annihilation in coincidence, the
observable is not �

0
�
0

! �� (or �Z) but rather the semi-inclusive single-photon energy
spectrum � + X, where X denotes the unidentified other final state particles. Although
the leading term in the perturbative expansion of the semi-inclusive annihilation rate
arises from the two-body final states ��, �Z, the logarithmically enhanced terms di↵er
in higher orders and this a↵ects their resummation [6–8]. It has been shown, both for
the exclusive �� annihilation rate [5], as well as for the semi-inclusive rate at narrow
energy resolution (as defined below) [7], that resummation with NLL’ accuracy, which
combines the full one-loop calculations with next-to-leading logarithmic resummation
provides precise results for the photon rate with uncertainties around 1%.

The resummation of the semi-inclusive spectrum is performed for the primary photon
energy spectrum d(�vrel)/dE� of the DM pair annihilation cross section multiplied by
the relative velocity of the annihilating particles. While in forecasts for the rate observed
by a specific telescope, the spectrum will have to be smeared with an instrument-specific
resolution function of some width E

�

res
in energy, the expected impact and accuracy of

the theoretical prediction can be equally discussed for the spectrum integrated over the
energy interval E

�

res
from its kinematic endpoint:

h�vi(E�

res
) =

Z
m�

m��E
�
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dE�

d(�v)

dE�

. (1)

The endpoint-integrated spectrum depends on the three scales m�, mW (representative
of electroweak scale masses), and E

�

res
. We consider TeV scale dark matter, hence the

hierarchy mW ⌧ m� is always assumed. The details of the resummation of electroweak
Sudakov logarithms near the endpoint, E

�

res
⌧ m�, di↵er according to the scaling of E

�

res

and mW with respect to each other. We distinguish the following three regimes:
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Narrow vs Wider resolution
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Figure 1: Energy resolution of the CTA experiment (solid black line, from [9]), and the
power-law fit E

�

res
= 0.0915 (E�/TeV)0.653 (dash-dotted) with E� = m�. The dark-grey

(red) and light-grey (blue) bands show where the intermediate and narrow resolution
resummation applies, respectively. The boundaries are defined by mW [1/4, 4] (interme-
diate resolution) and m

2

W
/m� [1/4, 4] (narrow resolution).

intermediate : E
�

res
⇠ mW

wide : E
�

res
� mW (2)

The wide resolution regime was considered in [6, 8] and resummed at the NLL order.
Due to the double hierarchy m� � E

�

res
� mW a two-step procedure applies to simul-

taneously sum the unrelated large logarithms of m�/mW and E
�

res
/mW . This procedure

requires large dark matter masses to satisfy both hierarchies. Resummation of elec-
troweak Sudakov logarithms for the narrow resolution case was accomplished in [7] at
the NLL’ order. The intermediate resolution regime has not been considered up to now.

In the present paper we close this theoretical gap. We develop the e↵ective field theory
(EFT) for the intermediate resolution regime and sum the electroweak logarithms at the
NLL’ order. We show that the result can be smoothly joined to the narrow resolution
regime to provide a precise prediction of the photon energy spectrum near m� in the
entire region from the line signal (E�

res
= 0) to E

�

res
⇡ 4mW . We also provide details and

derivations for the narrow resolution regime not given in the letter [7].
The intermediate resolution regime is relevant to present and upcoming DM searches.

For example, assuming the regime to apply to E
�

res
in [mW/4, 4mW ] the energy resolution

of the H.E.S.S. experiment E
�

res
/E� ⇡ 10% [10] implies that dark matter masses in

the range 200 GeV to 3.2 TeV are covered by the intermediate resolution calculation.
For the CTA experiment, we obtain the power-law fit E

�

res
/E� = 0.0915 (E�/TeV)�0.347

from Figure 11 of [9] in the range of photon energies of interest, which is shown as
the dash-dotted line in Figure 1 together with the unapproximated resolution (solid
line). The horizontal band (dark-grey/red) represents the region of applicability of the
intermediate resolution regime, which extends to 6.8 TeV for the CTA experiment. Thus,

2

Details of the resummation of EW Sudakov logs differ according to the scaling of   
and   with respect to each other

Eγ
res

mW

Narrow:            
Intermediate:     
Wide:                

Eγ
res ∼ m2

W /mχ
Eγ

res ∼ mW
Eγ

res ≫ mW Baumgart et al. [arxiv:1808.08956]

Beneke,Broggio,Hasner,Vollmann. [arxiv:1805.07367]

Beneke,Broggio,Hasner,Urban,Vollmann. [arxiv:1903.08702]
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Results
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Figure 3: Integrated photon energy spectrum within E
�

res
from the endpoint m� in the

tree (Sommerfeld only) and LL, NLL, NLL’ resummed approximation. The energy res-
olution is set to E

�

res
= mW . The shaded/hatched bands show the scale variation of the

respective approximation as described in the text. For the NLL’ result the theoretical
uncertainty is given by the thickness of the red line.

The lower panel of the Figure shows the same LL, NLL and NLL’ resummed anni-
hilation rates, but normalized to the Sommerfeld-only result for better visibility of the
resummation e↵ect. We see that the resummation leads to a substantial reduction of the
cross section, as is generally expected for Sudakov resummation. The size of the e↵ect is
consistent with the finding of previous computations [3–5,7] of related observables or in
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1 Introduction

High-energy photons may constitute an important signal for the particle nature of dark
matter (DM) through the pair annihilation of DM particles. In order to distinguish the
DM component from the astrophysical �-ray background, one searches for the line signal
of the two-body annihilation �

0
�
0

! �� (or �Z) at (or very close to) E� = m�, where
m� is the mass of the dark matter particle, to be determined.

In particular, the paradigmatic WIMP with mass in the 100 GeV to 10 TeV range and
electroweak charge is expected to be observed or ruled out by the Cherenkov Telescope
Array (CTA) [1] under construction even under conservative assumptions on astrophys-
ical uncertainties, especially due to the dark matter density profile near the Galactic
center. Precise theoretical computations of the photon yield from DM annihilation are
therefore well motivated.

Recent theoretical work has focused on two aspects of the problem. First, for dark
matter annihilation into energetic particles, electroweak Sudakov (double) logarithms
O((↵2 ln2(m�/mW ))n) are large and should be summed to all orders [2–5], in addition to
the summation of ladder diagrams known as the Sommerfeld e↵ect. Second, since �-ray
telescopes do not measure two photons from a single annihilation in coincidence, the
observable is not �

0
�
0

! �� (or �Z) but rather the semi-inclusive single-photon energy
spectrum � + X, where X denotes the unidentified other final state particles. Although
the leading term in the perturbative expansion of the semi-inclusive annihilation rate
arises from the two-body final states ��, �Z, the logarithmically enhanced terms di↵er
in higher orders and this a↵ects their resummation [6–8]. It has been shown, both for
the exclusive �� annihilation rate [5], as well as for the semi-inclusive rate at narrow
energy resolution (as defined below) [7], that resummation with NLL’ accuracy, which
combines the full one-loop calculations with next-to-leading logarithmic resummation
provides precise results for the photon rate with uncertainties around 1%.

