

Overview of UV completions of effective models explaining B-physics anomalies

Werner Porod

(Uni. Würzburg)

28 Aug. 2019

Overview

B-physics anomalies Flavor anomaly 1 Flavor anomaly 2

Models

Leptoquarks, overview $\begin{array}{l} SU(4)\times SU(2)_L\times U(1)_R\\ \mbox{421-model}, \mbox{ Glimpses of collider phenomenology}\\ \mbox{Composite Higgs models}\\ SU(10)_L\times SU(10)_R \ U(1)_{HB}/SU(10)_D \ U(1)_{HB} \end{array}$

Conclusions

Why extending the SM?

Most of the data can be explained (extremely well) by the SM, but

- Flavour
 - hierarchy of fermion masses, in particular
 - \blacktriangleright mixing pattern: small mixing for q versus large mixing for ν
- anomalies
 - $(g-2)_{\mu}$
 - b-physics:

$$R_{D^{(*)}} = \frac{\Gamma(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{(*)}l\bar{\nu})} \ (l=e,\mu) \qquad , \ R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)}\mu^+\mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)}e^+e^-)}$$

• • • •

- Cosmology
 - Dark matter
 - Baryon asymmetry of the Universe

Flavour as probe of new physics

Flavour physics is sensitive to virtual effects of heavy new physics.

Flavour-changing neutral current (FCNC) interactions probe scales up to 100 TeV and above, because in the Standard Model several suppression factors mount up:

- electroweak loop
- ▶ small CKM elements, e.g. $|V_{ts}| = 0.04$, $|V_{td}| = 0.01$
- Glashow-Iliopoulos-Maiani (GIM) suppression

$$\propto rac{m_c^2 - m_u^2}{m_W^2} \;,\; rac{m_s^2 - m_d^2}{m_W^2},$$

in K and D decays

helicity suppression

$$\propto \frac{m_b}{m_W}$$

in radiative and leptonic B decays.

- ▶ $B \rightarrow K l^+ l^-$
- $\blacktriangleright \ B \to K^* l^+ l^-$
- $\blacktriangleright \ B \to \phi l^+ l^-$

► $B \to K l^+ l^-$

UNIVERSITÄT WÜRZBURG

- $\blacktriangleright \ B \to K^* l^+ l^-$
- $\blacktriangleright \ B \to \phi l^+ l^-$

▶ $B \to K^* \mu^+ \mu^-$ permits the measurement of angular observables, defined in terms of angles within and between the $K^* \to K\pi$ and $\mu^+ \mu^-$ decay planes. One of those, called P'_5 deviates from the SM prediction by more than 3σ in the LHCb experiment.

► $B \to K l^+ l^-$

UNIVERSITÄT

WÜRZBUR

- $\blacktriangleright \ B \to K^* l^+ l^-$
- $\blacktriangleright \ B \to \phi l^+ l^-$

- ▶ $B \to K^* \mu^+ \mu^-$ permits the measurement of angular observables, defined in terms of angles within and between the $K^* \to K\pi$ and $\mu^+ \mu^-$ decay planes. One of those, called P'_5 deviates from the SM prediction by more than 3σ in the LHCb experiment.
- The LHCb data for ratios

$$\frac{BR(B\to K\mu^+\mu^-)}{BR(B\to Ke^+e^-)}$$
 and $\frac{BR(B\to K^*\mu^+\mu^-)}{BR(B\to K^*e^+e^-)}$

are too small by $2.3-2.6\sigma$ in some bins of the lepton invariant mass q^2

► $B \to K l^+ l^-$

UNIVERSITÄT

WÜRZBUR

- $\blacktriangleright \ B \to K^* l^+ l^-$
- $\blacktriangleright \ B \to \phi l^+ l^-$

- ▶ $B \to K^* \mu^+ \mu^-$ permits the measurement of angular observables, defined in terms of angles within and between the $K^* \to K\pi$ and $\mu^+ \mu^-$ decay planes. One of those, called P'_5 deviates from the SM prediction by more than 3σ in the LHCb experiment.
- The LHCb data for ratios

$$\frac{BR(B\to K\mu^+\mu^-)}{BR(B\to Ke^+e^-)}$$
 and $\frac{BR(B\to K^*\mu^+\mu^-)}{BR(B\to K^*e^+e^-)}$

are too small by $2.3-2.6\sigma$ in some bins of the lepton invariant mass q^2

► $BR(B \rightarrow \phi \mu^+ \mu^-)$ measurement about 2.2 σ below SM prediction

