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Why (near-) conformal?

Composite Higgs BSM models are chirally broken but not QCD-like:  
– large scale separation “walking” 
– large anomalous dimension 
– light !  if dilaton-like Higgs 

     
Strongly coupled (near-)conformal models could’ve these properties 
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Sketch of theory space

S-D type calculations

Shaded: conformal 
Below : confining 
Above: IR free 
Dotted lines: 2-loop PT 

fermion representation: 
Fundamental 
Adjoint 
2Symmetric 
2Antisymm 
    

Nc

Nf

Red dots: systems investigated on the lattice (incomplete !)

Why? We are looking for generic properties & understanding



Questions for lattice studies:

Opening of conformal window:  
Difficult, still controversial but there is hope … 

Anomalous dimensions:  
New RG method is promising for any hadronic operator 

Spectrum:  
Most hadrons look similar to QCD (!  ) except the  
!  sigma that is light in every near-conformal model 

mρ/mFπ
≈ 8
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A few examples :   
                                  Spectrum



Spectrum of a walking system                  

                                SU(3) gauge, 8 fundamental flavors (LSD coll) : Dilaton-like Higgs



 

• Take Nf  above the conformal window 
• Split the masses: Nf = Nℓ + Nℎ  
         Nℎ flavors are massive,  mℎ varies → decouple in the IR 
         Nℓ ( = 2 - 4) flavors are massless,  mℓ = 0 → chirally broken 

 Mass-split model

UV

IR

IRFP

N𝓁 flavors

N𝓁 + Nh flavors

How predictive
is this model?

g2,mh ,mℓ

Recall Wedn discussion 
 of the 10 flavor model

m

β ∝ 6/g2
0



Hyperscaling in mass-split models

In conformal systems Wilson RG considerations predict the 
mass  dependence of all dimensional quantities (hyperscaling) 

If the scale changes as 
the couplings run as 
                                                                         (increases)  

Any 2-point correlation function at large b scales as 

since                                                            
                                                      

where                    is a universal function  

aMH ∝(m̂h)
1/ymFH (mℓ /mh)CH (t)∝e

−MHt

FH (mℓ /mh)

µ→µ′ = µ /b, b>1

m̂(µ)→ m̂(µ′)=bymm̂(µ)
g→ g!

CH (t;gi, m̂i, µ) → b−2yHCH (t /b;g!, b
ymm̂h, b

ymm̂ℓ, µ )

≡ b−2yHCH (t /b;g!, b
ymm̂h, m̂ℓ / m̂h,µ)
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Hyperscaling in mass-split models

All physical masses scale as 

Dimensionless ratios are universal functions of  mℓ/mh  

In the mℓ=0 chiral limit dimensionless ratios are independent of mh 

If Fπ is known, the rest of the spectrum is predicted - no free parameters 

- True for light-light, heavy-light and heavy-heavy spectrum 
- This is very different from QCD!

aMH ∝(m̂h)
1/ymFH (mℓ /mh)

MH1
/Fπ = !ΦH (mℓ /mh)

MH1
/MH2

=ΦH (mℓ /mh),



Spectrum of a mass-split model (! )4ℓ + 8h



Still a light !                                                  ( ! )0++ 4ℓ + 8h

The 10-flavor model is much more predictive if conformal



A few examples :   
                        Opening the conformal window



Use a continuous smoothing transformation to define blocked fields 
GF is just what we need!  
      → GF defines RG blocking with continuous scale change 
       

A. Carosso, AH, E.Neal, PRL121,(2018)201601

Opening of the conformal window

Need the RG !  function : 
- Step scaling calculations are standard 
- Wilsonian RG “blocking” is more promising

β
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Action parameter space

RT trajectory 

g1

g2

bare action

GPT

continuum physics

Once the flows reach the RT
they describe continuum physics:

Define renormalized coupling, 
β function, anomalous dimensions

Topology of RG flows



Action parameter space

RT trajectory 

g1

g2

bare action

GPT

continuum physics

Once the flows reach the RT
they describe continuum physics:

Define renormalized coupling, 
β function, anomalous dimensions

Topology of RG flows

IRFP

Conformal systems are
the same



Continuous !  functionβ
On a single ensemble (any bare coupling, infinite volume) 
calculate 

                    !  