The resummation of the semi-inclusive spectrum is performed for the primary photon
energy spectrum d(�vrel)/dE� of the DM pair annihilation cross section multiplied by
the relative velocity of the annihilating particles. While in forecasts for the rate observed
by a specific telescope, the spectrum will have to be smeared with an instrument-specific
resolution function of some width E

�

res
in energy, the expected impact and accuracy of

the theoretical prediction can be equally discussed for the spectrum integrated over the
energy interval E

�

res
from its kinematic endpoint:

h�vi(E�

res
) =

Z
m�

m��E
�

res

dE�

d(�v)

dE�

. (1)

The endpoint-integrated spectrum depends on the three scales m�, mW (representative
of electroweak scale masses), and E

�

res
. We consider TeV scale dark matter, hence the

hierarchy mW ⌧ m� is always assumed. The details of the resummation of electroweak
Sudakov logarithms near the endpoint, E

�

res
⌧ m�, di↵er according to the scaling of E

�

res

and mW with respect to each other. We distinguish the following three regimes:

narrow : E
�

res
⇠ m

2

W
/m�
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in the interesting mass range around 3 TeV, the rate is suppressed by a factor of ~ 2
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respective approximation as described in the text. For the NLL’ result the theoretical
uncertainty is given by the thickness of the red line.

The lower panel of the Figure shows the same LL, NLL and NLL’ resummed anni-
hilation rates, but normalized to the Sommerfeld-only result for better visibility of the
resummation e↵ect. We see that the resummation leads to a substantial reduction of the
cross section, as is generally expected for Sudakov resummation. The size of the e↵ect is
consistent with the finding of previous computations [3–5,7] of related observables or in
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di↵erent resolution regimes. In particular, in the interesting mass range around 3 TeV
where wino DM accounts for the observed relic density, the rate is suppressed by about
30 � 40%.

The resummed predictions are shown with theoretical uncertainty bands computed
from a parameter scan with simultaneous variations of all scales. Specifically, the
scales µh, ⌫h were varied in the interval 2m�[1/2, 2], µj was varied in the intervalp

2m�mW [1/2, 2] and µs, ⌫s were varied in the interval mW [1/2, 2]. The errors were
then determined very conservatively by taking the maximum and minimum values in
this five-dimensional parameter space. This scan was repeated for each mass point. For
each parameter scan, we specified 21 values distributed logarithmically in the intervals
given above, with ten values above and ten below the central values of the intervals.

We find that the residual theoretical uncertainty at the NLL’ order becomes neg-
ligible and is given by the width of the red-solid curve in Figure 3. It is also ap-
parent that the di↵erent levels of resummation successively reduce the theoretical un-
certainty considerably, from 15% at LL, to 9% at NLL and 1% at NLL’ at m� =
2 TeV. Numerically, for the two mass values m� = 2 TeV (10 TeV) the ratio to the
Sommerfeld-only rate is 0.641+0.103

�0.089
(0.402+0.088

�0.072
) at LL, 0.707+0.066

�0.064
(0.463+0.039

�0.039
) at NLL

and 0.665+0.008

�0.007
(0.434+0.006

�0.005
) at NLL’. The central values correspond to central scales of

the above intervals.
It is instructive to separate the integrated photon energy spectrum h�vi(E�

res
) into

the contributions due to the di↵erent Sommerfeld factors in (40). Thus, we write

h�vi = S(00)(00)[�v](00)(00) + 2Re[S(00)(+�)[�v](00)(+�)] + S(+�)(+�)[�v](+�)(+�) , (132)

where

[�v]IJ(E�

res
) =

Z
m�

m��E
�

res

dE� �IJ(E�) (133)

as in (1). We find (Sommerfeld factors in bold), adopting E
�

res
= mW ,

h�vi =


34.246 ⇥ (1.5886)| {z }

⇠4%

+ 2Re [42.100 ⇥ (�1.1356 + 5.7902i)]| {z }
⇠�6%

+ 51.755 ⇥ (30.054)| {z }
⇠102%

�
⇥ 10�28 cm3

/s = 1.5142 ⇥ 10�25 cm3
/s , (134)

for m� = 2 TeV and

h�vi =


1.1345 ⇥ (1.8637)| {z }

⇠27%

+ 2Re [0.35103 ⇥ (�1.3934 + 7.7840i)]| {z }
⇠�12%

+ 0.10861 ⇥ (63.080)| {z }
⇠85%

�
⇥ 10�27 cm3

/s = 7.9872 ⇥ 10�27 cm3
/s . (135)
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Summary

Thank you!

‣ Basics of threshold resummation for Drell-Yan and top pair production

‣ Threshold + small mass resummation for boosted ttbar production

‣ Associated production ttbar+H (or W/Z) at complete NLO+NNLL

‣ Sommerfeld effect and resummation of Sudakov logarithms for dark 
matter annihilation processes
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PIM &1PI factorization
Factorization of the cross sections studied in these limits by

QCD: [Kidonakis, Laenen, Moch, Sterman,…], SCET: [Ahrens, Ferroglia, Neubert, Pecjak, Yang, ’10, ‘11]

2.1 PIM and 1PI kinematics

In this subsection we briefly summarize the main features of the PIM and 1PI kinematics
schemes. In the case of PIM kinematics it is convenient to introduce the quantities

z =
M2

s
, �t =

r
1 �

4m2
t

M2
, (5)

where the threshold region is identified by the limit z ! 1. The doubly di↵erential partonic
cross section in M and in ✓ (the scattering angle of the top quark in the partonic center
of mass frame) assume the following form

d2�̂

dMd cos ✓
=

⇡�t

sM

X

i,j

CPIM, ij(z, M, mt, cos ✓, µf ) , (6)

where µf is the factorization scale and we summed over the incoming partons (i, j). The
functions CPIM, ij in Eq. (??) are usually called hard-scattering kernels and they can be
computed perturbatively. In fact, independently of the kinematics, the kernels Cij have an
expansion in powers of ↵s

Cij = ↵2

s


C(0)

ij +
↵s

4⇡
C(1)

ij +
⇣↵s

4⇡

⌘2

C(2)

ij + O(↵3

s)

�
. (7)

At LO in ↵s, the non-zero scattering kernels correspond to the quark anti-quark annihila-
tion channel and to the gluon fusion channel, i, j 2 {qq̄, gg}. At higher orders in ↵s one
has to consider the virtual and real corrections to the Born approximation and the new
partonic channels that open up at that order, for example gq ! tt̄q at order ↵s. The
hard-gluon emission and the additional production channel contribute to the NLO part
of our calculation and they are taken into account via the matching procedure. On the
contrary, these contributions are suppressed by powers of the soft expansion parameter
and therefore can be neglected within the partonic-threshold region.

In [27] it was shown that in the limit of soft gluon emissions, z ! 1, the hard-scattering
kernels Cij factor into a product of hard and soft functions which are matrices in color space:

CPIM, ij(z, M, mt, cos ✓, µf ) = Tr
⇥
Hij(M, mt, cos ✓, µf )SPIM, ij(

p
s(1 � z), M, mt, cos ✓, µf )

⇤
.

(8)

The hard functions Hij are obtained from the virtual corrections and they are ordinary
functions of their arguments. The soft functions SPIM, ij describe the real emission of soft
gluons and contain distributions which become singular in the threshold limit z ! 1. At
order ↵n

s the soft functions depend on terms proportional to plus distributions of the form

Pm(z) =


lnm(1 � z)

1 � z

�

+

; m = 0, . . . , 2n � 1 , (9)

and on terms proportional to the delta distribution �(1 � z).

