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Motivations

= Quantum matter - gravity interplay should be described within:
gquantum gravity.

m However at least in some regimes it should be possible to analyze it in
the semiclassical approximation:

Gab - <Tab>w

m It equates classical quantities with probabilistic ones.

m We could take into account fluctuations in the sense of probability
theory.



Plan of the talk

m Global existence of solutions of semiclassical gravity in cosmology.

m Metric fluctuations in Starobinski model of inflation.

This talk is based on
m NP, D. Siemssen, J. Math. Phys. 56 022303 (2015) .
m NP, D. Siemssen, Comm. Math. Phys. 334 171-191 (2015).
= NP, CMP 305 563-604 (2011).



Semiclassical equations

Semiclassical Einstein equation in cosmology.

m Cosmological spacetimes
(M, g), M=1IxYL,
m For flat cosmological spacetime.
g =a(r)? [—dTr ® dT + dx’ ® dxi] ,

a is the scale factor and 7 conformal time.

m Semiclassical Einstein equation
Gab = (Tab)w
m Simpler equation
—R=(T),, V.T?®=0,  p(0)=cH?*(0)

m We look for existence and uniqueness of solutions of that system.



Semiclassical equations
Considered matter

m Massive scalar quantum field conformally coupled to gravity.
1 2
—Dg0+6R<p+m =0

The quantization on every FRW spacetime is very well under control.

Assign to every spacetime
M — A(M)
m The x—algebra generated by linear fields (f), implementing:

P (F)=e(f),  [e(F).e(M] =iA(f.h),  @(Pf)=0.

We include in the algebra the Wick powers. (by deforming the
product and then by extending it trivially)
It can be tested on Hadamard states.

m We need a rule to prescribe a state on every FRW spacetime and
than use the semiclassical equation to select the correct one.



Semiclassical equations

Where we need to put initial conditions

-R= <T>w

m It was solved employing very special initial conditions at the
singularity (Null big bang scenario). [NP 2011].

m This was necessary to control the regularity of the state.

m However, the radiation content of the solution has negative energy
density. = Physically not acceptable.

m Impose initial conditions at finite time, say 7 = 79 (where the
spacetime is regular).



Semiclassical equations
State

m At 7 = 79 we fix the state to be as close as possible to the vacuum.

m The pure, homogeneous and isotropic Gaussian state

I

1 / Xk(x0) Xk(¥0) ikc(x—y) gy
R

wa(x,y) == (27)3 Jrs a(x0) a(yo)

Xk(T) + (m*a(r)? + k*)xu(T) = 0,

_dd_
XdeXk dTXka =1.

m In order to be close to the vacuum at 7 = 79 we fix

1 .k
Xk(TO) = \/% ) X?((TO) = —I 50 5 ko = \/m

m It is an adiabatic state of order 0 at 7 = 0. (Although it is not
Hadamard it is sufficiently regular to construct T )




Semiclassical equations

Point splitting regularization

Hadamard two-point function:
V)
H = —+V|og()\2)+W

Stress-Energy Tensor: [Moretti 2003]

1 1
Tab = 0apOptp — <8ab (Depdip + m*¢®) — Bv(aab)(PZ

6 ab 6 8ab | ¥

(Tap) = lim Dap [ia(x,y) — H(x,)

Expectation values:



Semiclassical equations

Components of (T)

m In T there are three contributions, the state dependent part, the
anomalous term and the renormalization freedom.

<T>w = lanomaly + am4 + BmzR + ’YDR + m2<802>w .

1 y . R2 m*
Tanomaly = % (Cijklcukl + RURU - ? + DR) + e

« expresses a renorm. of the cosmological constant. = (am®*)

/3 expresses a renorm. of the Newton constant = (8m?R)

7 is a pure quantum freedom. = (yR?)



m After fixing the renormalization freedom (v, 5 and v = —1/360) we

may rewrite the equation as a Volterra-functional equation.

m For simplicity, in this talk, we will assume that the anomalous part
vanish and that A = 0.

d(r) = ay+ m? / (P)ua® dn

70
(R, = 1 /‘X’ 1
vl = o 0 kXK Vk2 + m2a2
Xi(T) + (m*a(7)? + k*)xk(T) = 0,
m We fix the state so that it looks like the vacuum at 7 = 7.

m We can control {¢?), w.r.to a’ and its (first-)functional derivative on
C%o, 7).

