Flavor-specific scalar mediators

Ayres Freitas University of Pittsburgh

B. Batell, A. Freitas, A. Ismail, D. McKeen, arXiv:1712.10022, arXiv:1812.05103

Light scalars, flavor symmetries and naturalness

µ-specific scalars

up-specific scalars

WIMP Direct Detection

CRESST-III 2019 **CRESST surface 2017** CRESST-II 2016 CRESST-II 2014 SuperCDMS 2014 **CDEX 2014** CDMSlite 2015 **CDMS-Si 2013** - - EDELWEISS surf Migdal 2019 CoGeNT 2013 **DAMIC 2016** EDELWEISS-III 2016 EDELWEISS surf stand, 2019 Collar 2018 ----- DarkSide binom, 2018 COSINE-100 2018 LUX combined 2016 — — LUX Migdal 2018 **NEWS-G 2018** ---- PandaX-II 2016 10^{-38} PICO-60 C,F, 2016 **XENON1t 2018** XENON100 low-mass 2016 10-3 10⁵ Cross Section (pb) dark matter-nucleon σ_{SI} (cm²) 10-32 10⁴ 10-33 10³ 10 10⁻³⁴ 10² 10⁻³⁵ 10 10⁻³⁶ 10^{-44} 10⁻³⁷ 10⁻¹ Nucleon 10⁻³⁸ 10⁻² 10⁻³⁹ 10⁻³ λ^WM 1-Dark Matter Particle-N 10-47 10-40 10-4 10-41 10-5 Future 30 10-42 10⁻⁶ neutrino floor on xenon 10-50 10-43 10-7 10^{-3} 10^{-2} 10^{-1} 10⁻⁸ 10⁻⁹ **Coherent Neutrino Scattering on CaWO** 5 6 7 8 910¹⁰⁻⁴⁶ 10⁻¹⁰ 0.1 0.2 0.3 0.4 4 2 3 **CERN Courier 2018** Dark Matter Particle Mass (GeV/c²)

CRESST Coll. 2019

- Very strong direct detection constraints for weak-scale DM
- \blacktriangleright Constraints much weaker for $m_{DM} \precsim 1 \text{ GeV}$

Light DM / light mediators

- Sub-GeV DM could evade direct detection bounds
- Relic density typically demands light mediator particles
- Examples of light mediators:
 - Gauge bosons ("dark photon")
 - Scalars
 - Sterile neutrinos

Dark photon

Light scalars

- S is singlet under SM gauge symmetry
- Coupling to SM through dim-5 operators:

$$\begin{split} \mathcal{L}_{S} &= \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S^{2} - \left(\frac{c_{S}}{M} S \bar{Q}_{L} U_{R} H_{c} + \text{h.c.} \right) + \frac{d_{S}}{M} \partial_{\mu} S \bar{U}_{R} \gamma^{\mu} U_{R} \\ &+ \frac{d'_{S}}{M} \left(i S \bar{U}_{R} D \!\!\!/ U_{R} + \text{h.c.} \right). \end{split}$$

SM flavor symmetry $U(3)_Q \times U(3)_U \times U(3)_D$ broken by Yukawa couplings in SM:

 $\mathcal{L}_{\rm SM} = i\bar{Q}_L \not\!\!D Q_L + i\bar{U}_R \not\!\!D U_R + i\bar{D}_R \not\!\!D D_R - \left(\bar{Q}_L Y_u U_R H_c + \bar{Q}_L Y_d D_R H + \text{h.c.}\right)$

• \mathcal{L}_S leads to additional breaking (through c_S , d_S , d'_S)

Minimal flavor violation

- Idea: flavor symmetry only broken by Yukawa couplings
- ► Treat Y_u , Y_d as spurion fields under $U(3)_Q \times U(3)_U \times U(3)_D$: $Y_u \sim (3, \overline{3}, 1) \quad Y_d \sim (3, 1, \overline{3})$

so that $-(\bar{Q}_L Y_u U_R H_c + \bar{Q}_L Y_d D_R H + h.c.)$ is invariant

► Transformation of *S* couplings:

$$\begin{split} \mathcal{L}_{S} &= \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S^{2} - \left(\frac{c_{S}}{M} S \bar{Q}_{L} U_{R} H_{c} + \text{h.c.}\right) + \frac{d_{S}}{M} \partial_{\mu} S \bar{U}_{R} \gamma^{\mu} U_{R} \\ &+ \frac{d'_{S}}{M} \left(i S \bar{U}_{R} D U_{R} + \text{h.c.} \right) . \\ c_{S} &\sim (3, \bar{3}, 1), \qquad \qquad c_{S} = c_{1} Y_{u} + \dots \\ d_{S}, d'_{S} &\sim (1, 1, 1) \oplus (1, 8, 1). \qquad \qquad d_{S} = d_{1} \mathbb{1} + d_{2} Y_{u}^{\dagger} Y_{u} + \dots \end{split}$$

► S couplings are either **universal** or **dominantly to 3**rd gen.

Minimal flavor violation

In MFV dominant constraints come from heavy-flavor mesons:

MFV ensures that FCNCs are under control

MFV ensures that FCNCs are under control

Alternative: Flavor alignment

a) Eliminate d_S , d'_S through field redefinition: $U_R \rightarrow U_R - (d'_S - id_S)SU_R/M$

$$\begin{aligned} \mathcal{L}_{S} &= \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S^{2} - \left(\frac{c_{S}}{M} S \bar{Q}_{L} U_{R} H_{c} + \text{h.c.} \right) + \frac{d_{S}}{M} \partial_{\mu} S \bar{U}_{R} \gamma^{\mu} U_{R} \\ &+ \frac{d'_{S}}{M} \left(i S \bar{U}_{R} \not{D} U_{R} + \text{h.c.} \right). \end{aligned}$$

MFV ensures that FCNCs are under control

Alternative: Flavor alignment

a) Eliminate d_S , d'_S through field redefinition: $U_R \rightarrow U_R - (d'_S - id_S)SU_R/M$

$$\begin{split} \mathcal{L}_{S} &= \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S^{2} - \left(\frac{c_{S}}{M} S \bar{Q}_{L} U_{R} H_{c} + \text{h.c.} \right) + \frac{d_{S}}{M} \partial_{\mu} S \bar{U}_{R} \gamma^{\mu} U_{R} \\ &+ \frac{d'_{S}}{M} \left(i S \bar{U}_{R} \not{D} U_{R} + \text{h.c.} \right). \end{split}$$

 $\Rightarrow c_{s} \rightarrow c_{s} - Y_{u}(d_{s}' - i d_{s}) + \text{dim-6 operators}$

MFV ensures that FCNCs are under control

Alternative: Flavor alignment

$$\begin{split} \mathcal{L}_{S} &= \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S^{2} - \left(\frac{c_{S}}{M} S \bar{Q}_{L} U_{R} H_{c} + \text{h.c.} \right) + \frac{d_{S}}{M} \partial_{\mu} S \bar{U}_{R} \gamma^{\mu} U_{R} \\ &+ \frac{d'_{S}}{M} \left(i S \bar{U}_{R} \not{D} U_{R} + \text{h.c.} \right). \end{split}$$

 \Rightarrow $c_s \rightarrow c_s - Y_u(d'_s - i d_s) + \text{dim-6 operators}$

b) c_S diagonal in mass basis, e.g. $c_S \propto \text{diag}(1,0,0)$ $U(3)_Q \times U(3)_U \rightarrow U(1)_u \times U(2)_{ctL} \times U(2)_{ctR}$ \rightarrow technically natural

MFV ensures that FCNCs are under control

Alternative: Flavor alignment

a) Eliminate d_S , d'_S through field redefinition: $U_R \rightarrow U_R - (d'_S - id_S)SU_R/M$

$$\begin{split} \mathcal{L}_{S} &= \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S^{2} - \left(\frac{c_{S}}{M} S \bar{Q}_{L} U_{R} H_{c} + \text{h.c.} \right) + \frac{d_{S}}{M} \partial_{\mu} S \bar{U}_{R} \gamma^{\mu} U_{R} \\ &+ \frac{d'_{S}}{M} \left(i S \bar{U}_{R} \not{D} U_{R} + \text{h.c.} \right). \end{split}$$