► $B \to K l^+ l^-$

UNIVERSITÄT

WÜRZBUR

- $\blacktriangleright \ B \to K^* l^+ l^-$
- ► $B \rightarrow \phi l^+ l^-$

- $B \to K^* \mu^+ \mu^-$ permits the measurement of angular observables, defined in terms of angles within and between the $K^* \to K\pi$ and $\mu^+ \mu^-$ decay planes. One of those, called P'_5 deviates from the SM prediction by more than 3σ in the LHCb experiment.
- The LHCb data for ratios

$$\frac{BR(B\to K\mu^+\mu^-)}{BR(B\to Ke^+e^-)}$$
 and $\frac{BR(B\to K^*\mu^+\mu^-)}{BR(B\to K^*e^+e^-)}$

are too small by $2.3-2.6\sigma$ in some bins of the lepton invariant mass q^2

- ► $BR(B \rightarrow \phi \mu^+ \mu^-)$ measurement about 2.2 σ below SM prediction
- G. D'Amico et al., arXiv:1704.05438: include updates Moriond 2019, R_K by LHCb and R_{K^*} by Belle, despite shift in direction of SM, conclusions are unchanged

Flavour universality

Effective Hamiltonian

$$H = -\frac{4G_F V_{tb} V_{ts}^*}{\sqrt{2}} \sum_{l=e,\mu,\tau} \left[C_9^{ll} O_9^{ll} + C_{10}^{ll} O_{10}^{ll} + C_9^{\prime ll} O_9^{\prime ll} + C_{10}^{\prime ll} O_{10}^{\prime ll} \right] + \dots$$

We need in particular

$$O_9^{ll} = rac{lpha}{4\pi} ar{s}_L \gamma^\mu b_L \, ar{l} \gamma_\mu l$$
 and $O_{10}^{ll} = rac{lpha}{4\pi} ar{s}_L \gamma^\mu b_L \, ar{l} \gamma_\mu \gamma_5 l$

Wilson coefficients C_9^{ll} and C_{10}^{ll} from the Z-penguin diagram and other diagrams

In the SM

$$C_{9,10}^{ll} \equiv C_{9,10}^{ee} = C_{9,10}^{\mu\mu} = C_{9,10}^{\tau\tau}$$

Flavour universality of the weak interaction!

(W. Porod, Uni. Würzburg)

Global fits to all relevant observables (including those which comply with the SM prediction) point consistently to new physics with

$$C_9^{\mu\mu,NP} \simeq -\frac{1}{4} C_9^{\mu\mu,SM}$$

and also potential NP contributions to $C_{10}^{\mu\mu}$ and/or $C_{9}^{\prime\mu\mu}$

B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, arXiv:1704.05340 update by F. Straub in Moriond 2019

- Methodology: In a global fit of the Wilson coefficients to all data one performs a likelihood test, comparing the likelihood of the best-fit point to that of the SM scenario.
- Result: For scenarios in which new physics contributions are assumed to be only in $C_{9,10}^{\mu\mu}$ (and possibly in the coefficients $C_{9,10}^{\mu\mu}$), the statistical significance of the new-physics hypothesis ranges between 5.0σ and 5.7σ . The sign and magnitude of the deviation is consistent in all observables, and observables insensitive to $C_{9,10}^{\mu\mu}$ are measured SM-like.

(B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, arXiv:1704.05340)

UNIVERSITÄT

WÜRZBUR

Explanation within the SM

- The predictions for $B_s \to \phi \mu^+ \mu^-$ and P_5' involve hadronic physics, one needs non-perturbative methods
 - 1. to constrain the contributions from (c,\bar{c}) resonances which convert to $\mu^+\mu^-$ via a virtual photon.
 - 2. to calculate the $B_s
 ightarrow \phi$ and $B_s
 ightarrow K^*$ form factors

 \Rightarrow underestimated theory uncertainties can fake new physics in C_9^{ll}

Decays governed by $b \rightarrow c l \bar{\nu}$:

 $\blacktriangleright \ B \to D \tau \bar{\nu}$

UNIVERSITÄT WÜRZBURG

- $\blacktriangleright \ B \to D^* \tau \bar{\nu}$
- $\blacktriangleright \ B \to J/\psi \, \tau \bar{\nu}$

$$R_D = \frac{BR(B \to D\tau\bar{\nu})}{BR(B \to D\mu\bar{\nu})} \ , \ R_{D^*} = \frac{BR(B \to D^*\tau\bar{\nu})}{BR(B \to D^*\mu\bar{\nu})} \ , \ R_{J/\psi} = \frac{BR(B \to J/\psi\,\tau\bar{\nu})}{BR(B \to J/\psi\,\mu\bar{\nu})} \ ,$$

are all measured to be larger than the SM prediction. The SM is very robust!