} k?dk

e?)wlloo < €(lla'lloo, 7=70) » [1D{0®)wlloc < €l llo 7=70)[104 [l

m We get an estimate valid on every spacetime (Va' € C%[ro, 7])



Semiclassical equations

Local existence

Proposition

Fix ap and the state at 79. An unique solution a; exists in | = [rg, 1) for
some 11 > Tp.

Proved applying the Banach fixed point theorem to the Volterra like
equation. The estimates permits to construct a contraction map.



Semiclassical equations

Global solution

Proposition

Let a; in | = [19,71) be a solution then, if a(11) do not diverge and
a(m1) > 0 the solution can be extended further in a unique way to a; with
I CJ.

m We can order all the solutions a;. a; < ay is | C J = a maximal
solution exists

Proposition

The maximal solutions is unique because of the unique extension.

Summarizing: fixing the initial condition, either the solution exists till
infinity or a singularity is encountered. (a=10,a = o0)



Semiclassical equations

Other initial values

Changing the initial values ag, a correspond to change the state.

Xk,1 = Axk + BXx

If the state are sufficiently close to w (B suff. reg.) we can still find
solutions.

The obtained solution is unfortunately only C2.

The employed estimates for (©?),, do not permit to control the global
behavior from the initial condition.



Fluctuations
Semiclassical Einstein equations and stochastic gravity

m Let’s look again at
Gab - <Tab>w

The right hand side is a probabilistic quantity.

m It is an effective equation, valid when “fluctuations” are negligible.
m There are regimes where this should be correct.
m If the variance of (T,p), is not negligible, like for the Brownian

motion —> the equation could make sense as a stochastic one.

m The probabilistic distribution of ()., has been recently discussed by
[Fewster Ford Roman]



Fluctuations
Stochastic approach

m Einstein-Langevin equation [Verdaguer]
Gab(x) = (Tan(x))w

We interpret it as a stochastic equation.

Study the passive influence of matter fluctuations on curvature
fluctuations.

m |t is not easy to compute the probability distribution for (T,p).,.

5Gab = Gab - <Gab> ) 5Tab = 7_ab - <Tab>w 5Gab = 5Tab

m The correlations of T,,(x) are more complicated than in Wiener
processes or Brownian motions.
m We can equate their moments:

(Gab(x)) = (Tap(x))w
(0Gap(x1)0Gea(x2)) = (0 Tap(x1)0 Tea(X2))w

(0G"(X1y- -y xn)) = (OT"(X15 -+, Xn))w



Fluctuations

What is the impact of fluctuations?

m We shall analyze it in a simple case: Metric perturbations in the
Starobinski model of inflation

m It is believed that quantum fluctuations seeds structure formation in
the universe.

m [Verdaguer| obtains a scale free spectrum of the metric
fluctuations (Bardeen potentials) considering a “linearized version”
of w3 as a source.



Fluctuations

Starobinski model of inflation

m Inflation is usually induced by a classical scalar field in a potential.
L =000 + V(9)

m The origin of this potential is unclear.

m It plays a crucial role in the standard analysis of fluctuations on the
system.

m There is another model of inflation, which is more in the spirit of
QFT on curved spacetime.

m This is the Starobinski model where inflation is driven by R? term in
the effective action.

m We would like to derive the metric fluctuation for this system as
induced by matter one.



Fluctuations

Metric perturbation and fluctuation

m Usually linearized gauge invariant perturbations of the inflaton-gravity
system are quantized.

m We cannot use this approach in the Starobinski model: We have
already quantized the system and we have put ourself in a regime
were the quantum nature of gravity is not necessary.

m There is however a way out, namely fluctuations of matter are
naturally present in the stress tensor.

m We could evaluate their influence on the right hand side (G).