6

The 1PI kinematics is commonly used to describe observables related to a single heavy
particle rather than a pair. At the partonic level 1PI kinematics allows to write the top
quark rapidity (y) and transverse momentum (pT ) distributions as

d2�̂

dpT dy
=

2⇡pT

s

X

i,j

C1PI, ij(s4, s, t1, u1, mt, µf ) . (10)

In analogy to the PIM case, also in 1PI kinematics the hard-scattering kernels factor into
a product of hard and soft functions in the limit of soft gluon emissions s4 ! 0:

C1PI, ij(s4, s, t1, u1, mt, µf ) = Tr [Hij(s, t1, u1, mt, µf )S1PI, ij(s4, s, t1, u1, mt, µf )] , (11)

where Hij and S1PI, ij are matrices in color space. While the hard functions in PIM and
1PI kinematics are identical, the soft functions di↵er in the two schemes. In particular, at
order ↵n

s the 1PI soft functions include terms proportional to singular plus distributions
which depend on s4:

P̄m(s4) =


lnm(s4/m2

t )

s4

�

+

=
1

m2
t

Pm

✓
1 �

s4

m2
t

◆
; m = 0, . . . , 2n � 1 . (12)

2.2 Inclusion of tree-level decays

After reviewing the general features of the PIM and 1PI kinematics for the production
subprocess in Eq. (1), we use the formalism outlined in the previous subsection to include
the tree-level semi-leptonic decays of the top quarks:

t ! bW+
! b(p3)l̄1(p5)⌫1(p6) ,

t̄ ! b̄W�
! b̄(p4)l2(p7)⌫̄2(p8) , (13)

where

pt = p3 + p5 + p6, pt̄ = p4 + p7 + p8 , (14)

pW+ = p5 + p6, pW � = p7 + p8 . (15)

We are interested in keeping the information about spin-correlations between the top
quarks and their decay products, for this reason the hard functions Hij need to be recom-
puted starting from the helicity amplitudes. The results available in the literature for the
tt̄ hard functions are already summed over the helicities of the external particles and they
don’t allow for a direct inclusion of the top decays. The one-loop helicity amplitudes for
the production subprocess became recently available in [32]. By combining every helicity
configuration of the produced heavy pair together with the corresponding helicity for the
decay subprocess, we construct the required hard functions where the spin-correlations
are included. In particular, every helicity configuration {�} ⌘ (�1, . . . , �8) of the total
amplitude is expressed as a color-decomposed function of eight external momenta:

M
{�}
ij, {a}(p1, . . . p8, mt, µf ) =

X

I

M
{�}
ij, I(p1, . . . p8, mt, µf )(c

ij
I ){a} , (16)
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PIM

1PI
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d2�̂

dpT dy
=

2⇡pT

s

X

i,j

C1PI, ij(s4, s, t1, u1, mt, µf ) . (10)

In analogy to the PIM case, also in 1PI kinematics the hard-scattering kernels factor into
a product of hard and soft functions in the limit of soft gluon emissions s4 ! 0:

C1PI, ij(s4, s, t1, u1, mt, µf ) = Tr [Hij(s, t1, u1, mt, µf )S1PI, ij(s4, s, t1, u1, mt, µf )] , (11)

where Hij and S1PI, ij are matrices in color space. While the hard functions in PIM and
1PI kinematics are identical, the soft functions di↵er in the two schemes. In particular, at
order ↵n

s the 1PI soft functions include terms proportional to singular plus distributions
which depend on s4:

P̄m(s4) =


lnm(s4/m2

t )

s4

�

+

=
1

m2
t

Pm

✓
1 �

s4

m2
t

◆
; m = 0, . . . , 2n � 1 . (12)

2.2 Inclusion of tree-level decays

After reviewing the general features of the PIM and 1PI kinematics for the production
subprocess in Eq. (1), we use the formalism outlined in the previous subsection to include
the tree-level semi-leptonic decays of the top quarks:

t ! bW+
! b(p3)l̄1(p5)⌫1(p6) ,

t̄ ! b̄W�
! b̄(p4)l2(p7)⌫̄2(p8) , (13)

where

pt = p3 + p5 + p6, pt̄ = p4 + p7 + p8 , (14)

pW+ = p5 + p6, pW � = p7 + p8 . (15)

We are interested in keeping the information about spin-correlations between the top
quarks and their decay products, for this reason the hard functions Hij need to be recom-
puted starting from the helicity amplitudes. The results available in the literature for the
tt̄ hard functions are already summed over the helicities of the external particles and they
don’t allow for a direct inclusion of the top decays. The one-loop helicity amplitudes for
the production subprocess became recently available in [32]. By combining every helicity
configuration of the produced heavy pair together with the corresponding helicity for the
decay subprocess, we construct the required hard functions where the spin-correlations
are included. In particular, every helicity configuration {�} ⌘ (�1, . . . , �8) of the total
amplitude is expressed as a color-decomposed function of eight external momenta:

M
{�}
ij, {a}(p1, . . . p8, mt, µf ) =

X

I

M
{�}
ij, I(p1, . . . p8, mt, µf )(c

ij
I ){a} , (16)

7

‣ H and S satisfy RG equations

‣ By knowing H and S at NLO in both kinematics, we can solve explicitly the RG equations for H and S at 
NNLO
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Distributions with final state cuts

‣ uncertainty bands of nNLO: scale variation+kinematics (envelope of PIM and 1PI)

‣ stable perturbative behaviour, reduction of theoretical uncertainty

‣ Cluster final state partons into jets

‣ Reconstruct top 

‣ Cuts

‣ Top decay included in NWA at NLO

large overlap between the NNLO lower uncertainty bands and the nNLO upper bands. At

the Tevatron however the overlap is only marginal. The fact that the nNLO predictions

are consistently lower than the NNLO ones is likely due to the fact that a large part of

the corrections that contribute to the delta terms in Eqs. (2.23) and (2.24) is missing. In

particular, as mentioned in Section 2.3, the finite contributions of the two-loop hard and

soft functions are not included in our nNLO result. Comparing to the nLO predictions,

where the delta terms are fully known, we observe a better agreement between nLO and

NLO. When the delta contributions become available we expect that the comparison of

nNLO vs NNLO will be as good as the nLO vs NLO case. The discrepancy between the

approximate and full results may also partly originate from the phase space. Integrating

the PIM and 1PI kernels over a full phase space instead of an approximate one could lead to

a positive contribution to the cross sections. We do not investigate this second possibility

here, but postpone this study to future work.

We deliberately refrain from adapting the treatment of subleading terms to optimize

the agreement between the nNLO and NNLO results for the total cross section, because

such an a posteriori justification for a particular treatment of subleading terms cannot

necessarily be generalized to arbitrary distributions. From the comparison between the

nNLO and NNLO results for the total cross section we conclude that our di↵erential distri-

butions are likely to be at the lower end of the NNLO predictions for the same observables.

However, when the fully di↵erential NNLO results will be available, we do expect to find a

substantial overlap between the uncertainty bands of the nNLO and NNLO distributions.

3.2 Universality of approximate results

In this subsection we study the reliability of our method for distributions. To do so, we

compare our (approximate) nLO results to full NLO results with the aim of obtaining a

procedure that gives a reliable error estimate for our approximate results.

We will use the PIM and/or the 1PI kinematics to obtain approximate expressions for

arbitrary observables. Thus, we have to investigate the universality of the approximate

terms obtained using the two di↵erent kinematics. Furthermore, the impact of cuts that

might be applied in a realistic analysis has to be considered as well.

