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The pAQFT perspective

The main message of this talk
Perturbative algebraic QFT (pAQFT) is a machinery to turn
functionals of classical field configurations (classical observables)
into quantum observables. The choice of diffeomorphism invariant
observables is made on the classical level.

The aim of this program is to study some aspects of observables
in QG that are accessible to perturbative methods and to learn
more about the algebraic structure they define.

The ultimate goal is to break away from the classical picture and
have an intrinsically quantum formulation.
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Diffeomorphism invariant observables

In classical theory we have the metric g on a manifold M and
observables are (smooth) functionals of the metric.

A functional is strictly local if we can write it as

F(g) =

∫
M

f (jkx(g)) ,

where f has compact support and jkx(g) is the k-th jet of g at x
(i.e. f depends on derivatives of g up to order k).
Strict locality is in conflict with diffeomorphism invariance (at
least for non-compact M). Main proposals for non-local diff
invariant observables: relational observables, dressed
observables (analogy to QED and Wilson loops).
A weaker notion: require all the functional derivatives
δnF
δgn (g0)[h] to be local. This is sufficient for perturbative

renormalization in the sense of Epstein-Glaser.
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Relational observables I

We want to construct functionals that describe relations between
classical fields (relational observables).

We realize the choice of a coordinate system by constructing
four scalars Xµg , µ = 0, . . . , 3 which will parametrize points of
spacetime. The fields Xµg should transform under
diffeomorphisms χ as

Xµχ∗g = Xµg ◦ χ ,
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Relational observables II

Fix a background g0 such that the map

Xg0 : x 7→ (X0
g0
, . . . ,X3

g0
)

is injective.

Take g = g0 + h sufficiently near to g0 and set

αg = X−1
g ◦ Xg0 .

αg transforms under formal diffeomorphisms as

αχ∗g = χ−1 ◦ αg .

Take another local field A[g](x) (e.g. a metric scalar). Then

Ag := Ag ◦ αg

is invariant under diffeos.

Kasia Rejzner Diff invariant observables 6 / 27
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Relational observables III

Physical interpretation

Fields Xµg are configuration-dependent coordinates such that
[A[g] ◦ X−1

g ](Y) corresponds to the value of the quantity A[g] provided
that the quantity Xg has the value Xg = Y .

Thus A[g] ◦ X−1
g is a partial or relational observable (cf. Rovelli,

Dittrich, Thiemann).
By considering A[g] = Ag ◦ X−1

g ◦ Xg0 we identify this
observable with a functional

FA(g) =

∫
A[g](x)f (x) =

∫
A[g](X−1

g (Y))f (X−1
g0

(Y)) ,

for a test density f .
If Xµg and A[g] are all local fields themselves, then FA is
non-local with local derivatives.
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Examples:

On generic backgrounds g0 one can use traces of the powers of
the Ricci operator:

Xa
g := Tr(Ra), a ∈ {1, 2, 3, 4}

More examples: [Bergmann 61, Bergmann-Komar 60].

When matter fields are present in the model, also these can serve
as coordinates, e.g. the dust fields in the Brown-Kuchař model
[Brown-Kuchař 95]; 4 scalar fields coupled to the metric.

For an explicit construction on a cosmological background see
my work with R. Brunetti, K. Fredenhagen, T.-P. Hack and
N. Pinnamonti: Cosmological perturbation theory and quantum
gravity, (JHEP 2016).

See also papers by Fröb et. al. [1703.01158], [1801.02632].
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Perturbative algebraic quantum field theory

Perturbative algebraic quantum field theory (pAQFT) is a
mathematically rigorous framework that allows to build
interacting QFT models on curved spacetimes.

It combines Haag’s idea of local quantum physics with methods
of perturbation theory.
Main contributions:

Free theory obtained by the formal deformation quantization of
Poisson (Peierls) bracket: ?-product ([Dütsch-Fredenhagen 00,
Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, . . . ]).
Interaction introduced in the causal approach to renormalization
due to Epstein and Glaser ([Epstein-Glaser 73]),
Generalization to gauge theories using homological algebra
([Hollands 08, Fredenhagen-KR 11]).
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Physical input

A globally hyperbolic spacetime M (i.e. has a Cauchy surface),
with metric g.

Configuration space E(M): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ).

Typically E(M) is a space of smooth sections of some vector
bundle E π−→ M over M. For the scalar field: E(M) ≡ C∞(M,R).
For perturbative gravity E(M) = Γ((T∗M)⊗2).

The choice of action functional S specifies the dynamics. We use
a modification of the Lagrangian formalism (fully covariant).
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Building models in pAQFT: Free theory

We model observables as functionals F(M) on the space E(M)
of all possible (off-shell) field configurations.