Fluctuations

Graphical representation for d¢? in a Gaussian state

4 4

m m
(0G(x1)6G(x2)) = m* w(d¢p*(x1)d9%(x2)) = 7w§(X1»X2) + 7w§(X27X1)
n=2 X1 QCQ X2 X1 OOO X2
x1
o
n=3:
o——0
X2 X3
X1 X1
* AN
I e exs x2 05— e x5
;3(—); X3 0% _exs

All these graphs are well defined distributions:

w%(xay) W2(X,y)WQ(y,Z)



Fluctuations

Comments

m Semiclassical Einstein equations link quantum matter fluctuations
with curvature fluctuations

m JG is not Gaussian (3-point function do not vanish ... )



Fluctuations

Perturbations around an inflationary spacetime

m We start with a de Sitter spacetime

1 2 )
g_i(HT)Z( dr +dx)

m Let’s add Newtonian perturbations g - g =g + €5 :

g = (/417)2 (—(1+2W)d7? + (1 — 2w)dx?)

m Linear perturbation of scalar curvature

. 2 1.\ W
6G =g (Gap — (Gap)) = 6(HT)* (87’2 - 3V2>

m Inverting (with retarded propagator) we get

<W(X1)W(X2)> =m" );lé\/\/oco’\/\-)):z + );lé\/\,oCo/\/\-));z



Fluctuations
Power spectrum of W

Is obtained computing the spatial Fourier transform of (W(x;)W¥(x2))

where the state is

U ) 5 .
wa(x1,x2) = 0—+Iess singular term = H 1y wiyi(xy, x2)+less singular term
€

and the square of the two-point function

— 1 S8

0= o J, <

w%(T]_,TQ, k)

We can consider its contribution to the power spectrum

o~ ~

(V(T, k)V(T, k)) ~ %Po(kT)

Non gaussianities arise naturally

(W(r, k)W (7, ko)W (7, k3)) ~ Bo(ky T, ko, ks7)

ks ks



Fluctuations

The rescaled power spectrum Py(kT)

kr

L L L
-50 -40 -30 -20 -10



Fluctuations

CMB Temperature fluctuations

m CMB anisotropies observed by the Planck space telescope.
m Produced at the time of matter/radiation decoupling.

m Usually explained by inflation.



Fluctuations
CMB Temperature fluctuations

o(r, %, &) = ‘ST(TT(f)g) = Zzn; Oum(7,X) Yem(&)

©¢m(70, Xp) are statistically homogeneous random variables with
correlations
(©em(70,%0)O 0 m (70, %0)") = deer Smm Co

where, in terms of Newtonian perturbations WV,
Cp = 4n / To(k)? (W(ry, k)W(71, k)) k2 dk
0

In order to be coherent with observations, for small k it should be

(1, K)B(r1, K)) ~ C (’ZJ)H

we shall compare this with results obtained in an inflationary model.



Conclusion

Summary

m Semiclassical Backreaction can be analyzed as a well posed problem
in cosmology.

m Beyond mean field approximation it can be understood as a stochastic
equation.

Thanks a lot for your attention!



Question

Deformation

m Deformation: if we use —2/H in the place of A to construct a star
product *y.

m It is realized by

ay : (A, %) = (A, *y)

such that
Fxy G = ay(ay(F) xa;'(G))

B Qy is an isomorphism.

m We can push forward states on (A, %) to (A, *y). For wo
fwp = a?fll*(wg) = (w2 —H)s

m The scheme incorporates the point splitting regularization



Question
Extended algebra

We can now safely extend (A, x3) to local functionals.

m A.: a finite number of non vanishing func. der.

m FeA.. F("(0): compact supp., symmetric,
WF(FMO) NV, uV_=0.

1
n!

(F 2 G)(p) ==Y —(F (), H=" G (i)

n

Hormander criterion for multiplication of distributions holds.

m (Ae, *y) is the extended x-algebra of fields.
[Brunetti Diitsch Fredenhagen Hollands Wald]

m They satisfy the axiom of a Locally covariant theory



Question

Regularization freedom and ambiguity

m The product in A, is constructed out of H, there are ambiguities
(renormalization freedom).

m The algebras for different H are isomorphic

m But the local fields are not invariant

m Ci(x): real polynomials of the metric. [Hollands Wald]
m With the correct scaling under rigid dilation

C,' — )\iC,'



Question
Analysis of (?