To get an idea of the latter, we will apply a jet algorithm and require that the event

has a b-jet, Jb and a b̄-jet, Jb̄. As an example we have used the kT clustering algorithm with

the resolution parameter set to R = 0.7, but obviously any other jet definition would be

possible. All observables we study will be constructed from the momenta of the final-state

objects Jb, Jb̄ and the decay products of the W bosons. We will only consider the decay

W+
! e+ ⌫ and W�

! e� ⌫̄ and sometimes assume the W bosons can be reconstructed

fully from their decay products. In particular, the momentum of the reconstucted top is

defined as p(t) ⌘ p(W+) + p(Jb) 6= pt, with an analogous expression for the reconstructed

anti-top. We will also study the impact of applying some additional standard cuts on the

transverse momenta pT , and transverse (missing) energies ET . The precise definition of
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Figure 2. Invariant mass of reconstructed top-pair system (left) and transverse momentum of
reconstructed top quark (right) for LHC8. Results without (with) analysis cuts shown as solid
(dashed) lines. Production corrections only.

these cuts is as follows

pT (Jb) > 15 GeV pT (Jb̄) > 15 GeV M(W+,W�, Jb, Jb̄) > 350 GeV (3.1)

ET (e
+) > 15 GeV ET (e

�) > 15 GeV E/T > 20 GeV

These cuts are meant as an illustration only. They can easily be changed and, in particular,

additional cuts on the rapidity can be applied.

To study the dependence of the predictions on the kinematics applied, we start by

considering in the left panel of Figure 2 the distribution of the invariant mass of the

reconstructed top pair M(t, t̄) ⌘ M(W+,W�, Jb, Jb̄). The appropriate kinematics for this

observable is PIM, but we will also use the ‘wrong’ kinematics 1PI. We want to investigate

how well the approximate nLO result reproduces the full NLO corrections to the production

of the top pair. Note that the NLO corrections to the decay are not a↵ected and, hence,

will be left out in this comparison. Thus, in Figure 2 we show the comparison of the nLO

results d�nLO

prod
obtained with PIM (green) and 1PI (blue) to the full NLO result d�NLO

prod

(red). In both cases the decay of the (anti-)top is included at LO only and we are using

MSTW08NLO PDFs [79] and set µf = µR = mt.

The main message is that the approximate results for both kinematics are in reasonably

good agreement with the exact results and the application of cuts does not have a negative

e↵ect on this agreement. Actually in this case it turns out that the agreement is even

better if cuts are applied (dashed curves).

As expected, for the invariant mass of the top pair the PIM results are slightly better

than the 1PI results. We now repeat this comparison for the transverse momentum distri-

bution of the reconstructed top quark pT (t) ⌘ pT (W+, Jb), where 1PI is the appropriate

kinematics. In the right panel of Figure 2 we show again the comparison of d�nLO

prod
obtained

with 1PI and PIM to d�NLO

prod
. Once more, the approximations using both kinematics work

well, with and without applying cuts. What is somewhat surprising is that the ‘wrong’
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Figure 5. Invariant mass of reconstructed top-pair system (left) and transverse momentum of
reconstructed top quark (right) LHC8 with analysis cuts. Uncertainty bands for the NLO results
are obtained via � ± ��µ (Eq. (3.2)) whilst those for the nLO and nNLO results are obtained via
� ± ��env (Eq. (3.3)).

In Figure 5 we present our final results for our two standard variablesM(W+,W�, Jb, Jb̄)

and pT (W+, Jb). As expected the scale dependence is reduced going from LO to NLO.

There is also a very large overlap between the red d�NLO

full
and green dashed d�nLO

full
bands.

Only for the large pT tail, where the impact of the qg channel becomes visible, do the nLO

results start to di↵er from the NLO results. Finally, the bands of the nNLO results, d�nNLO

full
,

are considerably smaller than and mostly within the NLO bands. This suggests that the

perturbative expansion is under control and there are no unexpected large corrections in

going from NLO to NNLO.

The picture is very much the same for other observables. As an example we consider

the pseudorapidity of the reconstructed top, ⌘(W+, Jb), in the top left panel of Figure 6.

One would expect that 1PI is the appropriate kinematics for this observable, but as for

the transverse momentum of the top, PIM kinematics gives very similar results. This is

further evidence that the bulk of the corrections is independent of the precise details of the

kinematics. We can also study generic observables that do not necessarily have a direct

link to either the PIM or 1PI kinematics. For example, we show in Figure 6 the cosine of

the angle between the two charged leptons, cos ✓l+l� (top right panel) which is interesting

in the study of angular correlations, the invariant mass of the lepton-jet system, M(Jb, l+)

(lower left panel) which is a useful observable to measure the top mass, and the transverse

momentum of the b-jet, pT (Jb) (lower right panel). For all these observables the general

features are the same in that the nNLO bands are mostly within the NLO bands and that

the nLO approximation has a very large overlap with the full NLO band.

In the upper tail of the invariant mass of the lepton-jet system, M(Jb, l+) the nNLO

band is of the same size as the NLO band. This is as expected given that in the NWA

this region of phase space only receives corrections from (hard) real emission corrections

which are only included via our matching with the NLO. In any case, this region is not

reliably predicted since our results have been obtained with strictly on-shell top quarks

– 23 –
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is of particular relevance to our work, since it enters in the definition of the soft parameter z

z =
M2

ŝ
. (2.4)

The PIM threshold limit (or, more simply, the soft limit) mentioned in the introduction is

defined as the limit where z → 1, such that the unobserved final state X consists of soft

partons only. Note that, in contrast to the production threshold limit, where the partonic

center-of-mass energy approaches 2mt + mH , the PIM threshold limit does not impose

constraints on the velocity of massive particles in the final state. It is therefore well suited

for the study of differential cross sections.

The starting point for soft-gluon resummation is the factorization of the partonic cross

section in the soft limit. One then obtains the hadronic cross section for the collision

process involving nucleons N1 and N2 at center-of-mass energy
√
s by the usual convolution

integral with parton distribution functions (PDFs). The form of the factorization of QCD

corrections in the soft limit in the tt̄H case is identical to the tt̄ one, so we can simply quote

the result for the cross section in the soft limit by adapting that obtained for tt̄ production

using SCET methods in [15]. We write the result for the total cross section as

σ(s,mt,mH) =
1

2s

∫ 1

τmin

dτ

τ

∫ 1

τ

dz√
z

∑

ij

ffij
(τ
z
, µ
)

∫
dPStt̄HTr

[
Hij({pi}, µ)Sij

(
M(1− z)√

z
, {pi}, µ

)]
+O(1− z) , (2.5)

where

τ =
M2

s
, τmin =

(2mt +mH)2

s
. (2.6)

The content and notation of (2.5) is as follows. First, the object Tr[HijSij ] is proportional

to the spin and color averaged squared matrix element for tt̄H+Xs production through two

initial-state partons with flavors i and j, where Xs is an unobserved final state consisting

of any number of soft gluons. The (matrix valued) hard functions Hij are related to color

decomposed virtual corrections to the underlying 2 → 3 scattering process, and the (matrix

valued) soft functions Sij are related to color-decomposed real emission corrections in the

soft limit. To leading order in the soft limit, these soft real emission corrections receive

contributions from initial-state partons with flavor indices ij ∈ {qq̄, q̄q, gg}; throughout

this work we will refer to the channels involving quarks with the generic term “quark

annihilation” channel, and the one involving gluons as the “gluon fusion” channel. Channels

involving initial-state partons such as qg and q̄g are subleading in the soft limit, and shall be

referred to generically as the “qg” channel. While the hard functions are simple functions

of their arguments, the soft functions depend on singular (logarithmic) plus distributions

of the form

P ′
n(z) ≡

[
1

1− z
lnn
(
M2(1− z)2

µ2z

)]

