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The most profound difference between
Quantum Gravity and QFT on classical (curved)
spacetime is the fundamental requirement of
Background Independence:

No particular spacetime is singled out a priori;
the internal dynamics of the quantum system
(“universe”) selects the state it likes to be in and
determines the emergent geometric properties,
if any.



“The new strategy is to free oneself of the
background spacetime that seemed indispensable
for formulating and addressing physical questions.

The goal is to lift this anchor and learn to sail the

open seas.”

(A. Ashtekar)



A  nototious contribubon to the

CIOSW\oLosiCQL Constant C’ProbLQ\M) :

Zli'ﬁ.to =28, &aA=%eq-as

medes
.'- d:"’ — — Oq-
h Ja 1P )
p<y
E3 cutoff ol (sz?L 4 AA'-'O(')'W\;I
Observabons :
~ -122 5 _ &+
N== 28 10 ") S = <2.z meV)

Teau.ires énormouws ‘S:-'uehm'us —~_»

small value of A is “un natuval Z Z



A  conbinuum — baseat Qﬁoroo.ok

o quantum vaiﬁy:

Twe gra vitadhonal Effechve
Avera je Acton

(2) \Backgrou.no(, Tnolepen.oence via

bo.ch%\-ounac -‘F\'e ld techn( ?ec e

(i) -fu.vu.o(o;men.{ml QFT ="

' é.g (er-recxve er)k



‘—r:: (h/‘\’= ) = g-/ﬂ’ : gkosbs) ma,Hser)

/AV

eWK[TfsE] _ J’l

D¢ ep3-S, (431 +

+\Y3‘f - ‘tijdxfg’—(:)' Cf(x);Rk(—Elg).«f (x) }

0 i (—DS-) 2> k% UV modes”

KE 3% O LK IR modes”

Pl by, 53 =(modif) Legenctre drancf.

0; Wk

R



D§ - Eigenbasis T=§2’n}

— Mz Z.033¢) = £,13] 2,031

£ [?7 2 sz 3 U'\// wodes

Cutoff wode Q(;;M

(LG&‘ES‘L‘: {.J'\/ moole )

E.031 <k* 1 IR moces

E"senba,s‘[s olecom {:ose S }

T3] =T [810) U, [31(K)

Tl;e IQ - U\/ J‘evarQ‘-;on undev(\tjins a
giVEVL 'S:unc'l'\’onq,L (‘—f) § ) > r; [C"J’ g]

d-epend,s on its seconad erccmeyc{ , 3;*" !

:.—:.:> RCGM = VL@ME—S-] (K\;






Assume ,RG 'Erajed:ovy k —> Fk is Comfm,{-ed,

(S%)n[’;'( e <<-/f\(><‘)"' ‘-/f\("n)>§.

Tre dynamics of the syctem iself determines

the bo.okﬂ\rouno( 3eome-£rj T Ukes“ ‘o be s |,

Selfconsistent backﬁvouno( metrics
F'e o0 -2 7
O= h?u? = < h’ V>§ =<3r\)>§_ - 8/.“:

i e. <3% = 3 for §=79°

The “ {:ao(‘:)ol.e condibion " :

° [ [h;3] =0

Sh )




Assume genevelizead £mjec+vv:1 s computed ;

k\-»(PK, 3%

= ‘F"‘“’“‘Lj of Lo_PlaciQnS: C’g—s‘c
=$> ‘Fomi(.v:‘ 0{ eiaenvq.tue egs. :

—C]—sc},/ (’( k) n(k)?n(’()k)

The Pfimavy r' € 'l:ro.’aec{ofy Znoduces

o spectral flow k ‘—'*{ (k)}




Go on-shell sy 3-35, h=0.

n
(—Séh,—) I—; Ek) g:c] acquires  awn addihowal

Scale O(EPevtdCVlC—e v[q fhe Conl':'nua.aj céanjz’nj }

SeLf - oleteemined b&Cb-arouvao( Seomeérj 8

:':>- E‘;éer Fve 'écc‘f'ion o# the coarse 3 Yo e 5
proce dure becomers non— triviel aw ol

can |lead +» sérikinj surprises .