The R(D) and R(D*) puzzles

$$R(D) \equiv rac{\mathcal{B}(ar{B} o D^+ au^- ar{
u}_ au)}{\mathcal{B}(ar{B} o D^+ \ell^- ar{
u}_\ell)}$$

$$R(D^*) \equiv rac{\mathcal{B}(ar{B} o D^{*+} au^- ar{
u}_ au)}{\mathcal{B}(ar{B} o D^{*+} \ell^- ar{
u}_\ell)}$$

where $\ell = e, \mu$

	Experiment	Tag method	τ mode	R(D)	R(D*)
	Babar '12	Hadronic	v v	0.440 ± 0.058 ± 0.042	0.332 ± 0.024 ± 0.018
	Belle '15	Hadronic	v v	$0.375 \pm 0.064 \pm 0.026$	0.293 ± 0.038 ± 0.015
	LHCb '15	-	v v	-	$0.336 \pm 0.027 \pm 0.030$
	Belle '16	Semileptonic	v v	-	0.302 ± 0.030 ± 0.011
	Belle '17	Hadronic	πν,ρν	_	$0.270 \pm 0.035 \pm 0.027$
	LHCb '18	-	πππ	-	0.291 ± 0.019 ± 0.029
	Average	-	-	0.407 ± 0.039 ± 0.024	0.306 ± 0.013 ± 0.007
	SM			0.299 ± 0.003	0.258 ± 0.005
ľ	22/03/2019 Giacomo Caria		University	of Melbourne	

(W. Porod, Uni. Würzburg)

Conclusion / Preliminary R(D^(*)) averages

- Most precise measurement of R(D) and R(D*) to date
- First R(D) measurement performed with a semileptonic tag
- Results **compatible with SM** expectation within **1.2σ**
- R(D) R(D*) Belle average is now within 2o of the SM prediction
- R(D) R(D*) exp. world average tension with SM expectation decreases from 3.8σ to 3.1σ

22/03/2019

Giacomo Caria

Non-perturbative TeV-scale dynamics (non-renormalizable models)

Perturbative TeV-scale dynamics (renormalizable models)

AR

Non-perturbative TeV-scale dynamics (non-renormalizable models)

- Scalar LQ as PNG: Gripaios, '10; Gripaios, Nardecchia, Renner, '14
- Vector LQ (or W',Z') as technifermion resonances: Barbieri et al. '15; Buttazzo et al. '16; Barbieri et al. '17...
- W', Z' as Kaluza-Klein excitations (e.g. from warped extra dim.): Megias, Quiros, Salas '17; Megias, Panico, Pujolas, Quiros '17...

Perturbative TeV-scale dynamics (renormalizable models)

Non-perturbative TeV-scale dynamics (non-renormalizable models)

UNIVERSITÄT WÜRZBURG

- Scalar LQ as PNG: Gripaios, '10; Gripaios, Nardecchia, Renner, '14
- \blacktriangleright Vector LQ (or W'.Z') as technifermion resonances: Barbieri et al. '15; Buttazzo et al. '16; Barbieri et al. '17...
- \blacktriangleright W', Z' as Kaluza-Klein excitations (e.g. from warped extra dim.): Megias, Quiros, Salas '17; Megias, Panico, Pujolas, Quiros '17...

Perturbative TeV-scale dynamics (renormalizable models)

- Renormalizable models with scalar mediators (LQ, but also RPV-SUSY): Hiller, Schmaltz, '14; Becirevic et al. '16; Fajfer et al. '15-'17; Dorsner et al. '17: Crivellin, Müller, Ota '17: Altmannshofer, Dev, Soni, '17 ...
- Gauge models: Cline, Camalich 17; Calibbi, Crivellin, Li, 17; Assad, Fornal, Grinstein, '17; Di Luzio, Greljo, Nardecchia, '17...