 \Rightarrow $c_s \rightarrow c_s - Y_u(d'_s - i d_s) + \text{dim-6 operators}$

b) c_S diagonal in mass basis, e.g. $c_S \propto \text{diag}(1,0,0)$ $U(3)_Q \times U(3)_U \rightarrow U(1)_u \times U(2)_{ctL} \times U(2)_{ctR}$ \rightarrow technically natural

Can be dynamically generated through extended scalar potential

 $\propto Y_{s}^{\dagger}Y_{s}\sin^{2}\theta_{c}$

Knapen, Robinson, 2015

$$\mathcal{L} \supset -\frac{1}{2}m_S^2 S^2 - \left(\bar{Q}_L Y_u U_R H_c + \frac{c_s}{M} S \bar{Q}_L U_R H_c + \text{h.c.}\right)$$

▶ c_{S} diagonal in mass basis → no FCNCs in up-sector

FCNCs in down-sector induced at one-loop, suppressed by

$$\frac{1}{16\pi^2 M} \left(V_{\rm CKM}^{\dagger} (Y_u^D) c_S^{\dagger} V_{\rm CKM} Y_d^D \right)$$

Naturalness

Naturalness constraints from scalar potential and quark masses lead to similar bounds on c_S

Naturalness

► Corrections to scalar potential from scale *M*:

$$\delta_{S^{2k}} \sim \frac{\text{Tr}(c_S^{\dagger} c_S)^k}{(16\pi^2)^{k+1}} M^{4-2k}, \ k = 1, 2, \dots$$
$$\delta_{S^{2k+1}} \sim \frac{\text{Tr}(c_S^{\dagger} c_S)^k c_S^{\dagger} Y_u}{(16\pi^2)^{k+2}} M^{4-(2k+1)}, \ k = 0, 1, \dots$$

$$\Rightarrow \quad v_S \approx -\frac{\delta_S}{m_S^2} \sim \frac{\operatorname{Tr} c_S^{\dagger} Y_u}{(16\pi^2)^2} \left(\frac{M}{m_S}\right)^2 M$$

(small if $c_{\rm S}$ involves only first gen.)

Renormalizable UV completion

Vector-quark model:

 $\mathcal{L}_{c_S} = i\bar{Q}'_L \not\!\!D Q'_L + i\bar{Q}'_R \not\!\!D Q'_R - \left(y_S S \bar{Q}_L Q'_R + M \bar{Q}'_R Q'_L + y' \bar{Q}'_L H_c U_R + \text{h.c.}\right)$

 $y_S \sim (3, 1, 1),$ $M \sim (1, 1, 1),$ $y' \sim (1, \bar{3}, 1).$

Naturalness: One-loop correction to m_s :

 $(y_S)^{ij} \lesssim (4\pi) \frac{m_S}{M}$ $(y')^{ij} \lesssim (4\pi) \frac{v}{M}$

One-loop correction to m_H :

$$\Rightarrow \quad c_{S}^{\text{eff}} \lesssim (2 \times 10^{-4}) \left(\frac{m_{S}}{0.1 \,\text{GeV}}\right) \left(\frac{5 \,\text{TeV}}{M}\right)^{2}$$

stronger by v/M compared to EFT

Renormalizable UV completion

► 2HDM:
$$\mathcal{L}_{C_{H}} = (D_{\mu}H')^{\dagger}(D^{\mu}H') - \frac{M^{2}}{2}H'^{\dagger}H' - (y'\bar{Q}_{L}H'U_{R} + \kappa SH^{\dagger}H' + h.c.)$$

 $y' \sim (3, 3, 1)$
 $\kappa, M \sim (1, 1, 1)$

▶ Naturalness: One-loop corrections m_S and m_H → similar to vector-quark model

µ-specific scalar

$$-\mathcal{L}_{\text{int}} = \bar{L}_L Y_\ell E_R H + \frac{c_S}{M} S \bar{L}_L E_R H + \text{h.c.}$$

 $c_S \propto \text{diag}(0,1,0)$

- $Y_{\ell}: \quad U(3)_L \times U(3)_E \to U(1)_e \times U(1)_{\mu} \times U(1)_{\tau}$
- $c_{S}: \quad U(3)_{L} \times U(3)_{E} \to U(1)_{\mu} \times U(2)_{e\tau L} \times U(2)_{e\tau R}$

