Testing General Relativity with Cosmological Observations J

Ruth Durrer
Université de Geneve
Départment de Physique Théorique and Center for Astroparticle Physics

UNIVERSITE
DE G E N EVE Center for A(s]t;sga]);ticle Physics

MITP, Mainz, June 3, 2019

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR in Cosmology Mainz, June 3, 2019 1/29



Outline

0 Introduction
e Very large scale galaxy surveys

e The angular power spectrum and the correlation function of galaxy density
fluctuations
@ The transversal power spectrum
@ The radial power spectrum

0 Measuring the lensing potential / relativistic effects
e E, statistics

e Conclusions

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR in Cosmology Mainz, June 3, 2019 2/29



Introduction

Einstein’s theory of gravity has been tested in many ways and passed all the tests with
flying colors:

Light deflection
Perihel advance of mercury & many other binary systems

o
o
@ Shapiro time delay
o
o

Gravitational waves

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR in Cosmology Mainz, June 3, 2019 3/29



Introduction

Einstein’s theory of gravity has been tested in many ways and passed all the tests with
flying colors:

@ Light deflection

@ Perihel advance of mercury & many other binary systems
@ Shapiro time delay
o
o

Gravitational waves

All these observations essentially test vacuum solutions of Einstein’s equations,

R, =0.

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR in Cosmology Mainz, June 3, 2019 3/29



Introduction

Einstein’s theory of gravity has been tested in many ways and passed all the tests with
flying colors:

@ Light deflection

@ Perihel advance of mercury & many other binary systems
@ Shapiro time delay
o
o

Gravitational waves

All these observations essentially test vacuum solutions of Einstein’s equations,

R, =0.

Can we also test these equations with matter,

R — %QWH = G = 87GT,, ?
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Introduction
Cosmology is a non-vacuum solution of Einstein’s equation:

ds® = —df® + &(t)yjdx'dd  z+1=a/a(t)
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Introduction
Cosmology is a non-vacuum solution of Einstein’s equation:
ds® = —df® + &(t)yjdx'dd  z+1=a/a(t)
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Have we 'tested’ these equations in cosmology?
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Introduction
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Compilation by Huterer & Shafer '17.
Binned from 870 SNe la (black) and 3 BAO points (from BOSS DR12, red).
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Compilation by Huterer & Shafer '17.
Binned from 870 SNe la (black) and 3 BAO points (from BOSS DR12, red).

NO'!
We have 'postulated’ the existence of dark matter and dark energy to fit this data.
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Introduction

In this talk | shall argue that with the help of clustering observations, i.e. using the fact
that the Universe is not perfectly homogeneous and isotropic, we can actually test
Einstein’s equations to some extent. ..
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Introduction

The CMB

CMB sky as seen by Planck
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Introduction

M. Blanton and the Sloan Digital Sky Survey Team.
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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)

T T T T T T
Reconstructed :
« CMASS DR9
——best—fit model
X°=61.1 / 59

w0
o
(<]
Q,
=
?
<
~
_
<.
& el
s + §8
o
g =
- a
:o
=
A
wl =8
@ 27

-1.5

logijgk /h Mpc~?

Ruth Durrer (Université de Genéve, DPT & CAP)

Testing GR in Cosmology

from Anderson et al. ’12

SDSS-IIl (BOSS)
power spectrum.

Galaxy surveys ~

matter density fluctuations,
biasing and redshift space
distortions.
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Introduction

But...
@ We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.

We see density fluctuations which are further away from us, further in the past.

We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.
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@ The measured redshift is perturbed by peculiar velocities and by the gravitational
potential.

@ The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

@ Not only the number of galaxies but also the volume is distorted.

@ For small galaxy catalogs, these effects are not very important, but when we go
out to z ~ 1 or more, they become relevant. Already for SDSS which goes out to
z ~ 0.2 (main catalog) or even z ~ 0.7 (BOSS) and even more DES z < 1.
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Introduction

But...

@ We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.