On F(M) we introduce first classical dynamics by means of a

Poisson structure (Peierls bracket): {F,G} =

〈
δF
δϕ
,∆

δG
δϕ

〉
,

where ∆ = ∆R−∆A (Green functions for the linearized action).
Use the deformation quantization to construct the
non-commutative algebra A(M) = (F(M)[[~]], ?), such that

F ? G ~=0−−→ FG
1
i~

(F ? G− G ? F)
~=0−−→ {F,G} .

We work all the time on the same vector space of functionals, but
we equip it with different algebraic structures (Poisson bracket,
?-product).
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Extended Lagrangian

For our construction of ∆ we need globally hyperbolic equations
of motion.

We add extra fields: B, C, C̄ and extend the Einstein-Hilbert
Lagrangian with the gauge-fixing term, Fadeev-Popov term and
an antifield term (BV/BRST method).

We use the split of the metric g into background g0 and
perturbation h to expand the BRST-extended Lagrangian L into a
Taylor series.

We take the quadratic contribution and call it the linearized free
Lagrangian L0.

We define the interaction term as V = L− L0.

Later on we will see that physical quantities do not depend on
this split (background independence).
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Propagators and Green functions

Write the gauge-fixed linearized equation of motion as Pϕ = 0,
where P is a normally hyperbolic operator and ϕ = (h,B,C, C̄)
is the full field multiplet.

If M is globally hyperbolic (has a Cauchy surface), P admits
retarded and advanced Green’s functions ∆R, ∆A. They satisfy:
P ◦∆R/A = id, ∆R/A ◦ P = id and

supp(∆R) ⊂ {(x, y) ∈ M2|y ∈ J−(x)} ,
supp(∆A) ⊂ {(x, y) ∈ M2|y ∈ J+(x)} .

supp f

supp ∆A(f )

supp ∆R(f )

Their difference is the Pauli-Jordan function
∆

.
= ∆R −∆A.
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Poisson structure and the ?-product

The Poisson bracket of the free theory is {F,G} =

〈
δF
δϕ
,∆

δG
δϕ

〉

We define the ?-product (deformation of the pointwise product):

(F ? G)(ϕ)
.
=

∞∑
n=0

~n

n!

〈
F(n)(ϕ),W⊗nG(n)(ϕ)

〉
,

where W is a Hadamard function and it differs from
i
2

∆ by a
symmetric bidistribution, denoted by H.

The free QFT is defined as A0(M)
.
= (F(M)[[~]], ?, ∗), where

F∗(ϕ)
.
= F(ϕ) and F(M) is an appropriate functional space

(some WF set conditions on F(n)(ϕ)s induced by W).

Kasia Rejzner Diff invariant observables 15 / 27



Diffeomorphism invariant observables
Perturbative quantization

Background independence

Poisson structure and the ?-product

The Poisson bracket of the free theory is {F,G} =

〈
δF
δϕ
,∆

δG
δϕ

〉
We define the ?-product (deformation of the pointwise product):

(F ? G)(ϕ)
.
=

∞∑
n=0

~n

n!

〈
F(n)(ϕ),W⊗nG(n)(ϕ)

〉
,

where W is a Hadamard function and it differs from
i
2

∆ by a
symmetric bidistribution, denoted by H.

The free QFT is defined as A0(M)
.
= (F(M)[[~]], ?, ∗), where

F∗(ϕ)
.
= F(ϕ) and F(M) is an appropriate functional space

(some WF set conditions on F(n)(ϕ)s induced by W).

Kasia Rejzner Diff invariant observables 15 / 27



Diffeomorphism invariant observables
Perturbative quantization

Background independence

Poisson structure and the ?-product

The Poisson bracket of the free theory is {F,G} =

〈
δF
δϕ
,∆

δG
δϕ

〉
We define the ?-product (deformation of the pointwise product):

(F ? G)(ϕ)
.
=

∞∑
n=0

~n

n!

〈
F(n)(ϕ),W⊗nG(n)(ϕ)

〉
,

where W is a Hadamard function and it differs from
i
2

∆ by a
symmetric bidistribution, denoted by H.

The free QFT is defined as A0(M)
.
= (F(M)[[~]], ?, ∗), where

F∗(ϕ)
.
= F(ϕ) and F(M) is an appropriate functional space

(some WF set conditions on F(n)(ϕ)s induced by W).

Kasia Rejzner Diff invariant observables 15 / 27



Diffeomorphism invariant observables
Perturbative quantization

Background independence

Example: free scalar field

Smeared fields: Let D(M) = C∞c (M,R) and f , f ′ ∈ D(M).

Φ(f )[ϕ]
.
=

∫
f (x)ϕ(x)dµg(x), Φ(f ′)[ϕ]

.
=

∫
f ′(x)ϕ(x)dµg(x)

[Φ(f ),Φ(f ′)]? = Φ(f ) ? Φ(f ′)− Φ(f ′) ? Φ(f ) = i~
〈
∆, f ⊗ f ′

〉
.