!  is the GF flow time and !  is the GF coupling 

This should give (part) of the RG !  function as !  

Equivalent to step scaling when !

β = μ
dg2

dμ
= − 2t

dg2

dt

t ∝ μ2 g2

β t → ∞

c = 8t /L = 0

g2
c (L) =

128π2

3(N2 − 1)
1

C(c, L)
⟨t2E(t)⟩
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                    !  

!  is the GF flow time and !  is the GF coupling 

This should give (part) of the RG !  function as !  

Equivalent to step scaling when !

β = μ
dg2

dμ
= − 2t

dg2

dt

t ∝ μ2 g2

β t → ∞

c = 8t /L = 0

g2
c (L) =

128π2

3(N2 − 1)
1

C(c, L)
⟨t2E(t)⟩

Different bare couplings will overlap on RT!



Continuous β function with 2-flavors (QCD)

Start with the action               ; 

Predictions of different bare coupling values overlap,  
as RG considerations suggests

color bands:
predictions of the  β function
from various single ensembles

PRELIMINARY



SU(3) with Nf=12 : controversial and difficult

PRELIMINARY



SU(3) with Nf=12 : step scaling fn. with  DW



5-loop beta function: what’s wrong with it?

A)   Not convergent, needs analytic continuation, it is really close 
to 4-loop

B)   It signals 2 FPs in the conformal regime and 2 complex FPs  
   just below the conformal window  (Gorbenko, Rychkov, Zan)

- the extra FPs could explain all the scaling violations 
lattice studies observed

- continuous beta fn can handle the new exponents



A few examples :   
                       Anomalous dimensions



Anomalous dimensions

Compensate for wave function renormalization by an operator that does 
not have an anomalous dimension — vector  
Ratio 

R(t ,x0)=
〈Ot(0)Ot(x0)〉
〈O(0)O(x0)〉

( 〈A(0)A(x0)〉
〈At(0)At(x0)〉

)nO/nA = bγ O

independent of x0 >> b and predicts 𝛾

∝ tγO/2



Anomalous dimensions

〈Ot(0)Ot(x0)〉
〈O(0)O(x0)〉

= b2ΔO−2nOΔφ

Ratio of flowed & unflowed hadronic correlators

ΔO = dO +γ O
Δφ = dφ +η /2

x0≫b

Compensate for wave function renormalization by an operator that does 
not have an anomalous dimension — vector  
Ratio 

R(t ,x0)=
〈Ot(0)Ot(x0)〉
〈O(0)O(x0)〉

( 〈A(0)A(x0)〉
〈At(0)At(x0)〉

)nO/nA = bγ O

independent of x0 >> b and predicts 𝛾

∝ tγO/2



Nf=2 flavors

QCD : chirally broken, no IRFP
but anomalous dimension is still defined

γm(g2) =
dlogm
dlogμ

= γ0g2 + γ1g4 + …

and the coefficients are known to 4 loop.

Gradient flow defines a running coupling g2(t) ;
Combine with γ(t) to predict the (scale dependent) γ(g2)

Simulations : 243 x64, weak coupling so remains deconfined
Easy to extend to other volumes, finite temperature

g

g

bare 

I

G



Scalar and Tensor 

S

T

Daisy-chain together many bare coupling values to cover a wide range of 
renormalized couplings 
Agrees well with PT - first non-perturbative calculation for T

PRELIMINARY



Nf=12,  Pseudo scalar:

Thank them profusely and early on

,   t→∞

error: systematic + statistical 
result consistent with other methods

γ m =0.24(3)

γ m(β ,t)= γ 0 + cβt
α1 +dβt

α2

extrapolate to t → ∞ :

Staggered



 Nf=12, Pseudo scalar:

Thank them profusely and early on

,   t→∞

γ m(β ,t)= γ 0 + cβt
α1 +dβt

α2

extrapolate to t → ∞ :

Domain wall

γ m =0.31(3)
PRELIMINARY

(needs finite volume
 extrapolation)



Nf=12, Tensor:

,   t→∞

γ m(β ,t)= γ 0 + cβt
α1 +dβt

α2

extrapolate to t → ∞ :

Domain wall
PRELIMINARY

γ T = −0.11(1)



Lattice BSM

Lattice calculations can predict non-perturbative properties of
strongly coupled systems

• specific models
• generic properties

What is the most useful?  