not all leptoquarks can do the job: G. D'Amico et al., arXiv: 1704.05438

scalar leptoquarks

Lepto-Quark	coupling structure	potential explanation
$S_3 \sim (\bar{3}, 3, 1/3)$	$y QL S_3 + y' QQ S_3^{\dagger} + h.c.$	x
$R_2 \sim (3, 2, 7/6)$	$y UL R_2 + y' QE R_2^{\dagger} + \text{h.c.}$	x
$\tilde{R}_2 \sim (3, 2, 1/6)$	$y DL \tilde{R}_2 + h.c.$	
$\tilde{S}_1 \sim (\bar{3}, 1, 4/3)$	$y DE \tilde{S}_1 + y' UU \tilde{S}_1^{\dagger} + \text{h.c.}$	x

vector leptoquarks

Lepto-Quark	coupling structure	potential explanation
$U_3 \sim (3, 3, 2/3)$	$\bar{Q}\gamma_{\mu}L U_{3}^{\mu}$ + h.c.	x
$V_2 \sim (\bar{3}, 2, 5/6)$	$y \bar{D} \gamma_{\mu} L V_{2_{-}}^{\mu} + y' \bar{Q} \gamma_{\mu} E V_{2_{-}}^{\mu} + y'' \bar{Q} \gamma_{\mu} U V_{2}^{\dagger \mu} + \text{h.c.}$	
$U_1 \sim (\bar{3}, 1, 2/3)$	$yar{Q}\gamma_\mu LU_1^\mu+y_2ar{D}\gamma_\mu EU_1^\mu+{\sf h.c.}$	x

C. W. Murphy, arXiv:1512.06976: U_1 is very promising D. Buttazzo, A. Greljo, G. Isidori, D. Marzocca, arXiv:1706.07808: U_1 or $S_1 + S_3$ very promising

for details on leptoquark phenomenolay: I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik and N. Košnik, arXiv:1603.04993

(W. Porod, Uni. Würzburg)

 U_1 appears naturally in SU(4), but non-observation of $K_L \rightarrow e\mu$ implies $m_{U_1} \gtrsim 10^6$ GeV in the simplest models.

Some proposals on how to save this

- SU(4) × SU(3) × SU_L(2) × U(1), where SU(3)_C emerges from the diagonal part of SU(3) × SU(3)' ⊂ SU(4) + extra vector-like fermions
 L. Di Luzio, A. Greljo, and M. Nardecchia, arXiv:1708.08450;
 C. Cornella, J. Fuentes-Martin and G. Isidori, arXiv:1903.11517.
- ▶ $SU(4) \times SU_L(2) \times SU(2)_R \times U(1)_{PQ}$ + extra-like fermions + textures L. Calibbi, A. Crivellin, and T. Li, arXiv:1709.00692.
- 3-site SU(4) × SU_L(2) × SU(2)_R + extra-like fermions + link fields
 M. Bordone, C. Cornella, J. Fuentes-Martin, and G. Isidori, arXiv:1712.01368.
- SU(4) × SU_L(2) × SU(2)_R + Randall-Sundrum M. Blanke and A. Crivellin, arXiv:1801.07256.
- ▶ $SU(4)_L \times SU(4)_R \times SU_L(2) \times U(1)$ + extra-like fermions (automatic) B. Fornal, S. A. Gadam and B. Grinstein, arXiv:1812.01603

two problems

- contributions of the scalar sector to observables ignored
- usually a rather specific Ansatz for the flavor structure which is not RGE invariant

 $SU(4) \times SU(2)_L \times U(1)_R$ as an example[†]

possible origin*:

 $SO(10) \rightarrow SU(4) \times SU(2)_L \times U(1)_R$ via $45_H + 126_H$

Particle content: gauge bosons

	$SU(4) \times SU(2)_L \times U(1)_R$	$SU(3)_C \times SU(2)_L \times U(1)_Y$
$A_{\mu} = \begin{pmatrix} G_{\mu} & U_{1\mu} \\ U_{1,\mu}^* & B'_{\mu} \end{pmatrix}$	(15, 1, 0)	$\begin{array}{ccc} G_{\mu} & (8,1,0) \\ U_{1,\mu} & (3,1,2/3) \\ B'_{\mu} & (1,1,0) \end{array}$
W_{μ}	(1, 3, 0)	(1, 3, 0)
B_{μ}	(1, 1, 0)	(1,1,0)

Linear combination of B and B^\prime gives B_Y , the orthognal one a Z^\prime after symmetry breaking

 $m_{U_1} \simeq m_{Z'}$

[†] model based on A.D. Smirnov, hep-ph/9503239, P. Fileviez Perez, M.B. Wise arXiv:13076213
 * S. Bertolini, L. Di Luzio and M. Malinsky, arXiv:1202.0807 breaking without tachyons

