Glauber Operators In SCET Iain Stewart -1-
based on 1601.04695 Factor workshop, Aug, 2019
Goels: • EFT description of IR. E EFT fields: <3 QCD IR Manifest p.c at start, 2 <1 homogeneous in 2
 Operator description of G, symmetry & universality Appl. Hard & Food Sattering in some framework, Mis style RGEs for BFKL Calculate / Parameterize Fact new approach to demostrate Fact study Glauber effects at subleading power calculate its terms in amplitudes (easy)
Outline: . Intro o dG construction & properties · Glouber Loops · Application to Rege & BFKL logs · Factor & Factor
<u>SCET vs. CSS</u> • CSS keeps SEG together, expand later (important for ports of Fact Pf, deform contour out of G region presence of <u>ktr</u> -tr ³ . CSS keeps SEG together, expand later (important for ports of Fact Pf, presence of <u>ktr</u> -tr ³ . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports of Fact Pf, . CSS keeps SEG together, expand later (important for ports) (important for por
• SCET expands at stort, needs additional explicitly calculate G terms explicitly, Soft graphs have Glauber subtractions later decide if they can be absorbed in 5 (then ignoring G-subtractions)
0 non-gero where as both zero # 0 Glauber in: C55 In in via contour deformation SCET SCET

-.

SCET
$$\underline{x}$$
 ks ~ λ ($\lambda v: \lambda^{2}$ determined by observables one studies) ----
hord $f_{\mu}^{2}v a^{2}$ offedde int out. C from mething ag. full
approx to formulate Form Roles, int. over all monator \underline{w} with
Seling ((r^{*}, r^{*}, P^{*}))
Clear ($\overline{x}, 1, \lambda$) $\overline{y}_{n} \sim \lambda$, $A_{n} = (\lambda^{*}, 1, \lambda)$
Since ($\overline{x}, 0, 1, \lambda$) $\overline{y}_{n} \sim \lambda^{2}$, $A_{n} \sim \lambda^{2}, 1, \lambda$)
Since ($\overline{x}, 0, 1, \lambda$) $\overline{y}_{n} \sim \lambda^{2}$, $A_{n} \sim \lambda^{2}, 1, \lambda$)
Since ($\overline{x}, 0, 1, \lambda$) $\overline{y}_{n} \sim \lambda^{2}, A_{n} \sim \lambda^{2}$
offerwal G: $a(\lambda^{*}, \lambda^{*}, \lambda)$ $\overline{y}_{n} \sim \lambda^{2}$, $A_{n} \sim \lambda^{2}$
offerwal G: $a(\lambda^{*}, \lambda^{*}, \lambda)$ $\overline{y}_{n} \sim \lambda^{2}$, $A_{n} \sim \lambda^{2}$
of $\overline{x} \sim no$ sule.
 $u_{n}^{(e)}$ $= \overline{z} \times x^{(e)} + \overline{x}^{(e)} + \overline{x}^{(e)}$ when $\overline{z} \sim 10^{4}$ for $\overline{z} \sim 10^{4}$

mediates Forward Scattering S≫ -t
 Forward: n·l₂=n·l₃, n·l₁=n·lų

Match from QCO, integrating Hard & Glauber out:

$$J_{G}^{(n)} = \sum_{i,j=2,j}^{i} \sum_{l=2}^{i} O_{s}^{jnB} + \sum_{n,n'}^{i} \sum_{i,j=2,j}^{n} O_{s}^{jc} + \sum_{n,n'}^{i} O_{s}^{jc} + \sum_{n,n'}^{i} O_{s}^{jc} + \sum_{n,j}^{i} O_{s}^{jc} + \sum_{n,j}^{i} O_{s}^{jc} + \sum_{n,n'}^{i} O_{s}^{jc} + \sum_{n,j}^{i} O_{s}^{jc} + \sum_{n'}^{i} O_{s}^{jc} + \sum_{n'}^{i}$$