How (¢?)., , depends on H?
(20N una = fim [o100x,v) = Hlx,y)] + aR + fim?

Remind: Prescription for fixing the renormalization freedom:
m Minkowksi spacetime on Minkowksi vacuum, fixes j.
m « changes the value of H. or X. = H_ is a ren. constant

We regularize on Minkowski spacetime the pl’Ob|€III —DM + (ma)2
li ( ) ! ( )_ ) : l '
im H(y,x) — ——F——Hm(y,x) = == loga+a'R
y—X 4 a(’71)3(72) Y 7‘2 ’

Point splitting at fixed time, then it is enough to subtract

Hig(y, x) = (471r)2 ((726 + m?a(7)? log (;‘\;))



Question
Other reg. scheme

Comparison with the first order adiabatic approximation

1 eik(y—x)
H&I(yvx) - (271_)3 /

d’k
2\/k? + m?a(r)?

is a continuous function

<902>W1,0 =
1

> 1 m?a? m?
2 N J— — _— —_
5272 /o k*dk [Xka ©(k — ma) <2k 113 )] = +aR,




Consider
O(X) := 2128 (%)

Proposition

On B,

[2(X)(2)] < Gi(a0, o, )t ,
|DO(X, )] < Ca(ao, to, €)tol|9]] ,

where at fixed A\, Ci(Ato, to, ¢) and Co(Aty, to, ¢) are bounded for ty — 0.



Question
Construction of the y

X+ (k2 4+ m?ad)x + m?(a® — a8)x = 0
o—iko(r—70)

Perturbative const. over the massless solution x9(7) = ok

oo
Xk = Z Xk
n=0

i) = - [ ST (- ) gy 0

0

The series converges absolutely on |19, 7|, and

m?a®(t — 7o)

1 1
Ixk| < \/ﬂexp ( P ) , Ixk| < ﬁeXp (m2a2(7' —7-0)2) .

Every x7 is O(m?")



Question
Proof

o0 1
K2dk [ _ ] ,
/0 kXK Vk? + m2a2

Small k do not create problems

Expand x in powers of m?

The large powers decay in k sufficiently rapidly
O(mP) vanishes

O(m?) and O(m*) can be directly analyzed



If ty is sufficiently small, the map T is a contraction in Bc.

Proof
I7(y) =Tl < Clly — x| c<1

Xy = x + A0 with § = (y — x)

dT dT ‘ ‘/ddT

— <
a )~ dX dt dA‘ g

A€0,1]

d
DO%(XA,&)‘

Theorem

Xo == Hy ! the massless solution then the sequence
Xn = T(Xn—l)

converges in B¢ to the solution X = H™1 of the semiclasscal Einstein
equation.



Question

Some comments

m The found solution can be shown to be C! only

m But there is always a smooth spacetime as close as you want to the
solution

m The existence does not depend on the state, in the sense that other
wa g With B rapidly decreasing produce a solution.

m All these solutions show a phase typical of power law inflation which
is then state independent.

m The found solution does not depend on ag

m It can be be fixed a posteriori by Gog = 87( Too)



Variance
Analysis of the fluctuations

The solution is meaningful provided the variance of T,/ is small

m The anomaly is a C—number

m The variance of (¢?)

Au(9?) = w(? *1 ) — w(P?)w($?)

diverges: it is proportional to wy - wa(x, x)

When smeared the situation is better, consider the family centered in x;
n X

Fogmo (71, X) = —f <n1(7" —7)+ T, >

n; na

where

———————————————————————————




Variance

We study the limit

lim lim [R(fay,n,) + 8m(T)e(far.my)] = R(x:) + 87 (T )u(xr)

ny—00 Np—00

Theorem
We have

nz“_r;noo Awl,o(spz(fnhnz)) =0.

m In a weaker sense, the solution we have found is meaningful also
when H is very large.
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