Scalars

	G_{421}	G_{321}	G ₃₁
$\chi = \begin{pmatrix} \bar{S}_1^\dagger \\ \chi^0 \end{pmatrix}$	(4, 1, 1/2)	$egin{array}{ccc} ar{S}_1^\dagger & (3,1,2/3) \ \chi^0 & (1,1,0) \end{array}$	$(3, 1, 2/3) \ (1, 0)$
Н	(1, 2, 1/2)	(1, 2, 1/2)	$\begin{array}{ccc} H_1^+ & (1,1) \\ H_1^0 & (1,0) \end{array}$
$\Phi = \begin{pmatrix} G & R_2 \\ \tilde{R}_2^{\dagger} & H2 \end{pmatrix}$	(15, 2, 1/2)	$R_2 (3, 2, 7/6)$ $\tilde{R}_2^{\dagger} (\overline{3}, 2, -1/6)$ G (8, 2, 1/2) $H_2 (1, 2, 1/2)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $G_{421} = SU(4) \times SU(2)_L \times U(1)_R \ , \ G_{321} = SU(3)_C \times SU(2)_L \times U(1)_Y \ , \ G_{31} = SU(3)_C \times U(1)_{em}$

$$\langle \chi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{\chi} \end{pmatrix}, \qquad \langle H \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ v_{1} \end{bmatrix}, \ \langle \Phi \rangle = \frac{1}{2\sqrt{6}} \begin{pmatrix} \mathbb{H} & 0 \\ 0 & -3 \end{pmatrix} \otimes \begin{bmatrix} 0 \\ v_{2} \end{bmatrix},$$

Scalar potential

$$\begin{split} V &= m_{H}^{2} |H|^{2} + m_{\chi}^{2} |\chi|^{2} + m_{\Phi}^{2} \mathrm{Tr}(|\Phi|^{2}) + \lambda_{1} |H|^{2} |\chi|^{2} \\ &+ \lambda_{2} |H|^{2} \mathrm{Tr}(|\Phi|^{2}) + \lambda_{3} |\chi|^{2} \mathrm{Tr}(|\Phi|^{2}) + (\lambda_{4} H_{i}^{\dagger} \chi^{\dagger} \Phi^{i} \chi + \mathrm{h.c.}) \\ &+ \lambda_{5} H_{i}^{\dagger} \mathrm{Tr}(\Phi_{j}^{\dagger} \Phi^{i}) H^{j} + \lambda_{6} \chi^{\dagger} \Phi^{i} \Phi_{i}^{\dagger} \chi + \lambda_{7} |H|^{4} + \lambda_{8} |\chi|^{4} \\ &+ \lambda_{9} \mathrm{Tr}(|\Phi|^{4}) + \lambda_{10} (\mathrm{Tr}|\Phi|^{2})^{2} + \left(\lambda_{11} H_{i}^{\dagger} \operatorname{Tr}(\Phi^{i} \Phi^{j}) H_{j}^{\dagger} \\ &+ \lambda_{12} H_{i}^{\dagger} \operatorname{Tr}(\Phi^{i} \Phi^{j} \Phi_{j}^{\dagger}) + \lambda_{13} H_{i}^{\dagger} \operatorname{Tr}(\Phi^{i} \Phi_{j}^{\dagger} \Phi^{j}) + \mathrm{h.c.} \right) \\ &+ \lambda_{14} \chi^{\dagger} |\Phi|^{2} \chi + \lambda_{15} \mathrm{Tr}(\Phi_{i}^{\dagger} \Phi^{j} \Phi_{j}^{\dagger} \Phi^{i}) \\ &+ \lambda_{16} \mathrm{Tr}(\Phi_{i}^{\dagger} \Phi^{j}) \mathrm{Tr}(\Phi_{j}^{\dagger} \Phi^{i}) + \lambda_{17} \mathrm{Tr}(\Phi_{i}^{\dagger} \Phi_{j}^{\dagger}) \mathrm{Tr}(\Phi^{i} \Phi^{j}) \\ &+ \lambda_{18} \mathrm{Tr}(\Phi_{i}^{\dagger} \Phi_{j}^{\dagger} \Phi^{i} \Phi^{j}) + \lambda_{19} \mathrm{Tr}(\Phi_{i}^{\dagger} \Phi_{j}^{\dagger} \Phi^{j} \Phi^{i}) \end{split}$$

with $|H|^2 = H_i^{\dagger} H^i$, $|\chi|^2 = \chi^{\dagger} \chi$, $|\Phi|^2 = \Phi_i^{\dagger} \Phi^i$; $i, j \dots SU(2)$ indices. After SU(4) breaking, one has a sum-rule among the $SU(2)_L$ doubets

$$m_G^2 + 2 m_{H'}^2 \sin^2\beta = \frac{3}{2} (m_{R_2}^2 + m_{\tilde{R}_2}^2) \,,$$