$$\begin{aligned} \vec{Side board} \\ \vec{Z}_{G}^{(0)} &= \underbrace{\sum}_{i,j=g_{1j}} \underbrace{O_{n}^{iB}}_{P_{L}^{i}} \underbrace{O_{s}^{jnB}}_{S} + \underbrace{\sum}_{n_{1n}'} \underbrace{O_{n}^{iB}}_{i,j=g_{1j}} \underbrace{O_{s}^{iC}}_{P_{L}^{i}} \underbrace{O_{s}^{iC}}_{P_{L}^{i}} \underbrace{O_{s}^{iC}}_{P_{L}^{i}} \underbrace{O_{s}^{iC}}_{P_{L}^{i}} \underbrace{O_{s}^{iC}}_{P_{L}^{iC}} \underbrace{O_{s}^{iC}} \underbrace{O_{s}^{iC}}_{P_{L}^{iC}} \underbrace{O_{s}^{iC}}_{P_{L}^{iC}} \underbrace{O_{s}^{iC}}_{P_{L}^{iC}} \underbrace{O_{s}^{iC}}_{P_{L}^{iC}} \underbrace{O_{s}^{iC}}_{P_{L}^{iC}} \underbrace{O_{s}^{iC}}_{P_{L}^{iC}} \underbrace{O_{s}^{iC}}_{P_{L}^{iC}} \underbrace{O_{s}^{iC}}_{P_{L}^{iC}} \underbrace{O_{s}^{iC}} \underbrace{O_{s}^{$$

$$O_{n}^{46} = \overline{\chi}_{n} T^{6} \overline{\underline{\chi}}_{n} \chi_{n}, \quad O_{n}^{96} = \frac{i}{2} f^{6c0} \mathcal{B}_{n\perp\mu}^{c} \overline{\underline{n}} \cdot (i)_{n-i}^{c} \overline{\lambda}) \mathcal{B}_{n\perp}^{0\mu}$$

$$similar O\overline{n}'s$$

$$O_{s}^{4n8} = \Im \pi d_{s} \overline{T}_{s}^{n} T^{6} \overline{\underline{d}} + \overline{s}^{n}, \quad O_{s}^{3n8} = \Im \pi d_{s} \frac{i}{2} f^{6c0} \mathcal{B}_{s\perp\mu}^{n} \overline{\underline{n}} \cdot (i)_{s-i}^{c} \overline{\partial}_{s}) \mathcal{B}_{s\perp}^{n}$$

$$O_{s}^{6c} = \Im \pi d_{s} \left\{ P_{\perp}^{\mu} S_{n}^{\pi} \overline{S}_{n} \overline{\mathcal{N}}_{\mu} - \mathcal{P}_{1\mu} \mathcal{G}_{s}^{1n} S_{n}^{\pi} - S_{n}^{\pi} S_{n} \mathcal{G}_{s}^{n} \mathcal{P}_{s} \overline{\mathcal{N}}_{s} \right\}$$

$$O_{s}^{6c} = \Im \pi d_{s} \left\{ P_{\perp}^{\mu} S_{n}^{\pi} \overline{S}_{n} \overline{\mathcal{N}}_{\mu} - \mathcal{P}_{1\mu} \mathcal{G}_{s}^{1n} S_{n}^{\pi} - S_{n}^{\pi} S_{n} \mathcal{G}_{s}^{n} \mathcal{P}_{s}^{\pi} \mathcal{P}_{s} \right\}$$

$$O_{s}^{6c} = \Im \pi d_{s} \left\{ P_{\perp}^{\mu} S_{n}^{\pi} \overline{S}_{n} \mathcal{G}_{n}^{\pi} \mathcal{P}_{\mu} - \mathcal{P}_{1\mu} \mathcal{G}_{s}^{1n} \mathcal{G}_{n}^{\pi} S_{n} - S_{n}^{\pi} S_{n} \mathcal{G}_{s}^{n} \mathcal{P}_{s}^{\pi} \mathcal{P}_{1\mu} \right\}$$

$$- \Im \mathcal{G}_{s}^{0n} \mathcal{P}_{n}^{\mu} \mathcal{G}_{n}^{\pi} \mathcal{G}_{n}^{\pi}$$

Power counting (use Sideboard!) -5.

