LHCb measurements on soft particle productions including heavy flavour heavy quark hadroproduction - from collider to astroparticle physics

Albert Frithjof Bursche¹, on behalf of the LHCb collaboration.

1st October 2019

・ロト ・ 日ト ・ モト ・ モト

¹Università degli Studi di Cagliari and INFN Cagliari, Italy

This talk is intended to show as many LHCb results as possible. Some are well modelled others not so much. I have to make a selection since there are currently 493 papers published by the LHCb collaboration. The full list is here. I recommend to have a look at this list. My selection is strongly biased by my personal interest.

What is needed to describe LHCb data?

- Some data are well described by collinear factorisation together with hadron fragmentation.
- Other data also need parton showers and resummation of the logarithms.
- The general picture it that the theory description is difficult for the processes that have more than two partons in the initial state or more than one parton fragmenting.

I try to briefly touch a variety of our results to highlight these.

LHCb experiment

$LHCb\ experiment$

$available \ data$

nneten collicione	beam on	gas	(fixed ta	rget)
proton contisions	beam	gas		s
Large samples at 7,8 and 13 TeV,	р	Ne	110	GeV
smaller samples at 0.9, 2.76 and 5 TeV	р	He	110	GeV
protons on teal tons	р	Ar	110	GeV
Indiats lev and lundiat 8.1 lev	Pb	Ar	69	GeV
<i>lead ions</i> Two complex from 2015 and 2018 of about 200 wb^{-1}	р	He	110	GeV
Two samples from 2015 and 2018 of about $200\mu\text{B}$	р	He	86.6	GeV
renon ions	р	Ne	110	GeV
rew nours of data taking with a low intensity beam.	Pb	Ne	69 (GeV

Upgraded gas cell scheduled for installation this fall.

Increase gas pressure by two orders of magnitude.

Albert	Bursche
--------	---------

perturbative QCD

J.Phys.Conf.Ser. 1271 (2019) no.1, 012008

Z boson production JHEP 09 (2016) 136

- Results at 7, 8 and 13 TeV and in p lead at 8.1 TeV
- PDFs already include the previous LHCb results
- Collinear factorisation is working perfectly for the fully inclusive quantities
- For a description of φ^{*} and boson p_T resummation of parton showers are needed

Z boson production

JHEP 09 (2016) 136

- Results at 7, 8 and 13 TeV and in p lead at 8.1 TeV
- PDFs already include the previous LHCb results
- Collinear factorisation is working perfectly for the fully inclusive quantities
- For a description of φ^{*} and boson p_T resummation of parton showers are needed

Z boson production

JHEP 09 (2016) 136

- Results at 7, 8 and 13 TeV and in p lead at 8.1 TeV
- PDFs already include the previous LHCb results
- Collinear factorisation is working perfectly for the fully inclusive quantities
- For a description of ϕ^* and boson $p_{\rm T}$ resummation of parton showers are needed

Z boson production

- Results at 7, 8 and 13 TeV and in p lead at 8.1 TeV
- PDFs already include the previous LHCb results
- Collinear factorisation is working perfectly for the fully inclusive quantities
- For a description of φ^{*} and boson p_T resummation of parton showers are needed

Z plus jet _{JHEP 01 (2014) 33}

- Jets are R = 0.5 anti- k_T jets
- p_{T} thresholds are $10\,\mathrm{GeV}$ and $20\,\mathrm{GeV}$
- Description decent of the y distribution
- The low boson $p_{\rm T}$ distribution is poorly described

1st October 2019

8 / 40

Z plus jet _{JHEP 01 (2014) 33}

- Jets are R = 0.5 anti- k_T jets
- p_{T} thresholds are $10\,\mathrm{GeV}$ and $20\,\mathrm{GeV}$
- Description decent of the y distribution
- The low boson p_{T} distribution is poorly described