After $SU(2)_L$ breaking

$$\tilde{R}_2^{2/3}, R_2^{2/3} \to R_{1,2}'$$

Fermions

	$SU(4) \times SU(2)_L \times U(1)_R$	$SU(3)_C \times SU(2)_L \times U(1)_Y$
- (Q)		Q = (3, 2, 1/6)
$F_L = \begin{pmatrix} z \\ L \end{pmatrix}$	(4, 2, 0)	I (1.0, 1.(0)
		L (1, 2, -1/2)
$f_u^c = (u^c \nu^c)$	$(\overline{4}, 1, -1/2)$	u^{c} (3,1,-2/3)
		ν^{c} (1, 1, 0)
$f^c - (d^c e^c)$	$(\overline{4} \ 1 \ 1/2)$	d^c (3, 1, 1/3)
$J_d = (a c)$	(1,1,1/2)	e^c (1,1,1)
N	(1, 1, 0)	(1, 1, 0)

 $-\mathcal{L}_Y = f_u^c Y_1 H F_L + f_u^c Y_2 \Phi F_L + f_d^c Y_3 H^{\dagger} F_L + f_d^c Y_4 \Phi^{\dagger} F_L + f_u^c Y_5 \chi N + \frac{1}{2} N \mu N + \text{h.c.}$ Mass matrices:

 $U_{u}^{\dagger}\hat{M}_{u}V_{u} = \frac{v_{1}}{\sqrt{2}}Y_{1} + \frac{v_{2}}{2\sqrt{6}}Y_{2}, \quad U_{d}^{\dagger}\hat{M}_{d}V_{d} = \frac{v_{1}}{\sqrt{2}}Y_{3} + \frac{v_{2}}{2\sqrt{6}}Y_{4}$ $U_{\nu}^{\dagger}\hat{M}_{\nu}U_{\nu}^{*} = \begin{pmatrix} 0 & \frac{v_{1}}{\sqrt{2}}Y_{1} - \frac{3v_{2}}{2\sqrt{6}}Y_{2} & 0\\ \frac{v_{1}}{\sqrt{2}}Y_{1}^{T} - \frac{3v_{2}}{2\sqrt{6}}Y_{2}^{T} & 0 & \frac{v_{\chi}}{\sqrt{2}}Y_{5}\\ 0 & \frac{v_{\chi}}{\sqrt{2}}Y_{5}^{T} & \mu \end{pmatrix}, \qquad \hat{M}_{e} = \frac{v_{1}}{\sqrt{2}}Y_{3} - \frac{3v_{2}}{2\sqrt{6}}Y_{4}$

Numerical input

In the following, if not stated otherwise

 $V_u = V_d(\phi_{12},\phi_{13},\phi_{23}) V_{CKM}^\dagger$, $U_d = V_d^*$, $U_u = V_u^*$

Numerical input values		
Y_2 diag $(10^{-8}, 10^{-7}, 10^{-5})$		
Y_5	$diag(10^{-2}, 5\cdot 10^{-2}, 10^{-1})$	
$\phi_{12}, \phi_{13}, \phi_{23}$	$\pi/2, 0, \pi/4$	
v_{χ}	$4\cdot 10^6~{ m GeV}$	
$m_A, m_{R'_1}$	$2\cdot 10^5~{\rm GeV}$, 900 GeV	
aneta	50	

 μ calculated from known neutrino masses and U_{PMNS}

 U_1 contribution to $K_L \rightarrow e\mu \Rightarrow v_{\chi} > 10^6$

 \Rightarrow tiny mixing between R_1' and $R_2' \Rightarrow$ cannot explain $R_{D,D^*,J/\psi}$

Example ontributions of R' to different processes

Example ontributions of R' to different processes

Explanation of R_K and R_{K^*}

other parameters as in table shown before, in particular

 $(\phi_{12}, \phi_{13}, \phi_{23}) = (\pi/2, 0, \pi/4)$

T. Faber, M. Hudec, M. Malinský, P. Meinzinger, W.P. and F. Staub, arXiv:1808.05511

(W. Porod,	Uni.	Würzburg)
------------	------	-----------

Explanation of R_K and R_{K^*}

other parameters as in table shown before, in particular

 $(\phi_{12}, \phi_{13}, \phi_{23}) = (\pi/2, 0, \pi/4)$

T. Faber, M. Hudec, M. Malinský, P. Meinzinger, W.P. and F. Staub, arXiv:1808.05511 🔹 👓 🕫

(W. Porod, Uni. Würzburg)

UV completions ...