+

, (2.7)

as well as the Dirac delta function δ(1− z).
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distributions up to a given power of αs in fixed-order perturbation theory. To be specific,

one can write

C(z, µ) = α2
s

[
C(0)(µ) +

αs

4π
C(1)(z, µ) +

(αs

4π

)2
C(2)(z, µ) +O

(
α3
s

)]
, (3.3)

where we have set µf = µr = µ, with µr the renormalization scale.5 The NNLO term

in (3.3) has the following structure

C(2) (z, µ) =
3∑

i=0

Di(µ)Pi(z) + C0(µ)δ(1− z) +R(z, µ) , (3.4)

where the Pn distributions are defined as

Pn(z) ≡
[
lnn(1− z)

1− z

]

+

. (3.5)

In (3.3), (3.4) we dropped all arguments with the exception of µ and z. The approximate

NNLO formulas for the partonic cross sections which we obtain in this work include the

complete set of functions Di, some of the scale dependent terms in the function C0 as well

as partial information on the function R(z) which is non singular in the z → 1 limit. In

particular, here we follow exactly the same procedure employed in [17, 46]. That is, the

terms included in R(z) arise from the transformation of logarithms in Laplace space back

to momentum space. A complete list of those transformations for PIM kinematics can be

found for example in eq. (33) of [46]. As pointed out in [17], the C0 term is ambiguous; in

fact, in order to completely determine the coefficients multiplying the delta functions in the

NNLO hard-scattering kernels, one would need to know the complete NNLO hard and soft

matrices. Only the scale-dependent part of C0 can be exactly determined, and one needs

to specify which contributions are included there. One contribution to C0 comes from the

conversion of powers of Laplace-space logarithms according to eq. (33) of [46]. Since these

formula are exact, they are not a source of ambiguity for C0 and those terms are included.

Further contributions to C0 arise from i) the product of the one-loop hard function with

the one-loop soft function in Laplace space, ii) the product of the tree-level hard function

with the two-loop soft function in Laplace space, and iii) the product of the two-loop

hard function with the tree-level soft function in Laplace space. The contribution in i)

is known exactly and therefore included while the term in ii) is unknown and dropped.

One can reconstruct the scale dependent part of the contribution iii). However, it was

observed in [15, 17, 46] that by including these extra µ-dependent terms one runs the risk

of artificially reducing the scale dependence, rendering it an ineffective means of estimating

theoretical uncertainties. Therefore, here again we follow [17, 46] and drop completely the

contributions of the two-loop hard function.

The information obtained from approximate NNLO formulas can be added to the

complete NLO calculation of a given observable in order to obtain what we refer to as

approximate NNLO predictions for a physical quantity. The matching of the approximate

5Note that it is possible to keep these two scales separate using the RG equations for αs.
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is of particular relevance to our work, since it enters in the definition of the soft parameter z

z =
M2

ŝ
. (2.4)

The PIM threshold limit (or, more simply, the soft limit) mentioned in the introduction is

defined as the limit where z → 1, such that the unobserved final state X consists of soft

partons only. Note that, in contrast to the production threshold limit, where the partonic

center-of-mass energy approaches 2mt + mH , the PIM threshold limit does not impose

constraints on the velocity of massive particles in the final state. It is therefore well suited

for the study of differential cross sections.

The starting point for soft-gluon resummation is the factorization of the partonic cross

section in the soft limit. One then obtains the hadronic cross section for the collision

process involving nucleons N1 and N2 at center-of-mass energy
√
s by the usual convolution

integral with parton distribution functions (PDFs). The form of the factorization of QCD

corrections in the soft limit in the tt̄H case is identical to the tt̄ one, so we can simply quote

the result for the cross section in the soft limit by adapting that obtained for tt̄ production

using SCET methods in [15]. We write the result for the total cross section as

σ(s,mt,mH) =
1

2s

∫ 1

τmin

dτ

τ

∫ 1

τ

dz√
z

∑

ij

ffij
(τ
z
, µ
)

∫
dPStt̄HTr

[
Hij({pi}, µ)Sij

(
M(1− z)√

z
, {pi}, µ

)]
+O(1− z) , (2.5)

where

τ =
M2

s
, τmin =

(2mt +mH)2

s
. (2.6)

The content and notation of (2.5) is as follows. First, the object Tr[HijSij ] is proportional

to the spin and color averaged squared matrix element for tt̄H+Xs production through two

initial-state partons with flavors i and j, where Xs is an unobserved final state consisting

of any number of soft gluons. The (matrix valued) hard functions Hij are related to color

decomposed virtual corrections to the underlying 2 → 3 scattering process, and the (matrix

valued) soft functions Sij are related to color-decomposed real emission corrections in the

soft limit. To leading order in the soft limit, these soft real emission corrections receive

contributions from initial-state partons with flavor indices ij ∈ {qq̄, q̄q, gg}; throughout

this work we will refer to the channels involving quarks with the generic term “quark

annihilation” channel, and the one involving gluons as the “gluon fusion” channel. Channels

involving initial-state partons such as qg and q̄g are subleading in the soft limit, and shall be

referred to generically as the “qg” channel. While the hard functions are simple functions

of their arguments, the soft functions depend on singular (logarithmic) plus distributions

of the form

P ′
n(z) ≡

[
1

1− z
lnn
(
M2(1− z)2

µ2z

)]

+

, (2.7)

as well as the Dirac delta function δ(1− z).
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Collier [10–14]. Results have been cross-checked by means of GoSam in combination

with Ninja [20, 30, 31].

3 Resummation in Mellin moment space

By combining the information encoded in the NLO hard function and soft function

with the solution of the renormalization group (RG) equations that they satisfy, it is

possible to resum logarithms of the ratio between the hard scale µh (which characterizes

the hard function) and the soft scale µs (which is characteristic of the soft emission)

up to NNLL accuracy. When this is done, the di↵erential hard-scattering kernels

Cij(z, µ) ⌘ Tr
h
Hij ({p}, µ)S

0
ij

⇣p
ŝ(1� z), {p}, µ

⌘i
, (3.1)

(where we dropped {p} from the list of arguments of Cij) can be expressed in resummed

form as

Cij (z, µf ) = exp
⇥
4a��(µs, µf )

⇤
Tr


Uij ({p}, µh, µs)Hij({p}, µh)

⇥U
†
ij
({p}, µh, µs) s̃ij

✓
ln

M2

µs

+ @⌘, {p}, µs

◆�
e�2�E⌘

� (2⌘)

z1/2�⌘

(1� z)1�2⌘
. (3.2)

The anomalous dimensions and evolution matrices appearing in (3.2), as well as the

Laplace transformed soft function s̃ are the same as in [8, 25]. If the hard function

and soft function are evaluated at their characteristic scales µh and µs, they are free

from large logarithmic corrections and can be safely evaluated at a given fixed order

in perturbation theory. Large logarithmic corrections depending on the ratio µh/µs

are resummed in the evolution matrices U. When the resummation is carried out in

momentum space, one should carefully and judiciously choose the value assigned to µh

and especially to µs.