@ The measured redshift is perturbed by peculiar velocities and by the gravitational
potential.

@ The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

@ Not only the number of galaxies but also the volume is distorted.

@ For small galaxy catalogs, these effects are not very important, but when we go
out to z ~ 1 or more, they become relevant. Already for SDSS which goes out to
z ~ 0.2 (main catalog) or even z ~ 0.7 (BOSS) and even more DES z < 1.

@ But of course much more for future surveys like DESI, Euclid, WFIRST and SKA.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is
2d2 1 az'

(z) = e[
Jo H@)  HolJo /(1 + 22 +Qx(T + 2)2 + Qa

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is
2d2 1 az'

(2) = [
Jo H@)  HolJo /(1 + 22 +Qx(T + 2)2 + Qa

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
Depending on the observational situation we measure directly r(z) or

da(z) = ﬁm(r(z)) the angular diameter distance
a(z) = (14 2)xx(r(2)) the luminosity distance.

At small redshift all distances are d(z) = z/Hy + O(z?), for z < 1. At larger redshifts,
the distance depends strongly on Qk, Qa,---.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is
2d2 1 az'

(z) = e[
Jo H@)  HolJo /(1 + 22 +Qx(T + 2)2 + Qa

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
Depending on the observational situation we measure directly r(z) or

da(z) = ﬁm(r(z)) the angular diameter distance
a(z) = (14 2)xx(r(2)) the luminosity distance.

At small redshift all distances are d(z) = z/Hy + O(z?), for z < 1. At larger redshifts,
the distance depends strongly on Qk, Qa,---.

@ Whenever we convert a measured redshift and angle into a length scale, we make
assumptions about the underlying cosmology.
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Very large scale galaxy surveys

If we convert the measured correla-
tion function £(0, z1, z2) to a power
spectrum, we have to introduce a
cosmology, to convert angles and
redshifts into length scales.

r(z1, 22, 0) (K=0)

\/rf +r2 —2nr; cos .

n=ria) = 7

(Figure by F. Montanari)
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Very large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See Yoo et al. '09; Yoo '10, Bonvin & RD '11; Challinor & Lewis ’11)
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Very large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See Yoo et al. '09; Yoo '10, Bonvin & RD '11; Challinor & Lewis ’11)

For each galaxy in a catalog we measure
(0,¢,z) = (n,z) + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, N(n, z) and
measure the fluctuation of this count:

N(n,z) - N(z) _ p(n,2)V(n.2) — 3(2)V(2)

A(n,z) = e
N(z) p(2)V(2)

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR in Cosmology Mainz, June 3, 2019 13/29



Very large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See Yoo et al. '09; Yoo '10, Bonvin & RD '11; Challinor & Lewis ’11)
For each galaxy in a catalog we measure

(0,¢,z) = (n,z) + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, N(n, z) and
measure the fluctuation of this count:

A(n, z) = N(n,z) — N(z) _ p(n,2) V(_n,zz— 5(2)V(2)
N(2) a(2)V(2)
£(6,2,2") = (A(n, 2)A(n, 2)) , n-n’=coso.

This quantity is directly measurable.
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations from scalar perturbations to 1st order

A(n,z) = bDen—(2—-55)0+ WV + % [4) +0r(V - n)]
H 2-5s e
+(ﬁ+ oL +53> <W+V«n+/0 dr(¢+\ll))
255 (1@ r(z)y—r
4 212 ), ar [2 - AQ:| (¢ +Wv).

( Bonvin & RD '11, Challinor & Lewis ’11)
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations from scalar perturbations to 1st order

A(n,z) =

= (8Den) - 2~ 55)0 + v + o [0+ (0 V-
H L 2-5s
(e

= +5s> <w+m / dr(d>+\ll)>

+22r(25)s/ dr[ (& +w) —

, Challinor & Lewis ’11)

T NG (¢ + W) } .