After EWSB:

$$-\mathcal{L}_{\rm int} \supset S\bar{\mu} \left(\operatorname{Re} g_{S}^{\mu\mu} + i\operatorname{Im} g_{S}^{\mu\mu}\gamma^{5}\right)\mu$$
$$g_{S}^{\mu\mu} = \frac{(c_{S})^{22}v}{\sqrt{2}M}.$$

Muon anomalous magnetic moment

One-loop correction:

$$\Delta a_{\mu} = \frac{1}{8\pi^2} \int_0^1 dx \frac{(1-x)^2 \left((1+x) \left(\operatorname{Re} g_S^{\mu\mu} \right)^2 - (1-x) \left(\operatorname{Im} g_S^{\mu\mu} \right)^2 \right)}{(1-x)^2 + x \left(m_S/m_{\mu} \right)^2}$$

For
$$m_S \ll m_\mu$$
: $\Delta a_\mu \sim 3 \left(g_S^{\mu\mu} / 4\pi \right)^2 = 35 \times 10^{-10}$
if $g_S^{\mu\mu} \sim 4 \times 10^{-4}$

Two-loop correction:

 $\frac{(\Delta a_{\mu})_{2-\text{loop}}}{(\Delta a_{\mu})_{1-\text{loop}}} \sim \frac{M^2}{8\pi^2 v^2}$

subdominant for M < 2 TeV

Vector-lepton UV completion

- $-\mathcal{L} \supset ML'_LL'_R + y_SSL_LL'_R + y'L'_LHE_R + \text{h.c.}$
- Additional correction to Δa_{μ} , suppressed by $(m_{\mu}/M)^2$

▶ Mixing between L'_R and μ_R

 $\tan\theta = y'v/\sqrt{2}M$

constained by electroweak precision tests for $\mathrm{Z}\mu\mu$ couplings

 $\frac{y'v}{M} \lesssim 0.05$

del Aguila, de Blas, Perez-Victoria, 2008 Freitas, Lykken, Kell, Westhoff, 2014

Bounds from lab experiments

```
► Decay S \rightarrow \mu^+ \mu^- for m_S > 2m_\mu
S \rightarrow \gamma \gamma for m_S < 2m_\mu
```


Searches at beam-dump experiments:

E137 (SLAC electron beam): production $\gamma^* \rightarrow \gamma S$ followed by $S \rightarrow \gamma \gamma$

```
Future: SHiP, FASER, ... (p beams)
COMPASS (µ beam)
```

High-energy collisions:

BaBar: $e^+e^- \rightarrow \mu^+\mu^- S$, $S \rightarrow \mu^+\mu^-$ ATLAS: $Z \rightarrow \mu^+\mu^- S$, $S \rightarrow \mu^+\mu^-$

Bounds from astrophysics

Dolan, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, 2017

µ-specific scalar: Summary of bounds

up-quark specific scalar

Scalar DM mediator, coupled only to u quark

 $\mathcal{L} \supset i\bar{\chi}(\not{D} - m_{\chi})\chi + \frac{1}{2}\partial_{\mu}S\partial^{\mu}S - \frac{1}{2}m_{S}^{2}S^{2}$ $- \left(g_{\chi}S\bar{\chi}_{L}\chi_{R} + \frac{c_{S}}{M}S\bar{Q}_{L}U_{R}H_{c} + \text{h.c.}\right)$ $g_{u}S\bar{u}_{L}u_{R}$ $g_{u} \equiv \frac{c_{S}v}{\sqrt{2}M}$

Couplings to hadrons

- ▶ For $m_S \sim O(\text{GeV})$, S effective couples to hadrons
- Couplings to mesons from χ PT:

$$\mathcal{L} \supset \frac{f^2}{4} \operatorname{tr}[(D_{\mu}\Sigma)^{\dagger} D^{\mu}\Sigma] + \frac{f^2}{4} \operatorname{tr}[\Sigma^{\dagger}\chi + \chi^{\dagger}\Sigma]$$

For m_S > 900 MeV, need to include s-channel resonances (form factors)