Constraints: $\mu \rightarrow e\gamma$

other parameters as in table shown before, in particular

 $m_{R_1'} = 900 \; {\rm GeV} \;\;,\; Y_2 = {\rm diag}(10^{-8}, 10^{-7}, 10^{-5}) \to sY_2$

T. Faber, M. Hudec, M. Malinský, P. Meinzinger, W.P. and F. Staub, arXiv:1808.05511

(W. Porod, Uni. Würzburg)

UNIVERSITÄT WÜRZBURG

Models $SU(4) \times SU(2)_L \times U(1)_R$

Constraints: $\mu \to e\gamma$, $\mu \to 3e$

scan over $\phi_{12},\phi_{12},\phi_{12}$, other parameters as in table before

T. Faber, M. Hudec, M. Malinský, P. Meinzinger, W.P. and F. Staub, arXiv:1808.05511

Additional constraints

Once BR($\mu \to e\gamma$)and BR($\mu \to 3e$) are consistent with data, then the usual suspects do not give anything further

- $\blacktriangleright \ \tau \to l\gamma, \tau \to 3l$
- ΔM_{B_d} , ΔM_{B_s}
- ► $B_{s,d} \rightarrow \mu^+ \mu^-$
- $\blacktriangleright \ B \to X_s \nu \bar{\nu}$

However

• BR($B \rightarrow X_s e \mu$) close to experimental limit

Scalar contributions to $K_L \rightarrow e\mu$

scan over $\phi_{12},\phi_{12},\phi_{12}$, other parameters as in table before

T. Faber, M. Hudec, M. Malinský, P. Meinzinger, W.P. and F. Staub, arXiv:1808.05511

(W. Porod, Uni. Würzburg)

End of the story?

Of course not, because

• giving up the restriction $U_d = V_d^*$ und $U_u = V_u^*$: tiny regions in parameter space with an explanation of $R_K^{(*)}$ consistent with K_L decays

T. Faber et al.,arXiv:1812.07592

 \blacktriangleright additional vector-like $SU(2)_L$ leptons gives consistent explanation for $R_K^{(\ast)}$ while satisfying also the K_L decays, need at least two additional generations

Scalar gluon production

pp -> G⁰ bb/tt, G[±] bt, G[±] bb, G⁺ ttat √s=100 TeV

T. Faber et al.,arXiv:1812.07592

Scalar gluon decays

scan over $\phi_{12}, \phi_{12}, \phi_{12}$, other parameters as in table before in the region where $R_K^{(*)}$ can be explained + consistency with other data

$$\begin{split} BR(G^0\to b\bar{b}) &\simeq 0.7 - 0.75\,,\\ BR(G^0\to b\bar{d} + d\bar{b}) + BR(G^0\to b\bar{s} + s\bar{b}) &\simeq 0.15\,,\\ BR(G^+\to t\bar{b}) &\simeq 0.65 - 0.73\,. \end{split}$$

Leptoquark decays

scan over $\phi_{12}, \phi_{12}, \phi_{12}$, other parameters as in table before in the region where $R_K^{(*)}$ can be explained + consistency with other data

$$\begin{split} & \mathsf{BR}(R_2^{+2/3} \to e^+ b) \simeq \mathsf{BR}(R_2^{+2/3} \to \tau^+ b) \simeq \frac{m_b^2}{2m_\tau^2} \left(\mathsf{BR}(R_2^{+2/3} \to \tau^+ d) + \mathsf{BR}(R_2^{+2/3} \to \tau^+ s) \right) \\ & \mathsf{BR}(R_2^{+5/3} \to t e^+) \simeq \mathsf{BR}(R_2^{+5/3} \to t \tau^+) \simeq \frac{m_b^2}{2m_\tau^2} \left(\mathsf{BR}(R_2^{+5/3} \to u \tau^+) + \mathsf{BR}(R_2^{+5/3} \to c \tau^+) \right) \end{split}$$

Some examples

- $S_1\left(ar{3},1,1/3
 ight)$ and/or $S_3\left(ar{3},3,1/3
 ight)$
 - ▶ B. Gripaios, arXiv:0910.1789: choose global symmetry such that $SU(4) \in G$ and $SU(3)_C \times U(1)_{B-L} \in H \Rightarrow G/H$ has leptoquarks as PNGB SO(11)/SO(10) has just H and S_1 as PNGB
 - ▶ $SU(10)_L \times SU(10)_R \times U(1)_{HB}/SU(10)_D \times U(1)_{HB}$, D. Marzocca, arXiv:1803.10972: has S_1 , S_3 , R_2 and $T_2(\bar{3}, 2, 5/6)$ among the PNGB proton stability: via $F_{\pm} = 3B \pm L \Rightarrow$ interesting collider phenomenology
 - SO(13)/SO(6) × SU(2)³, L. Da Rold and F. Lamagna, arXiv:1812.08678: has S₃, R₂ and R
 ₂ among the PNGB proton stability: need a Z₂ and set certain Yukawa couplings to zero by hand