( Bonvin & RD 11
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Redshift space distortions in the BOSS survey

(from Reid et al. ’12)
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The angular power spectrum of galaxy density fluctuations

For fixed z, we can expand A(n, z) in spherical harmonics,

=S an(@Yinl),  C(2.2) = (@n(2)ain()

£0,z,2") = (A(n, 2)A(n, 2')) = 417 Z(2é+ 1)Ce(z, Z2")Ps(cos 0)
4

cosf=n-n’
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 0.1, Az = 0.01
(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 3, Az = 0.3
(from Bonvin & RD ’11)
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The radial power spectrum
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Signal to Noise

The signal to noise of different contributions for an Euclid-like survey:
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From Di Dio, Montanari, RD & Lesgourgues (2013).
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Measuring the lensing potential

Well separated redshift bins measure mainly the lensing-density correlation:
(A(n,2)A(N,2) = (AL(n,2)5(n',2)) z> 2

Al(n, z) = (2 - 55(2))k(n, 2)
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Testing GR with the lensing potential
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Testing GR with the lensing potential
B

Fisher matrix analyis of an Euclid-like

photometric survey.
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Neglecting the lensing potential biases cosmological parameters
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E, statistics

In GR photon propagation, which governs weak lensing is sensitive to the sum of the
Bardeen potentials, ¢ + W, which density fluctuations generate ®. In standard GR
® = W such that the following combination is independent of both, bias and scale:

_ H@)(® +V)

Eo(k:2) = 3re(i o)V

= f(2) = [Qm(2)]"% .

(Zhang et al., 2007) This can be converted to (Pullen et al., 2015)

Ci’(2.,2)

Eq(¢,2) = r(Z)W

It has, however been pointed out (Moradinezhad Dizgah & RD 2016), that when
observing galaxies, we do not directly observe C° or C° but rather

R

CZg(Z1,Zg) ~ b(Zg)C;(S(Z1,Zg) — (2 — 53(22))0?”(21,22)
C¥(z1,22) b(z1)b(22)C* (21, 22) + (2 — 55(21))(2 — 55(22)) Ci" (21, 22)
—b(22)(2 — 55(21))C° (21, 22) — b(21)(2 — 55(22)) Cr° (22, 1)

For low redshifts these corrections are not very relevant, but at high redshifts they are.
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E, statistics

DES-like survey
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For intensity mapping s = 0.4 and the correction terms vanish (Pourtsidou 2016).
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Conclusions

@ So far cosmological LSS data mainly determined &(r), or equivalently P(k). These
are easier to measure (less noisy) but:
e they require an fiducial input cosmology converting redshift and angles to length
scales,

r=+/r(z)?2+r(z')2 — 2r(z)r(z') cosf .
This complicates especially the determination of error bars in parameter estimation
e it is not evident how to correctly include lensing.
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Conclusions

@ So far cosmological LSS data mainly determined &(r), or equivalently P(k). These
are easier to measure (less noisy) but:
e they require an fiducial input cosmology converting redshift and angles to length
scales,

r=+/r(z)?2+r(z')2 — 2r(z)r(z') cosf .
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This complicates especially the determination of error bars in parameter estimation
e it is not evident how to correctly include lensing.

@ Future large & precise 3d galaxy catalogs like Euclid, DESI, SKA, LSST etc. will
be able to determine directly the measured 3d correlation functions and spectra,
£(0,z,2") and Cy(z, Z') from the data.

@ These 3d quantities will of course be more noisy, but they also contain more
information.

@ These spectra are not only sensitive to the matter distribution (density) but also to
the velocity via ( ) and to the perturbations of spacetime
geometry (lensing) .
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@ We can therefore in principle determine both, the components of the energy
momentum tensor and the geometry which allows us to test Einstein’s equations.

@ Especially C;9(z, z') and C{(z, Z') if suitably corrected allow for quite model
independent tests of GR via e.g. the Eg-statistics.

@ The spectra C,(z,z") depend sensitively and in several different ways on dark
energy (growth factor, distance redshift relation), on the matter and baryon
densities, bias, etc. Their measurements provide a new route to estimate
cosmological parameters and to test general relativity.
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