 $\langle \pi(p)\pi(p')|m_u\bar{u}u + m_d\bar{d}d|0\rangle = \Gamma_{\pi}(s)$ $\langle \pi(p)\pi(p')|m_u\bar{u}u - m_d\bar{d}d|0\rangle = \Omega_{\pi}(s)$

Γ_{π} , Γ_{K} extracted from data, O(1) uncertainty

Monin, Boyarsky, Ruchaysiy, 2018 Winkler, 2018

 Ω_{π} , Ω_{K} are unkown

$$\chi = 2B \begin{pmatrix} m_u + g_u S & 0 & 0 \\ 0 & m_d & 0 \\ 0 & 0 & m_s \end{pmatrix}$$

Couplings to hadrons

Couplings to nucleons:

$$y_{Spp} = g_u \langle p | \bar{u}u | p \rangle = g_u \frac{f_{Tu}^p m_p}{m_u} \approx 6.0 g_u,$$
$$y_{Snn} = g_u \langle n | \bar{u}u | n \rangle = g_u \frac{f_{Tu}^n m_n}{m_u} \approx 5.1 g_u$$

 $f_{Tu}^p = 0.014, f_{Tu}^n = 0.012$ from lattice Durr et al., 2015

Bounds from lab experiments

blue = current, red = future

► Meson decays $\eta \rightarrow \pi^0 S$, $S \rightarrow \gamma \gamma$ (MAMI) $S \rightarrow \pi \pi$ (KLOE, REDTOP) $S \rightarrow \chi \chi$ invisible (REDTOP?) $\eta' \rightarrow \pi^0 S$, $S \rightarrow \pi \pi$ (BES III, REDTOP?) $K^{\pm} \rightarrow \pi^{\pm} S$, $S \rightarrow \gamma \gamma, \chi \chi$ long-lived, invisible (E787, E949)

- Searches at beam-dump experiments:
 - a) Production $\eta \rightarrow \pi^0 S$ followed by $S \rightarrow \gamma \gamma$ O(100 m) downstream (CHARM, SHip, FASER, ...)
 - b) $\eta \rightarrow \pi^0 S$, $S \rightarrow \chi \chi$, χN scattering in far detector (MiniBooNE-DM, SBND)

Bounds from astrophysics

► BBN:

Millea, Knox, Fields, 2015

• $m_S < 20 \text{ MeV}$: S not fully kinetically decoupled during BBN \rightarrow increased N_{eff}

• $g_u < (2 \times 10^{-8}) \left(\frac{m_S}{\text{GeV}}\right)^{-3/2}$ photons from late decay of S decrease $\eta = n_B / s$

• Assume: S was in equilibrium at some point ($g_u \gtrsim 10^{-9}$)

- Supernova cooling (SN 1987A):
 - $g_u \gtrsim 10^{-10}$: enough S produced to cause significant cooling
 - $g_{\mu} \gtrsim 4 \times 10^{-8}$: re-absorption before leaving SN core
 - $m_S > 2m_{\pi}$: S decays inside SN core

up-specific scalar: Summary of bounds

No DM

- Strong constraints for m_S < 2m_π
- O(1) couplings allowed for m_S > 0.8 GeV

Other bounds:

- n scattering only for lighter m_S
- EWPT depend on UV completion

up-specific scalar: Summary of bounds

 $m_{\chi} = 3m_S$ g_{χ} set to match $\Omega_{\rm DM}$

- Relic density independent of g_u
- Direct detection constraints from XENON1T, CRESST, CDMSlite, PICO (future: NEWS-G)
- Complementarity of *χ* and *S* searches

up-specific scalar: Summary of bounds

$$m_{\chi} = m_S / 3, \ g_{\chi} = 1$$

- Invisible decay evades bounds
- Monojet bounds from LHC
- Direct detection constraints from XENON1T, CRESST, CDMSlite, PICO (future: NEWS-G)
- ► $m_S < 2m_\pi$ would overproduce DM

Summary

- Light bosons could play a role as DM mediators and address flavor anomalies
- Generation-specific couplings to SM fermions are technically natural
- Naturalness puts constaints on scalar parameters
- \blacktriangleright µ-specific scalar could explain a_{μ} anomaly, but many expt. bounds
- light quark-specific:
 - O(1) couplings allowed by all bounds
 - Interesting phenomenology as DM mediator