$$J_{G}^{(0)} = \sum_{n} \sum_{i,j=1}^{\infty} O_{n}^{in} \frac{1}{pL} O_{n}^{jn} + \sum_{k=1}^{\infty} \sum_{n,n'} O_{n}^{in} \frac{1}{pL} O_{n}^{jn} + \sum_{k=1}^{\infty} \sum_{n} O_{n}^{in} \frac{1}{pL} O_{n}^{jn} + \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} O_{n}^{in} \frac{1}{pL} + \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} O_{n}^{in} + \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} O_{n}^{jn} + \sum_{k=1}^{\infty} O_{n}^{j$$

Glauber Loops give
$$i\pi f$$

$$\frac{\sqrt{3}|k|k^{2}|^{-n}}{|k|^{2}} \xrightarrow{2} \Rightarrow 0$$

$$\int \frac{\sqrt{3}|k|k^{2}|^{-n}}{|k|^{2}} \xrightarrow{2} \frac{\sqrt{3}|k|^{2}}{|k|^{2}} \left[-i\pi + O(k)\right] \xrightarrow{2} \frac{\sqrt{3}|k|^{2}}{|k|^{2}} \xrightarrow{2} \frac{\sqrt{3}|k|^{2}}{|k|^{2}} \left[-i\pi + O(k)\right] \xrightarrow{2} \frac{\sqrt{3}|k|^{2}}{|k|^{2}} \xrightarrow{2} \frac{\sqrt{3}|k|^{2}}{|k|^{2}} \left[-i\pi + O(k)\right] \xrightarrow{2} \frac{\sqrt{3}|k|^{2}}{|k|^{2}} \xrightarrow{2} \frac{\sqrt{3}|k|^{2}}{|k|^$$

eg. Fud. One loop Graphs exactly reproduce leading power QCD amplitude

$$d = \left(\sum_{j=1}^{\infty} O_n^{jA} \right) = V_{nv} \left(\sum_{j=1}^{\infty} O_n^{jA} \right) \quad gives \quad \left(\frac{5}{-t} \right)^{-1} hv \quad Regge expansions$$

• sum la S, lax in DIS, Fub. Sattering, DY, ...

$$S_{k}^{2} \left[\left\{ e^{i \left[\left\{ a_{1} \right\} \right\} \right\}^{2}} \right] = \int d^{2}g_{\perp} \left\{ d^{2}g_{\perp} \left[C_{n} \left(g_{\perp}, P_{j}^{-} s \right) \right] \leq \left\{ g_{\perp}, g_{\perp}^{-}, s \right\} \right] C_{n} \left(g_{\perp}, P_{j}^{+} s \right) \\ n \cdot allinear \quad S_{0} \in t \quad \overline{n} \quad collinear \quad collin$$

Properties rel. for Fact I like the cheshire Cat, (Lew)s Corol, Alice in Wanhald) Why we (usually) don't see Glouber in Hard Matching Calcs. naive $\tilde{S} = \int \frac{d^d k}{(k^2 - m_{\pm k}^2 + i_0)(n \cdot k + i_0)(\pi \cdot k - i_0)}$ eg. Sr $= (\cdots) + i\pi \left(\frac{1}{e} + \ln \frac{\mu^2}{m^2} \right)$ Sr true S = S - S(G) = (0.0) only, real G = 5 (G) its G that : C long distance $S + G = (\tilde{S} - S^{(G)}) + G = \tilde{S}$ collinear, but effectivez eikond only 6 corries into about soft Wilson line directions, (A)S = S - S(G) does not care (B) can absorb this Glauber into soft Wilson Lines if they are taken with proper physical directions, & just use S. Glaster tells us direction, sees long dist. propagates (done for any SCET motiding calculation) (This corresponds to continuation from G Same in Active - Active Googhs to S region in CSS.) ñ

=> I define "Active" lines as those that effectively eikonalize due to log div. Scaling in regulated integral Rest are then "Spectator"

Sum ob G's here gives phase Useful to distinguish initial & Final State G's (ordered perturbation theory)

Discossed how proof of factorization works in SCET: Work in progress with GOPT I. Rotustain of full & initial o Soft complication