’Recau: |
r'k°(h')-3-)‘ '[;["L,f]-]
 S— 4
k‘-ivx dep. /
%
7
cuboff 1 ¢he #

ckrwew ) Cl3 |
Bpseltin O'F. J 5. - Dj‘:c
Which  modes ave “cut off “ reelly  when

the curve parameter K assumes a cewain value



Given o 'y“"‘dj K P—’.{:‘F":(k)/ Z’L(.’k)} .

compute the cuboff wmoole from ol s,oed:ra:

T_he ”Clua.nlru-m number "

N (&) =, [7:1(k)

a'é i'lle POI:VL‘L Pk ';Ou,bw g ":ra w
1

)

Fr (K l E
K-k

b‘ﬂ SOLVl:w,S ‘j:OY' V’LCOM = VLCOM (K 1 )

Y;V (k‘) . wmoedes with '}:(K‘) } ’}:‘;on(kd(‘(‘)

Yarla) e - - %
L The olof ‘s of (e$§. QFT)K l



ncowm (ka)

ncom (k1)
o

Tnq




Einstein - Hilberd druncation

wPoLe condition :
G.o +A 4., =0

Solukions of the resca.Ling {:SPQ F
— /N\ — se¢
(Q:C )f‘“’ - /\; (CJO )/‘.v

Spectral flow:

ﬁvzdins the cutoff modes :
— [ 2
e owolve J, M(0)=9r ~» n_=n’ (%)

co coM comM

t
- the solubon <o F- oK)= kZ:

ncoM

MNeon (k) = ngoM (gr(K)) with




Example: st spacehmes
N

Ro-.o(,;u.s of the Se,Lfc.onﬁS{:ew.{- spkere_:

\
_ A, \ 12
e = % (/\k)

’

For tensors of ony rank (VL€/N):
2

& (k) 2(1‘—) it a1

T«

lQuantum number w of the COM :




g1+

classical regime

Typella

(b)

Typellla

01

03

-
A



Example: T‘;Pe Il a trajectory

{ KT‘ = /6-1
k-0
“o)ett
A\( _ 1+,e K for Oéké mP(
Ao Lz kl ‘;O( k 2 M?(
2
k semi classical

'F"‘:teot Fa‘-n{:



‘(_{J

-1 |

max |

Y

A

AL COM

i T’T‘O*—:r"r:ﬂri::(




ncowm (ka)

ncowm (k1)
To

1




Above the turning point, lowering k converts
UV-modes to IR modes (rather than vice versa).

At low scales (eff.QFT)x has more dof’s to
deal with than at high scales.

Resolution to the “paradox”:

When k is increased, the self-selected S* shrinks,
causing &, (k), n fixed, to grow.



The familiar Running Picture:

I';,[h, matter; g] describes the “particle physics” of
matter quanta and gravitons propagating on the

running gff geometry. The high-k matter
description applies to high-k backgrounds!

The new Rigid Picture:

Try to construct a new action functional I, by
.« . . —SC .
eliminating g, everywhere in favor of the

(essentially flat) macroscopic metric Ezc :

Pretend that only the particle physics runs,
while the background metric stays fixed.

This involves re-interpreting the cutoff scale
as an eigenvalue of the Laplacian built from

Ezc rather than ﬁff .
If the latter is k?, the former equals g°.



In the rigid picture, g plays the same role k plays
in the running picture.

The corresponding action functional I, = Iy
would require solving g = q(k) for k = k(q).

Globally, this is impossible however |

The rigid picture is applicable from k=0 to kr only.
It breaks down at the turning point which acts as

a “scale horizon”.



Avigid A

Qm ax



Application to the

Cosmological Constant Problem

The familiar summation of zero-point energies
quantizes the modes in Y; (%) employing
the rigid picture.

Within its domain of applicability (? < k7), the
resulting vacuum energy changes A by at most

a factor of 2.

= Traditional “rigid” calculations obtaining
factors like 10%° overstretch their actual
domain of validity quite considerably.

= |tis incorrect to claim that these
calculations imply a naturalness problem
for a small value of A.



The running picture allows for a consistent
interpretation of scales above the turning
point also.

= |t becomes unavoidable to appreciate the
k-dependence of the metric.

= When Aj grows, the running Einstein
equation R(g;°) = 4/, allocates the
growing curvature not to cosmological scales,
but to shorter and continuously decreasing
length scales.

Fluctuations at scale k curve spacetime at scale k!

A fatal limitation of the standard approach:
Fluctuations of any scale can generate curvature
on the cosmological scale only.



Conclusion

Fundamentally the question about the
gravitational manifestation of vacuum fluctuations
involves only a very simple dynamics (harmonic
oscillator,...) and seems unrelated to any specific
UV completion of quantum gravity;
nonperturbative effects (Asymptotic Safety,...)
play no essential role.

In order to get a qualitatively correct picture,
it is crucial though to respect Background
Independence and to avoid the misconception
of a pre-existing spacetime.