 U_1

- $SU(4) \times SO(5) \times U(1)_X/SU(4) \times SO(4) \times U(1)_X$ R. Barbieri, C. W. Murphy and F. Senia, arXiv:1611.04930; R. Barbieri and A. Tesi, arXiv:1712.06844: approximate $U(2)^5$ symmetry for first two SM generations, additional Dirac-fermions, which partly mix SM-fields
- ▶ $SU(N_F)_L \times SU(N_F)_R \times U(1)_V/SU(N_F)_V \times U(1)_V$ D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, arXiv:1604.03940: include also the U_3 , approximate $U(2)^5$ symmetry for first two SM generations

PNGB leptoquarks do not couple to a pair of SM-fermions

UNIVERSITÄT WÜRZBURG

Present and future expected exclusion limits at 95% CL; vertical lines from pair-production modes; purple from single production in the $b\tau$ channel; gray from the off-shell $\tau\tau$ tail. D. Marzocca, arXiv: 1803, 10972

(W. Porod, Uni. Würzburg)

Scalar gluons

 $\tilde{\pi}_1 \rightarrow gg$, $\tilde{\pi}_3 \rightarrow \gamma V$ ($V = Z, W^{\pm}$)

D. Marzocca, arXiv:1803.10972

Models $SU(10)_L \times SU(10)_R U(1)_{HB} / SU(10)_D U(1)_{HB}$

$$r_{\frac{2}{3}}, r_{-\frac{1}{3}}, t_{-\frac{1}{3}}, t_{-\frac{4}{3}}$$

 F_{\pm} symmetry forbids couplings to two fermions

UNIVERSITÄT WÜRZBURG

 $ilde{R}_2$, T_2

$$\Rightarrow \mathcal{L}_{LQ}^{\text{eff}} \supset \frac{ig_3}{\sqrt{2}f} \sin \frac{\theta}{2} \, \bar{t}_L^c \nu_\tau r_{\frac{1}{3}}^\dagger \tilde{\eta}_R - \frac{i(g_1 - g_3)}{2\sqrt{2}f} \sin \frac{\theta}{2} \, \bar{b}_L^c \nu_\tau r_{-\frac{1}{3}}^\dagger \tilde{\eta}_R + h.c. \\ + \frac{ig_3}{\sqrt{2}f} \sin \frac{\theta}{2} \, \bar{b}_L^c \tau_L t_{-\frac{4}{3}}^\dagger \tilde{\eta}_T + \frac{i(g_1 + g_3)}{2\sqrt{2}f} \sin \frac{\theta}{2} \, \bar{b}_L^c \nu_\tau t_{-\frac{1}{3}}^\dagger \tilde{\eta}_T + h.c. \\ \tilde{\eta}_{R,T} = \eta_1 \pm \frac{1}{\sqrt{2}} \eta_2 \mp \frac{1}{\sqrt{30}} \eta_3$$

 η_i being gauge singlet PNGB decaying into gg , $\gamma\gamma$, γZ , ZZ , W^+W^-

(W. Porod, Uni. Würzburg)

Conclusions

► If

$$R_{D^{(*)}} = \frac{\Gamma(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{(*)}l\bar{\nu})} \ (l = e, \mu) \qquad , \ R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)}\mu^+\mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)}e^+e^-)}$$

get confirmed, then clear sign of new physics

- Could be explained via leptoquarks, in particular the vector U_1 $(\bar{3}, 1, 2/3)$ or S_1 $(\bar{3}, 1, 1/3) + S_3$ $(\bar{3}, 3, 1/3)$
- U_1 part of SU(4) but constrained by K_L decays
- Mechanisms to get a smaller mass
 - extended gauge groups such as $SU(4) \times SU(3) \times SU(2) \times U(1)$
 - extra vector-like fermions
 - combination with Randall-Sundrum
 - strong dynamics
- $S_1(\bar{3},1,1/3)$ + $S_3(\bar{3},3,1/3)$ as PNGB
- in all cases: significant constraints from low energy data from different sectors and also from LHC searches