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WIMP Direct Detection

CERN Courier 2018

CRESST Coll. 2019

Very strong direct detection constraints for weak-scale DM
Constraints much weaker for mDM ≾ 1 GeV



  

Light DM / light mediators

Sub-GeV DM could evade direct detection bounds

Relic density typically demands light mediator particles

Examples of light mediators:
Gauge bosons (“dark photon”)

Scalars
Sterile neutrinos



  

Dark photon

Kinetic mixing generates small 
coupling of A' to SM fermions

Alexander et al. 2016



  

Light scalars

S is singlet under SM gauge symmetry

Coupling to SM through dim-5 operators:

SM flavor symmetry 
broken by Yukawa couplings in SM:

LS leads to additional breaking (through cS, dS, d'S)



  

Minimal flavor violation

Idea: flavor symmetry only broken by Yukawa couplings

Treat Yu, Yd as spurion fields under        :

so that is invariant

Transformation of S couplings:

S couplings are either universal or dominantly to 3rd gen.

D'Ambrosio, Guidice, Isidori, Strumia, 2002



  

Minimal flavor violation

In MFV dominant constraints come from heavy-flavor mesons:

Dolan, Kahlhoefer, McCabe, Schmidt-Hoberg,
2014



  

Flavor alignment

MFV ensures that FCNCs are under control
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Flavor alignment

MFV ensures that FCNCs are under control
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Flavor alignment

MFV ensures that FCNCs are under control

Alternative: Flavor alignment

a) Eliminate dS, d'S through field redefinition:

   ⇒ + dim-6 operators
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Flavor alignment

MFV ensures that FCNCs are under control

Alternative: Flavor alignment

a) Eliminate dS, d'S through field redefinition:

   ⇒ + dim-6 operators

b) cS diagonal in mass basis, e.g. cS ∝ diag(1,0,0)

     → technically natural

Can be dynamically generated through extended scalar potential

∝Y s
†Y s sin2θC

cS → cS−Y u(d S
−i dS)

Knapen, Robinson, 2015



  

Flavor alignment

cS diagonal in mass basis  → no FCNCs in up-sector

FCNCs in down-sector induced at one-loop,
suppressed by



  

Naturalness

Corrections to scalar mass from scale M:

Requiring

Naturalness constraints from scalar potential and quark masses
lead to similar bounds on cS

δmS
2 <
∼mS

2

(cS)
ij <
∼ {(3×10−3)( mS

0.1GeV )( 5 TeV
M )

(7×10−3)( mS

0.1GeV )



  

Naturalness

Corrections to scalar potential from scale M:

⇒   (small if cS involves only first gen.)



  

Renormalizable UV completion

Vector-quark model:

Naturalness: 
One-loop correction to mS :

One-loop correction to mH :

→ stronger by v/M compared to EFT

Q'

cS
eff <

∼(2×10−4)( mS

0.1 GeV )( 5 TeV
M )

2



  

Renormalizable UV completion

2HDM:

Naturalness: One-loop corrections mS and mH 

→ similar to vector-quark model

L C H
=(DμH ' )†(DμH ' )−

M2

2
H ' †H ' −( y ' Q̄LH 'U R + κS H †H ' + h.c.)

y ' ∼(3,3̄,1)

κ , M ∼(1,1,1)



  

μ-specific scalar

Yℓ:

cS:

After EWSB:

cS ∝ diag(0,1,0)



  

Muon anomalous magnetic moment

One-loop correction:

For mS ≪ mμ :

if  

Two-loop correction:

subdominant for M < 2 TeV



  

Vector-lepton UV completion

Additional correction to 
suppressed by (mμ/M)2

Mixing between L'R and μR

constained by electroweak precision tests for Zμμ couplings

del Aguila, de Blas, Perez-Victoria, 2008
Freitas, Lykken, Kell, Westhoff, 2014



  