While, in some instances, the logarithmic corrections depending on the ratio µh/µs

are not so large that they spoil the convergence of a fixed order expansion in ↵s, soft

gluon emission e↵ects still provide the bulk of the corrections at a given perturbative

order. In those cases, it makes sense to employ the resummed hard scattering kernels

in order to obtain approximate formulas which include all of the terms proportional to

plus distributions up to a given power of ↵s in fixed-order perturbation theory. This was

the approach followed for example in [8] for the study of tt̄H production. Also in this

work approximate NNLO formulas including all of the plus distributions proportional

to ↵2

s
are obtained and evaluated numerically. The results are matched to complete

NLO calculations obtained by means of MadGraph5_aMC@NLO (indicated by MG5 aMC in

– 6 –
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Figure 1. Factorization-scale dependence of the total tt̄H production cross section at the LHC
with

√
s = 13TeV. The NLO and NLO+NLL curves are obtained using MMHT 2014 NLO PDFs,

while the NLO+NNLL and nNLO curves are obtained using MMHT 2014 NNLO PDFs.

the ratio µf/M at the LHC with
√
s = 13TeV. One can observe that the NLO, NLO+NLL

and NLO+NNLL curves intersect each other in the vicinity of µf/M = 0.5, while the three

curves have a very different behavior for small values of µf . In addition, figure 1 shows

that beyond-NLO corrections are quite significant for µf/M ≫ 0.5, as the NLO result falls

rather steeply away to smaller values in that region, while the other three curves remain

reasonably stable.

Because of these considerations, in the following we employ two different default choices

for the factorization scale, namely µf,0 = M/2 and µf,0 = M . The choice µf,0 = M/2 may

be advantageous because the lower-order perturbative results are larger at lower µf , so

that the apparent convergence of the perturbative series is improved, but other than this

numerical fact there is no obvious reason to exclude the natural hard scale M as a default

choice so we study this as well. In both cases, the uncertainty associated to the choice of

a default value for the scale is estimated by varying each scale in the interval [µi,0/2, 2µi,0]

(i ∈ {s, f, h}). The scale uncertainty above the central value of an observable O (the total

cross section, or the value of a differential cross section in a given bin) is then evaluated

by combining in quadrature the quantities

∆O+
i = max{O (κi = 1/2) , O (κi = 1) , O (κi = 2)}− Ō , (3.5)

for i = f, h, s. In (3.5) κi = µi/µi,0 and Ō is the value of O evaluated by setting all scales

to their default values (κi = 1 for i = f, h, s). The scale uncertainty below the central

value can be obtained in the same way by combining in quadrature the quantities ∆O−
i ,

defined as in (3.5) but with “max” replaced by “min”. We use this procedure to obtain

the perturbative uncertainties given in all of the tables and figures that follow.

3.2 Total cross section

We begin our analysis by considering the total cross section for the associated production

of a top pair and a Higgs boson at the LHC operating at a center-of-mass energy of 13TeV.
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Factorization scale choice

J
H
E
P
0
2
(
2
0
1
7
)
1
2
6

order PDF order code σ [fb]

LO LO MG5 aMC 378.7+120.5
−85.2

app. NLO NLO in-house MC 473.3+0.0
−28.6

NLO no qg NLO MG5 aMC 482.1+10.9
−35.1

NLO NLO MG5 aMC 474.8+47.2
−51.9

NLO+NLL NLO in-house MC +MG5 aMC 480.1+57.7
−15.7

NLO+NNLL NNLO in-house MC +MG5 aMC 486.4+29.9
−24.5

nNLO (Mellin) NNLO in-house MC +MG5 aMC 497.9+18.5
−9.4

(NLO+NNLL)NNLOexp. NNLO in-house MC +MG5 aMC 482.7+10.7
−21.1

Table 2. Total cross section for tt̄H production at the LHC with
√
s = 13TeV and MMHT

2014 PDFs. The default value of the factorization scale is µf,0 = M/2, and the uncertainties are
estimated through scale variations of this (and the resummation scales µs and µh when applicable)
as explained in the text, see the discussion around (3.5).

The NLO approximation mentioned above is easily obtained by setting µs = µh = µf

in the NNLL resummation formula (2.10). For this reason, the matched NLO+NNLL cross

section is given by

σNLO+NNLL =σNLO +
[
σNNLL − σapprox. NLO

]
. (3.1)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NNLL resummation onto the NLO result. In order to study the convergence of resummed

perturbation theory, we will also calculate NLO+NLL results, defined as

σNLO+NLL =σNLO +
[
σNLL − σNLL expanded to NLO

]
. (3.2)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NLL resummation onto the NLO result. However, in contrast to the approximate NLO

result, the constant piece of the NLO expansion of the NLL resummation formula contains

explicit dependence on the matching scales µh and µs, in addition to that on µf . The

numerical dependence on these scales is formally of NNLL order (and is indeed canceled

through µs and µh dependence in the NLO hard and soft functions in the NNLL result),

and provides an additional handle on estimating the size of NNLL corrections using the

NLL resummation formula.

While we are mainly interested in NNLL resummation effects, it is also interesting

to study to what extent these all-orders corrections are approximated by their NNLO

truncation. To this end, we consider “approximate NNLO” calculations based on the

NNLL resummation formula (2.10). Approximate NNLO calculations include all powers of

lnN and part of the constant terms from a complete NNLO calculation, but neglect terms

which vanish as N → ∞. Since the constant terms are not fully determined by an NNLL
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Resummation Accuracy
The large logarithms count as          , it is always possible to rewrite a log of a ratio of two scales as

3. Soft-Collinear Effective Theory

d

d lnµ
Ai (ν, µ) = −γi (αs(µ)) . (3.166)

Since dαs/β = d lnµ, one can conclude from Eqs. (3.165) that the functions Ai are respon-
sible for the resummation of the single logarithms and the function S for the resummation
of the double logarithms. Explicit expressions for of these functions can be obtained by
inserting the perturbative expansion of the beta and γ functions into Eqs. (3.165). By pa-
rameterizing the expansions of the beta function and anomalous dimensions γi as follows

β (αs) = −2αs

[
β0
(αs

4π

)
+ β1

(αs

4π

)2
+O(α3

s)

]
,

γcusp(αs) = Γ0

(αs

4π

)
+ Γ1

(αs

4π

)2
+O(α3

s) ,

γV (αs) = γ0
(αs

4π

)
+ γ1

(αs

4π

)2
+O(α3

s) , (3.167)

and by inserting these expansions into the integrands of Eqs. (3.165), one obtains

AγV (ν, µ) =
γ0
2β0

ln
αs(µ)

αs(ν)
+O(αs) ,

Aγcusp (ν, µ) =
Γ0

2β0
ln
αs(µ)

αs(ν)
+O(αs) ,

S (ν, µ) =
Γ0

4β2
0

[
4π

αs(ν)

(
r − 1

r
− ln r

)
+

(
Γ1

Γ0
−
β1
β0

)
(1− r + ln r)

+
β1
2β0

ln2 r

]