W boson production

- Pythia reweighted to RESBOS
- Measurement based on muon properties

9 / 40

risultati misti

Albert Bursche

risultati misti

associated production of W^{\pm} bosons with heavy jets Phys. Rev. D92 (2015) 052001

p W- total	$\mu^{+},\ f\overline{s}=7\ TeV$	μ., fš=7TeV LH	• Use iden
	0.7 0.8 0.9		• Two light beau
$d \longrightarrow d$			• 20 0
		Re	sults
$_p$		$7\mathrm{TeV}$	$8 \mathrm{TeV}$
	$\frac{\sigma(Wb)}{\sigma(Wj)} \times 10^2$	$0.66 \pm 0.13 \pm 0.13$	$0.78 \pm 0.08 \pm 0.16$
	$\frac{\sigma(Wc)}{\sigma(Wj)} \times 10^2$	$5.80 \pm 0.44 \pm 0.75$	$5.62 \pm 0.28 \pm 0.73$
	$\mathcal{A}(Wb)$	$0.51 \pm 0.20 \pm 0.09$	$0.27 \pm 0.13 \pm 0.09$
\tilde{c}	$\mathcal{A}(Wc)$	$-0.09 \pm 0.08 \pm 0.04$	$-0.01 \pm 0.05 \pm 0.04$
	$\frac{\sigma(W^+j)}{\sigma(Zj)}$	$10.49 \pm 0.28 \pm 0.53$	$9.44 \pm 0.19 \pm 0.47$
<i>p</i>	$\frac{\sigma(W^-j)}{\sigma(W^-j)}$	$6.61 \pm 0.19 \pm 0.33$	$6.02 \pm 0.13 \pm 0.30$

 $\overline{\sigma(Zi)}$

Albert Bursche

Jse muon isolation to dentify W^{\pm} boson

Two BDTs to separate ight/heavy and peauty/charm jets

 $7 \,\mathrm{TeV}$

 $0.74_{-0.13}^{+0.17}$

 $5.02\substack{+0.80\\-0.69}$

 $0.27_{-0.03}^{+0.03}$

20 GeV jets, anti- k_T , R = 0.5MCFM (CT10) prediction

 $8 \,\mathrm{TeV}$

 $0.77_{-0.13}^{+0.18}$

 $5.31^{+0.87}_{-0.52}$

 $0.28^{+0.03}_{-0.03}$

	1 st	October 2019		10 / 40
.13 ± 0.30	5.79 ^{+0.21} -0.18	$5.52^{+0.13}_{-0.25}$	- 2	୬୯୯
$.19\pm0.47$	$9.90\substack{+0.28\\-0.24}$	$9.48\substack{+0.16 \\ -0.33}$		
$.05 \pm 0.04$	$-0.15^{+0.02}_{-0.04}$	$-0.14^{+0.02}_{-0.03}$	_	

forward top production Phys. Rev. Lett. 115 (2015) 112001, JHEP 08 (2018) 174

total cross section measurement (7 and 8 TeV)

$$\sigma_{t\bar{t}} = 239 \pm 53(stat) \pm 33(sys) \pm 24(theory)$$
fb
 $\sigma_{t\bar{t}} = 289 \pm 43(stat) \pm 40(sys) \pm 29(theory)$ fb

 $be\mu$ final state (13 TeV)

$$\sigma_{t\bar{t}} = 126 \pm 19(stat) \pm 16(sys) \pm 5(lumi)$$
fb

All measurements are between 2 and 4.5 in rapidity.

4 1 1 4 4 1

multi parton interactions

- Golden channel: same sign W production
- In LHCb: Same sign open charm, Double Quarkonia
- Often described as two independent scatterings

$$\sigma_{\mathcal{C}_1,\mathcal{C}_2}^{\mathrm{DPS}} = \alpha \frac{\sigma_{\mathcal{C}_1} \sigma_{\mathcal{C}_2}}{\sigma_{\mathrm{eff}}^{\mathrm{DPS}}}$$

- Violates energy momentum conservation
- Not applicable in the presence of initial state correlations

Albert Dursche	Al	bert	Bu	rsche
----------------	----	------	----	-------

multi parton interactions

associated production of Z bosons with D mesons $_{\rm JHEP~04~(2014)~91}$

Albert Bursche

risultati misti

1st October 2019 13 / 40

double charm

JHEP 06 (2012) 141, Addendum JHEP 03 (2014) 108

1st October 2019 14 / 40

 10^{4}

[nb]

э

$double \ charm$

JHEP 06 (2012) 141, Addendum JHEP 03 (2014) 108

open charm and bottomonium JHEP 07 (2016) 052

double J/ψ at 7 TeV and 13 TeV

15 / 40

exclusive production

- Projectiles stay intact
- There can be no net colour exchange
- In LHCb mainly measurements of exclusive vector meson production and production of two exclusive pairs

central exclusive production JHEP 10 (2018) 167

differential coherent cross section

differential coherent cross section

differential coherent cross section

non relativistic QCD

- pQCD calculation
- leading order
- leading twist
 - EPS09 PDF
 - LTA_S strong nuclear shadowing
 - LTA_W weak nuclear shadowing

V. Guzey et. al. Phys. Rev. C93 (2016) 055206

- Three parametrisations for the dipole nucleon cross section
 - IIM
 - IP-Sat
 - CGC
- Two wavefunctions
 - Boosted Gaussian
 - Gauss LC

Gonçalves et. al.