Bounds from lab experiments

Decay  S →μ+μ−  for  mS > 2mμ 

        S →γ γ     for  mS < 2mμ 

Searches at beam-dump experiments:

E137 (SLAC electron beam):  production γ* → γ S  followed by  S →γ γ

Future: SHiP, FASER, ...  (p beams)
COMPASS (μ beam)

High-energy collisions:

BaBar:  e+e− → μ+μ− S,   S → μ+μ− 

ATLAS:  Z → μ+μ− S,   S → μ+μ− 



  

Bounds from astrophysics

Supernova cooling (SN 1987A)

image credit: G. Raffelt

S

Dolan, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, 2017



  

μ-specific scalar: Summary of bounds



  

up-quark specific scalar

Scalar DM mediator, coupled only to u quark

DM relic density from 
thermal freeze-out:

mS > mχ mS < mχ



  

Couplings to hadrons

For mS ~ O(GeV), S effective couples to hadrons

Couplings to mesons from χPT:

For mS > 900 MeV, need to 
include s-channel resonances
(form factors)

Γπ , ΓK extracted from data, 
O(1) uncertainty

Ωπ , ΩK are unkown

Monin, Boyarsky, Ruchaysiy, 2018
Winkler, 2018



  

Couplings to hadrons
Couplings to nucleons:

  from lattice
Durr et al., 2015



  

Bounds from lab experiments

blue = current,  red = future

Meson decays  η →π0S, S →γ γ  (MAMI)
S →ππ (KLOE, REDTOP)
S →χ χ invisible (REDTOP?)

η' →π0S, S →ππ (BES III, REDTOP?)

K± →π±S, S →γ γ, χ χ  long-lived, invisible (E787, E949)

Searches at beam-dump experiments:

a) Production η →π0S  followed by  S →γ γ  O(100 m) downstream
    (CHARM, SHip, FASER, ...)

b) η →π0S,  S →χ χ,
     χN scattering in far detector
    (MiniBooNE-DM, SBND)



  

Bounds from astrophysics

BBN:

mS < 20 MeV: S not fully kinetically decoupled during BBN → increased Neff

   photons from late decay of S decrease η = nB / s

Assume: S was in equilibrium at some point (              ) 

<

Millea, Knox, Fields, 2015

Supernova cooling (SN 1987A):

 : enough S produced to cause significant cooling

    : re-absorption before leaving SN core

 mS > 2mπ : S decays inside SN core

gu
>
∼10−10

gu
>
∼ 4×10−8

BBN:

mS < 20 MeV: S not fully kinetically decoupled during BBN → increased Neff

   photons from late decay of S decrease η = nB / s

Assume: S was in equilibrium at some point (              ) 



  

up-specific scalar: Summary of bounds

No DM

Strong constraints for
mS < 2mπ 

O(1) couplings allowed 
for mS > 0.8 GeV

Other bounds:

 n scattering only for 
lighter mS 

 EWPT depend on UV 
completion



  

up-specific scalar: Summary of bounds

mχ = 3mS

g  χ  set to match ΩDM

Relic density 
independent of gu

Direct detection 
constraints from 
XENON1T, CRESST, 
CDMSlite, PICO
(future: NEWS-G)

Complementarity of 
χ and S searches



  

up-specific scalar: Summary of bounds

mχ = mS / 3, gχ = 1

Invisible decay evades 
bounds

Monojet bounds from 
LHC

Direct detection 
constraints from 
XENON1T, CRESST, 
CDMSlite, PICO
(future: NEWS-G)

mS < 2mπ would 
overproduce DM



  

Summary

Light bosons could play a role as DM mediators and address flavor anomalies

Generation-specific couplings to SM fermions are technically natural

Naturalness puts constaints on scalar parameters

μ-specific scalar could explain aμ anomaly, but many expt. bounds

light quark-specific: 

● O(1) couplings allowed by all bounds

● Interesting phenomenology as DM mediator
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