+O(αs) , (3.168)

where r = αs(µ)/αs(ν). Note that S (ν, µ) contains a term proportional to 1/αs. By ex-
panding S (ν, µ) in terms of a single coupling αs(µ), one would find that this expansion
produces terms of the form αn

s (µ) ln
2n(µ/ν). Thus S (ν, µ) encodes the leading logarith-

mic terms. The way we organize the computation, which consists of eliminating large
logarithms in favor of coupling constants at different scales and then expanding in these
couplings, is called Renormalization Group Improved Perturbation Theory. The large log-
arithms count as 1/αs, as can be seen from Eq. (3.163) remembering that β(αs) ∼ α2

s.
We note that the fixed-order expression for the Wilson coefficient C̃V (Eq. (3.157)),

becomes meaningless when µ ≫ Q or µ ≪ Q, since in these cases the logarithms are
large and the product αs ln(Q2/µ2) ∼ 1 cannot be used as a good expansion parameter.
In contrast, if µh is taken to be approximately equal to the scale Q, the expression in
Eq. (3.161) is valid for any value of µ for which αs is perturbative.
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3. Soft-Collinear Effective Theory

(We remind the reader that dαs/d lnµ ∝ α2
s.) Eq. (3.158) is the RG equation satisfied

by the Wilson coefficient C̃V and the function γcusp is the Cusp Anomalous Dimension.
Currently the on-shell form factor is known up to three loops, therefore it is possible
to extract the anomalous dimensions γcusp and γV up to order α3

s. The RG equation in
Eq. (3.158) contains an explicit logarithmic dependence on the scale µ, this feature is a
characteristic of problems involving Sudakov double logarithms.
The solution of the RG equation in Eq. (3.158) sums the logarithmic terms to all orders

in αs, in fact one obtains the solution:

C̃V (Q
2, µ) = exp

{∫ µ

µh

[
CFγcusp(αs) ln

Q2

µ′2
+ γV (αs)

]
d lnµ′

}
C̃V (Q

2, µh) , (3.160)

where the logarithm appears in the exponential. It is convenient to write the solution as
the product of the Wilson coefficient calculated at a high scale µh and an evolution matrix
U which “runs down” the scale from µh to µ:

C̃V (Q
2, µ) = U (µh, µ) C̃V (Q

2, µh) . (3.161)

In Eq. (3.160) we can rewrite the integration over the scale as an integration over the
coupling by changing the integration variable from µ′ to αs(µ′) using

dαs(µ′)

d lnµ′
= β (αs(µ

′)) . (3.162)

One can also rewrite the logarithm in the exponent (3.160) by employing the relation

ln
ν

µ′
=

∫ αs(ν)

αs(µ′)

dα

β(α)
. (3.163)

Finally the evolution matrix can be written in the form

U (µh, µ) = exp
[
2CFS(µh, µ)− AγV (µh, µ)

](Q2

µ2
h

)−CFAγcusp (µh,µ)

, (3.164)

where the quantities S and Aγ are defined as

S (ν, µ) = −
∫ αs(µ)

αs(ν)

dα
γcusp(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
,

Aγi(ν, µ) = −
∫ αs(µ)

αs(ν)

dα
γi(α)

β(α)
; (3.165)

with i ∈ {V, cusp}. It is straightforward to check that Eq. (3.161) with Eq. (3.164) indeed
solves the RG equation Eq. (3.158) by observing that

d

d lnµ
S (ν, µ) = −γcusp (αs(µ))

∫ αs(µ)

αs(ν)

dα′

β(α′)
,
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Table 1: Different approximation schemes for the evaluation of the resummed
cross-section formulae

RG-impr. PT Log. approx. Accuracy ∼ αn
s Lk Γcusp γV , γφ CV , s̃DY

— LL k = 2n 1-loop tree-level tree-level

LO NLL 2n − 1 ≤ k ≤ 2n 2-loop 1-loop tree-level

NLO NNLL 2n − 3 ≤ k ≤ 2n 3-loop 2-loop 1-loop

NNLO NNNLL 2n − 5 ≤ k ≤ 2n 4-loop 3-loop 2-loop

×
z−η

(1 − z)1−2η
s̃DY

(
ln

M2(1 − z)2

µ2
sz

+ ∂η, µs

)
e−2γEη

Γ(2η)
, (50)

where η = 2aΓ(µs, µf), and we have defined the evolution function

U(M, µh, µs, µf) =

(
M2

µ2
h

)−2aΓ(µh,µs)

exp
[
4S(µh, µs) − 2aγV (µh, µs) + 4aγφ(µs, µf)

]
. (51)

As before, equation (50) is valid for η > 0 (µs > µf). For negative η (µf > µs), integrals of
lnn(1 − z)/(1 − z)1−2η with test functions f(z) must be defined using a subtraction at z = 1
and analytic continuation in η.

We emphasize that the result (50) is formally independent of the scales µh and µs, at which
the matching conditions for the hard and soft functions are evaluated. On the other hand,
the hard-scattering kernel C does depend on the factorization scale µf , at which the PDFs
are renormalized. In practice, a residual dependence on the matching scales arises when the
perturbative expansions of the matching coefficients and anomalous dimensions are truncated,
and this dependence can be used to estimate the remaining perturbative uncertainties. Setting
the three scales µh, µs, and µf equal to each other in the resummed expression (50), one can
readily reproduce the leading singular terms for z → 1 in the fixed-order perturbative QCD
expression for the hard-scattering kernel. In this way we have obtained the two-loop corrections
in (9).

The final expression (50) for the hard-scattering kernel can be evaluated at any desired
order in resummed perturbation theory. Table 1 shows what is required to obtain different
levels of accuracy. In this work we adopt the counting scheme of RG-improved perturbation
theory, where at LO one includes all O(1) terms, at NLO one includes all O(αs) terms, etc. The
large logarithm ln(µh/µs) is counted like O(1/αs). In the literature on threshold resummation
the alternative notation Nn+1LL is often used instead of NnLO. The leading logarithmic (LL)
approximation is listed only for completeness, as it misses some O(1) terms.

In the following section we will perform a detailed numerical analysis of the Drell-Yan cross
section and rapidity distribution. In most cases of phenomenological relevance the invariant
mass of the Drell-Yan pair will be small compared with the center-of-mass energy, i.e. τ =
M2/s ≪ 1. Nevertheless, it is interesting to briefly consider the limit τ → 1, in which the need

18

‣ the counting is organized in the exponent because the LL and NLL terms count as             
and          and cannot be expanded

‣ NmLL accuracy predicts the first 2m logarithms in the cross section

‣ It is not uncommon to include the Wilson coefficient and the soft function one order 
higher than in the table above (NmLL’, one L more in Laplace space)

Table 1: Different approximation schemes for the evaluation of the resummed cross-section
formulae.

RG-impr. PT Log. approx. Accuracy ∼ αn
sL

k γcusp γV , γφ CV , s̃DY

— LL k = 2n 1-loop tree-level tree-level

LO NLL 2n− 1 ≤ k ≤ 2n 2-loop 1-loop tree-level

NLO NNLL 2n− 3 ≤ k ≤ 2n 3-loop 2-loop 1-loop

NNLO NNNLL 2n− 5 ≤ k ≤ 2n 4-loop 3-loop 2-loop

problem by using the relation

ln

(
µh

µs

)
=

∫ αs(µh)

αs(µs)

dα

β(α)
(6.76)

and expanding in αs(µh) and αs(µs). This relation and the fact that β(α) ∼ α2 also makes

it obvious that one has to count ln(µh/µs) as ∼ 1/αs. Traditionally, one instead expands

in a single coupling constant, typically αs(µh), while treating αs(µh) ln(µh/µs) as an O(1)

quantity. One then counts how many towers of logarithms are resummed. NmLO accuracy

corresponds to Nm+1LL accuracy in the logarithmic counting. The logarithms are counted

after their exponentiation. Because of this, a result at NmLL accuracy actually predicts

the first 2m logarithms in the cross section, see Table 1. It is necessary to organize the

counting in the exponent because the LL and NLL terms count as O(1/αs) and O(1) in a

region where ln(µh/µs) ∼ 1/αs and cannot be expanded out. Since it is not immediately

clear whether NnLO accuracy refers to standard or RG-improved perturbation theory, it

is by now common to also denote the SCET results by their logarithmic accuracy. The

reader should however be aware that only if the computation in RG improved perturbation

theory is properly organized, all of the logarithms which can be predicted at this accuracy

will be fully included in the result, see [57] for a detailed discussion of this point.

