Composite models on the lattice — in and out of the conformal window —

Anna Hasenfratz

University of Colorado Boulder

MITP Workshop Aug 30 2019

Composite Higgs BSM models are chirally broken but not QCD-like:

- large scale separation "walking"
- large anomalous dimension
- light 0^{++} if dilaton-like Higgs

Strongly coupled (near-)conformal models could've these properties

Sketch of theory space

Red dots: systems investigated on the lattice (incomplete !) Why? We are looking for generic properties & understanding

Difficult, still controversial but there is hope ...

Anomalous dimensions:

New RG method is promising for any hadronic operator

Spectrum:

Most hadrons look similar to QCD ($m_
ho/m_{F_\pi}pprox 8$) except the

 0^{++} sigma that is light in every near-conformal model

SU(3) gauge, 8 fundamental flavors (LSD coll) : Dilaton-like Higgs

Mass-split model

Recall Wedn discussion of the 10 flavor model

- $\mbox{-}\xspace$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$
 - N_h flavors are massive, m_h varies \rightarrow decouple in the IR
 - N_{ℓ} (= 2 4) flavors are massless, m_{ℓ} = 0 \rightarrow chirally broken

In conformal systems Wilson RG considerations predict the mass dependence of all dimensional quantities (hyperscaling)

If the scale changes as $\mu \rightarrow \mu' = \mu/b, b > 1$ the couplings run as

 $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

Any 2-point correlation function at large b scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$\equiv b^{-2y_H} C_H(t/b;g^*,b^{y_m}\hat{m}_h,\hat{m}_\ell/\hat{m}_h,\mu)$$

since

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)$$

where $F_H(m_{\ell}/m_h)$ is a universal function

In conformal systems Wilson RG considerations predict the mass dependence of all dimensional quantities (hyperscaling)

If the scale changes as $\mu \rightarrow \mu' = \mu/b, b > 1$ the couplings run as

 $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

Any 2-point correlation function at large b scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$\equiv b^{-2y_H} C_H(t/b;g^*,b^{y_m}\hat{m}_h,\hat{m}_\ell/\hat{m}_h,\mu)$$

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)$$

since

where $F_H(m_{\ell}/m_h)$ is a universal function

In conformal systems Wilson RG considerations predict the mass dependence of all dimensional quantities (hyperscaling)

If the scale changes as $\mu \rightarrow \mu' = \mu/b, b > 1$ the couplings run as

 $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

Any 2-point correlation function at large b scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$\equiv b^{-2y_H} C_H(t/b;g^*,b^{y_m}\hat{m}_h,\hat{m}_\ell/\hat{m}_h,\mu)$$

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)$$

since

where $F_H(m_{\ell}/m_h)$ is a universal function

All physical masses scale as

 $aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)$

Dimensionless ratios are universal functions of m_{ℓ}/m_h

$$M_{H_1} / M_{H_2} = \Phi_H (m_{\ell} / m_h),$$

$$M_{H_1} / F_{\pi} = \tilde{\Phi}_H (m_{\ell} / m_h)$$

In the $m_{\ell}=0$ chiral limit dimensionless ratios are independent of m_h

If F_{π} is known, the rest of the spectrum is predicted - no free parameters

- True for light-light, heavy-light and heavy-heavy spectrum

- This is very different from QCD!

Spectrum of a mass-split model ($4\ell + 8h$)

Still a light 0⁺⁺

 $(4\ell + 8h)$

The 10-flavor model is much more predictive if conformal

A. Carosso, AH, E.Neal, PRL121,(2018)201601

Need the RG β function :

- Step scaling calculations are standard
- Wilsonian RG "blocking" is more promising

Use a continuous smoothing transformation to define blocked fields GF is just what we need!

A. Carosso, AH, E.Neal, PRL121,(2018)201601

Need the RG β function :

- Step scaling calculations are standard
- Wilsonian RG "blocking" is more promising

Use a continuous smoothing transformation to define blocked fields GF is just what we need!

A. Carosso, AH, E.Neal, PRL121,(2018)201601

Need the RG β function :

- Step scaling calculations are standard
- Wilsonian RG "blocking" is more promising

Use a continuous smoothing transformation to define blocked fields GF is just what we need!

A. Carosso, AH, E.Neal, PRL121,(2018)201601

Need the RG β function :

- Step scaling calculations are standard
- Wilsonian RG "blocking" is more promising

Use a continuous smoothing transformation to define blocked fields GF is just what we need!