Phys. Rev. D 96, 094027 (2017)

- Three parametrisations for the dipole nucleon cross section
 - IIM
 - IP-Sat
 - CGC
- Two wavefunctions
 - Boosted Gaussian
 - Gauss LC

Gonçalves et. al. Phys. Rev. D 96, 094027 (2017)

- Three parametrisations for the dipole nucleon cross section
 - IIM
 - IP-Sat
 - CGC
- Two wavefunctions
 - Boosted Gaussian
 - Gauss LC

Gonçalves et. al. Phys. Rev. D 96, 094027 (2017)

- Three parametrisations for the dipole nucleon cross section
 - IIM
 - IP-Sat
 - CGC
- Two wavefunctions
 - Boosted Gaussian
 - Gauss LC

Gonçalves et. al.

Phys. Rev. D 96, 094027 (2017)

- Similar Model
- Boosted Gaussian wavefunction
- Glauber Gribov methodology
- Geometric Scaling
- J. Cepila et. al. Phys. Rev. C97 (2018) 024901

- IP-Sat with
- Gauss LC wavefunction
- Calculations with and without nuclear fluctuations
- H. Mäntysaari, B. Schenke Phys. Lett. B772 (2017) 832

double central exclusive production

J. Phys. G41 (2014) 115002

$$egin{array}{ll} \sigma_{J\!/\!\psi\,J\!/\!\psi} = 58 & \pm 10({\it stat}) \pm & 6({\it sys})\,{
m pb} \ \sigma_{J\!/\!\psi\,\psi(2S)} = 63 & {}^{+27}_{-18}({\it stat}) \pm 10({\it sys})\,{
m pb} \end{array}$$

• 7 TeV, 8 TeV data merged

Albert Bursche

1st October 2019 23 / 40

quarkonia

J/ψ is the main workhorse but many other states are studied, $\psi(2S)$, η_c , χ_{c1} , χ_{c2} , $\chi_{c1}(3872)$, Υ , χ_{b} ...

イロト 不得 トイヨト イヨト 二日

prompt inclusive J/ψ production cross section JHEP 10 (2015) 172

- protons
 - 2.76 TeV
 - 7 TeV
 - 8 TeV
 - 13 TeV
- proton lead
 - 5 TeV
 - 8.1 TeV
- fixed target
 - 86.6 GeV pHe • 110.4 GeV pAr

$J\!/\psi$ production polarisation

Eur. Phys. J. C73 (2013) 2631, Eur. Phys. J. C71 (2011) 1645

prompt η_c production Eur. Phys. J. C75 (2015) 311

prompt production of $\chi_{1c}(3872)$

Eur. Phys. J. C72 (2012) 1972

$other \ quarkonia \ measurements$

- Υ xsec (2.76 TeV, 5 TeV (pPb), 7, TeV, 8 TeV) polarisation (7 TeV, 8 TeV)
- $\psi(2S)$ xsec (7 TeV, 13 TeV) polarisation (7 TeV)
- $\chi_{c0}, \chi_{c1}, \chi_{c2}$ relative prompt rate and production fraction with respect to J/ψ (7 TeV)

28 / 40

• fraction of Υ from $\chi_b(1P)$

$$\sigma_{\chi_{c1}(3872)} \mathcal{B}_{\chi_{c1}(3872) \to J/\psi \pi^{+}\pi^{-}} = 5.4 \pm 1.3(\text{stat}) \pm 0.8(\text{sys}) \text{ nb}$$

Albert Bursche

soft particle production

- Collinear factorisation only tells about fully inclusive results
- A full description of an event has to include all particles produced