An analysis of the Drell-Yan resummed cross section at NNNLL (matched to NNLO

fixed-order calculations) is carried out in [10] and we will now discuss some important

aspects of this analysis which are also relevant for other processes analyzed by using SCET.

Before doing so, let us note in passing that it is not uncommon to include CV , s̃DY one

order higher than what is indicated in the Table 1. In the SCET literature, this is referred

to as NmLL′ accuracy and predicts all logarithms up to 2n − 2m in the cross section at

the n-order in perturbation theory; one logarithm more than in the standard counting.

In traditional resummation literature NmLL accuracy can indicate primed or unprimed

counting, and one therefore needs to check on a case-by-case basis what is meant.

6.5 Dynamical Threshold Enhancement

We now discuss two closely related questions. The first one is whether the threshold

approximation on which our computation is based yields a good approximation to the full

cross section. The second one is how large the logarithms are which occur in the hadronic
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Distributions: nLO vs NLO
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Figure 4. Differential distributions at approximate NLO (blue band) compared to the NLO dis-
tributions without the quark-gluon channel contribution (red band). All settings are as in figure 3.

dashed black band to the NNLO expansion of the NLO+NNLL resummation. The dashed

black band and the blue band thus differ by NNLL resummation effects of order N3LO

and higher. Numerically, these effects contribute roughly at the 5% level, and as for the

total cross section the NNLO truncation of the NLO+NNLL resummation formula tends to

underestimate the uncertainty of the all-orders resummation. The difference between the

dashed red band and the dashed black band is due to constant NNLO corrections, which

are of N3LL order. Taking the envelope of the two NNLO approximations (i.e. the black

and red bands) gives a more realistic estimate of the scale uncertainty, which is generally

contained within the NLO+NNLL result (the exception is the high-pHT bins).
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Figure 4. Differential distributions at approximate NLO (blue band) compared to the NLO dis-
tributions without the quark-gluon channel contribution (red band). All settings are as in figure 3.

analysis but it compares approximate NLO calculations to NLO calculations without the

quark-gluon channel contribution. As expected approximate NLO distributions and NLO

distributions without the qg channel have the same shape and scale uncertainty bands of

similar size. These two figures show that, for this choice of the factorization scale at least,

soft emission corrections provide the bulk of the NLO corrections.

Figure 5 provides the main result of this section. This figure compares NLO calcula-

tions to the distributions evaluated to NLO+NNLL accuracy. Roughly, one can say that

the NLO+NNLL results fall in the upper part of the NLO scale uncertainty interval in

each bin. The central value of the NLO+NNLL calculations is slightly larger than the

central value of the NLO calculations in all bins shown. The scale uncertainty affecting
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tributions without the quark-gluon channel contribution (red band). All settings are as in figure 3.
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similar size. These two figures show that, for this choice of the factorization scale at least,

soft emission corrections provide the bulk of the NLO corrections.

Figure 5 provides the main result of this section. This figure compares NLO calcula-

tions to the distributions evaluated to NLO+NNLL accuracy. Roughly, one can say that

the NLO+NNLL results fall in the upper part of the NLO scale uncertainty interval in
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Distributions tTH: NNLL vs expansions
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Figure 7. Differential distributions ratios for µf,0 = M/2, where the uncertainties are generated
through scale variations.

to the complete NLO cross section in QCD. The numerical evaluation of observables at

NLO+NNLL was carried out by means of an in-house parton level Monte Carlo code devel-

oped for this work, based on the resummation formula derived in [16]. The resummation

procedure is however carried out in Mellin space, following the same approach employed

in [43, 44] for the calculation of the (boosted) top-quark pair production cross section and

in [19] for the calculation of the cross section for the associated production of a top-quark

pair and a W boson.

In the previous sections we presented predictions for the total cross section for this pro-

duction process at the LHC operating at a center-of-mass energy of 13TeV. In addition, we

showed results for four different differential distributions depending on the four-momenta

of the massive particles in the final state: the differential distributions in the invariant

mass of the tt̄H particles, in the invariant mass of the tt̄ pair, in the transverse momentum

of the Higgs boson, and in the transverse momentum of the top quark. We found that

the relative size of the NNLL corrections with respect to the NLO cross section is rather

sensitive to the choice of the factorization scale µf . In particular, for the two choices which

we analyzed in detail, namely µf,0 = M/2 and µf,0 = M , it was found that the NNLL cor-

rections enhance the total cross section and differential distributions in all bins considered.

The NNLL soft emission corrections expressed as a percentage of the NLO observables are

larger at µf,0 = M than they are at µf,0 = M/2. However, by comparing NLO+NNLL
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C.1 Soft limit

First, we present the g
m
i functions appearing in the evolution factor Eq. (34) for the threshold

resummed result.
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C.2 Boosted soft limit

Here we present the gi and g
D
i functions which appear in the evolution factors Eqs. (42) and

(43) for the boosted resummation formula. [Comment on gi functions.]
We decompose each of the g

D
i , which are functions of three arguments into two two-

argument functions g
D
i,dh and g

D
i,ds as follows

g
D
i (�dh, �ds, �f ) = g

D
i,dh(�dh, �f ) + g

D
i,ds(�ds, �f ) .

Using this decomposition, we present below the functions as used in this work.
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Figure 10: Comparison of Mellin and Momentum space invariant mass distributions at the
LHC with

p
s = 8 TeV.

(due to the choice of an N-dependent µs), which is absent in the momentum-space
implementation.]

We shall explore the numerical di↵erences between the two implementations at NLO+NNLLm

accuracy in the following section. In practice, we find that the numerical di↵erences between
the two approaches are due mainly to the structure of power corrections after inversion to
momentum space. Following [52] (see Eq. (39) of that work), the two formalisms can be
brought into much better agreement numerically (and in particular up to second order in the
soft limit analytically) by rescaling the momentum-space resummed hard-scattering kernels
by a factor of

p
z. For this reason, in the following section we also give some results from the

momentum-space formalism used in [12], after rescaling the soft function by this extra factor.
We refer to these below as NLO+NNLLmp

z. [[[This is a bit ugly, but I don’t see a better
way to write it at the moment. Will need to change tables below accordingly.]]]

C The RG exponents

In this Appendix we collect explicit expressions for the RG exponents appearing in Eqs. (34),
(42) and (43). In order to ease notation we introduce the following shorthand

Lh = ln
M

2

µ
2

h

, Ls = ln
M

2

N̄2µ2
s

, Ldh = ln
m

2

t

µ
2

dh

, Lds = ln
m

2

t

N̄2µ
2

ds

,

and remind the reader that,

�i =
↵s(µh)

2⇡
�0 ln

µh

µi
.
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