Topology of RG flows

Topology of RG flows

Continuous β function

On a single ensemble (any bare coupling, infinite volume) calculate

$$\beta = \mu \frac{dg^2}{d\mu} = -2t \frac{dg^2}{dt}$$

 $t \propto \mu^2$ is the GF flow time and g^2 is the GF coupling

$$g_c^2(L) = \frac{128\pi^2}{3(N^2 - 1)} \frac{1}{C(c, L)} \langle t^2 E(t) \rangle$$

This should give (part) of the RG β function as $t \to \infty$

Equivalent to step scaling when $c = \sqrt{8t}/L = 0$

Continuous β function

On a single ensemble (any bare coupling, infinite volume) calculate

$$\beta = \mu \frac{dg^2}{d\mu} = -2t \frac{dg^2}{dt}$$

 $t \propto \mu^2$ is the GF flow time and g^2 is the GF coupling

$$g_c^2(L) = \frac{128\pi^2}{3(N^2 - 1)} \frac{1}{C(c, L)} \langle t^2 E(t) \rangle$$

This should give (part) of the RG β function as $t \to \infty$

Equivalent to step scaling when $c = \sqrt{8t}/L = 0$

Different bare couplings will overlap on RT!

Continuous ß function with 2-flavors (QCD)

color bands:

predictions of the β function from various single ensembles

Predictions of different bare coupling values overlap, as RG considerations suggests

SU(3) with N_f=12 : controversial and difficult

SU(3) with N_f=12 : step scaling fn. with DW

5-loop beta function: what's wrong with it?

- A) Not convergent, needs analytic continuation, it is really close to 4-loop
- B) It signals 2 FPs in the conformal regime and 2 complex FPs just below the conformal window (Gorbenko, Rychkov, Zan)
 - the extra FPs could explain all the scaling violations lattice studies observed
 - continuous beta fn can handle the new exponents

Compensate for wave function renormalization by an operator that does not have an anomalous dimension — vector Ratio

$$R(t,x_0) = \frac{\langle O_t(0)O_t(x_0)\rangle}{\langle O(0)O(x_0)\rangle} \Big(\frac{\langle A(0)A(x_0)\rangle}{\langle A_t(0)A_t(x_0)\rangle}\Big)^{n_0/n_A} = b^{\gamma_0} \propto t^{\gamma_0/2}$$

independent of $x_0 >> b$ and predicts γ

Anomalous dimensions

Ratio of flowed & unflowed hadronic correlators

Compensate for wave function renormalization by an operator that does not have an anomalous dimension — vector Ratio

$$R(t,x_0) = \frac{\langle O_t(0)O_t(x_0)\rangle}{\langle O(0)O(x_0)\rangle} \Big(\frac{\langle A(0)A(x_0)\rangle}{\langle A_t(0)A_t(x_0)\rangle}\Big)^{n_0/n_A} = b^{\gamma_0} \propto t^{\gamma_0/2}$$

independent of $x_0 >> b$ and predicts γ

N_f=2 flavors

QCD : chirally broken, no IRFP but anomalous dimension is still defined

$$\gamma_m(g^2) = \frac{d\log m}{d\log \mu} = \gamma_0 g^2 + \gamma_1 g^4 + \dots$$

and the coefficients are known to 4 loop.

Gradient flow defines a running coupling $g^2(t)$; Combine with $\gamma(t)$ to predict the (scale dependent) $\gamma(g^2)$

Simulations : 24³ x64, weak coupling so remains deconfined Easy to extend to other volumes, finite temperature

Scalar and Tensor

Daisy-chain together many bare coupling values to cover a wide range of renormalized couplings Agrees well with PT - first non-perturbative calculation for T

N_f=12, Pseudo scalar:

$$\gamma_m = 0.24(3), \quad t \rightarrow \infty$$

extrapolate to $t \to \infty$: $\gamma_m(\beta,t) = \gamma_0 + c_\beta t^{\alpha_1} + d_\beta t^{\alpha_2}$

error: systematic + statistical result consistent with other methods

N_f=12, Pseudo scalar:

Domain wall

$$\gamma_m = 0.31(3), \quad t \rightarrow \infty$$

(needs finite volume extrapolation)

extrapolate to $t \to \infty$:

$$\gamma_m(\beta,t) = \gamma_0 + c_\beta t^{\alpha_1} + d_\beta t^{\alpha_2}$$

N_f=12, Tensor:

$$\gamma_T = -0.11(1)$$
, $t \rightarrow \infty$

extrapolate to $t \to \infty$: $\gamma_m(\beta,t) = \gamma_0 + c_\beta t^{\alpha_1} + d_\beta t^{\alpha_2}$ Lattice calculations can predict non-perturbative properties of strongly coupled systems

- specific models
- generic properties

What is the most useful?