K A E K A E K

J/ψ production in jets Phys. Rev. Lett. 118.192001

- prompt production not described by Pythia 8.1
- $J\!/\psi$ from b are well described

$$z = rac{m{p}_{\mathrm{T}J\!/\psi}}{m{p}_{\mathrm{Tjet}}}$$

J/ψ production in jets Phys. Rev. Lett.118.192001

- prompt production not described by Pythia 8.1
- J/ψ from b are well described

$$z = rac{p_{\mathrm{T}J/\psi}}{p_{\mathrm{T}\mathrm{jet}}}$$

charged hadron production in Z-tagged jets

 $arxiv: 1904.08878 \ submitted \ to \ PRL$

- Measurement at 8 TeV
- Fair description from Pythia
- Three jet momentum bins

$$z = rac{oldsymbol{
ho}_{\mathrm{Thadron}}}{oldsymbol{
ho}_{\mathrm{Tjet}}}$$

12111

anti protons in proton Helium collisions

Phys. Rev. Lett. 121 (2018) 222001

- Some excitement in 2015 about AMS/Pamela data
- This measurement improved the description of the anti-protons during the propagation or CR
- New analysis shows the data are consistent with anti-protons from propagation only

10^{-3} PAMELA 2012 AMS-02 2015 10^{-4} $\Phi_{\bar{p}}/\Phi_p$ 10-5 Fiducial Uncertainty from: Cross-sections Propagation Primary slopes Solar modulation 10^{-6} 1 5 10 50 100 Kinetic energy T [GeV]

JCAP 1509 (2015) 023

see also

1st October 2019 32 / 40

2015

$anti\ protons\ in\ proton\ Helium\ collisions$

Phys. Rev. Lett. 121 (2018) 222001

- Some excitement in 2015 about AMS/Pamela data
- This measurement improved the description of the anti-protons during the propagation or CR
- New analysis shows the data are consistent with anti-protons from propagation only

JCAP 1509 (2015) 023 arXiv:1906.07119 (2019)

see also

1st October 2019 32 / 40

charged particle multiplicity Eur. Phys. J. C74 (2014) 2888

- Double differential measurement of charged particle multiplicity
- General picture is that most generators underestimate the particle multiplicity

• $p>2\,{
m GeV},\ p_{
m T}>200\,{
m MeV}$

open heavy flavour production

- In principle described by pQCD
- Can probe very low-x
- In LHCb: Measurements of open heavy flavour mesons, baryons and jets

Albert Bursch	e
---------------	---

$B^0, B^{\pm}, B^0_s and \Lambda^0_b production$

Phys. Lett. B774 (2017) 139, Chin. Phys. C 40 (2016) 011001, Phys. Rev. D99 052011 (2019)

- production asymmetry: B^0 , B^{\pm} , B^0_s and Λ^0_b (7 TeV, 8 TeV)
- production cross section: B^0 , Λ^0_b (7 TeV, 8 TeV) B^+ , B^0 , Λ^0_b (8.1 TeV pPb), B^+ 7 TeV, 13 TeV

Albert Bursche

1st October 2019 35 / 40

D^0 , D^{\pm} , D^* , D^+_{ς} and Λ^+_{ς} production JHEP 10 (2017) 090 , Phys. Rev. Lett. 122 (2019) 132002, JHEP 06 (2017) 147

- production cross section: D^0 5 TeV pPp; D^0 , D^+ , D_s^+ , D^* 5 TeV pp; D^0 , D^+ , D^* , D^+_s , Λ^+_c 7 TeV; D^0 , D^+ , D^+_s , D^* 13 TeV; D^0 86.6 GeV pHe and 110.4 GeV pAr
- production asymmetry: D^{\pm} 7 TeV D_{s}^{\pm} 7 TeV, 8 TeV

Albert Bursche

more open heavy flavour

Phys. Rev. Lett. 118 (2017) 182001, Phys. Rev. Lett. 114 (2015) 062004, Phys. Lett. B736 (2014) 154

- production fractions PAPER-2018-047 (Ξ_b^-)
- observation in prompt production $(\Omega_c(3000)^0, \Omega_c(3050)^0, \Omega_c(3066)^0, \Omega_c(3090)^0, \Omega_c(3119)^0)$
- observation in prompt production $(\Xi_b^{\prime-} \text{ and } \Xi_b^{*-})$
- observation in prompt production (Ω_b^-)

B_c^+ production

Phys. Rev. Lett. 109 (2012) 232001, Phys. Rev. Lett. 114 (2015) 132001

\boldsymbol{A}	lbe	rt	B	ur	sc	:he

1st October 2019 38 / 40

 Ξ_{cc}^{++} production Phys. Rev. Lett. 119 (2017) 112001

conclusion

- There are plenty of LHCb results available to improve our understanding of heavy flavour hadrons
- Description of Charmonium still unclear
- Improvements on the theory are needed to describe doubly heavy final states
- Very low-x is probed in exclusive production but not utilised in PDF fitting picture Wikipedia:Arcalino (CC BY-SA 3.0)

40 / 40