Formally, we can consider Φx
.
= Φ(δx), where δx is the Dirac

delta supported at some x ∈ M.

for M = M (Minkowski spacetime):
[Φ(0,x),Φ(0,y)]? = ∆(0, x; 0, y) = 0.
[Φ(0,x), Φ̇(0,y)]? = ∂y0∆(0, x; 0, y) = i~δ(x− y), where dot
denotes the time derivative.
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Building models in pAQFT: Interaction

To introduce the interaction, we construct, for a given interaction
term V ∈ F(M), the formal S-matrix

S(λV)
.
=

∞∑
n=0

1
n!

(
iλ
~

)n

V ·T . . . ·T V ,

where ·T is the renormalized (using the Epstein-Glaser method)
time-ordered product.

Let F ∈ F(M) be a functional with local derivatives. It can be

non-local, e.g. F =

∫
Ag(x)f (x).

We define the interacting field corresponding to F by

Fint = −i~
d
dt

(
S(V)−1 ? S(V + tF)

)∣∣∣∣
t=0

,

where the inverse of S is the ?-inverse.
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Epstein-Glaser renormalization I

The main technical ingredient we need in order to define
interacting quantum fields in effective QG is Epstein-Glaser
renormalization.

Advantage: gives finite contributions in each order in ~ and λ,
even for power-counting non-renormalizable theories.
The aim is to construct the formal S-matrix S, which is a map on
F(M)[[λ]] (functionals with local derivatives), satisfying the
Epstein-Glaser axioms:

1 Causal factorization: S(F + G) = S(F) ? S(G), if supp(F) is
later than supp(G).

2 Starting element: S(0) = 1, S(1)(0) = id.
3 Field configuration independence
4 Unitarity: S(F) ? S(F) = 1.

Gauge invariance is guaranteed by additional renormalization
conditions (Ward identities).
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Interacting quantum fields

Let F =

∫
Ag(x)f (x) be a classical field functional.

We define the interacting field corresponding to F by

Fint = −i~
d
dt

(
S(V)−1 ? S(V + tF)

)∣∣∣∣
t=0

,

where the inverse of S is the ?-inverse.

Given s, the free classical BV operator, the interacting quantum
BV operator ŝ is defined by

s(Fint) = (ŝF)int .

The cohomology of ŝ characterizes the space of gauge invariant
quantum observables.
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Correlation functions

In the algebraic approach, states are functionals ω : A(M)→ C
with ω(1) = 1 and ω(A∗A) ≥ 0. (Relation to Hilbert spaces via
GNS theorem).

A natural state on F(M) and hence A(M) is given by evaluation
at a given field configuration. For the scalar field we can take
ω(F) = F(0).
Wightman n-point functions of the free theory are

Wn(f1, . . . , fn) = (Φ(f1) ? · · · ? Φ(fn))(0) ,

where Φ(f )(ϕ) =

∫
ϕ(x)f (x)dµ(x).

Interacting correlation functions are obtained as:

(Φint(f1) ? · · · ? Φint(fn))(0) ,

similarly for other observables in the theory.

Kasia Rejzner Diff invariant observables 20 / 27
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GNS theorem).
A natural state on F(M) and hence A(M) is given by evaluation
at a given field configuration. For the scalar field we can take
ω(F) = F(0).
Wightman n-point functions of the free theory are

Wn(f1, . . . , fn) = (Φ(f1) ? · · · ? Φ(fn))(0) ,

where Φ(f )(ϕ) =

∫
ϕ(x)f (x)dµ(x).

Interacting correlation functions are obtained as:

(Φint(f1) ? · · · ? Φint(fn))(0) ,

similarly for other observables in the theory.
Kasia Rejzner Diff invariant observables 20 / 27



Diffeomorphism invariant observables
Perturbative quantization

Background independence

What about gravity?

All these structures exist (perturbatively) also for non-local
functionals with local derivatives (e.g. relational observables in
gravity for appropriate choice of Xµ).

One needs to make the split g = g0 + λh and expand the action S
around an on-shell background g0 (i.e. L = L0 + λV). The
algebraic structure is (perturbatively) independent of the
splitting.

In fact, one can introduce the interacting product ?int defined
through

(F ?int G)int = Fint ? Gint .

Formally, this product depends only on L, not on the splitting
(Hawkins, KR [1612.09157]). Some obstructions could appear
when renormalization is performed.
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Relative Cauchy evolution

Let N+ and N− be two spacetimes that
embed into two other spacetimesM1 and
M2 around Cauchy surfaces, via admissible
embeddings χk,±, k = 1, 2.

Then
β = Aχ1+ ◦ (Aχ2+)−1 ◦ Aχ2− ◦ (Aχ1−)−1

is an automorphism of A(M1). This is the
consequence of the Time-slice axiom of
LCQFT.

M1 M2

N+

N−

χ1+ χ2+

χ1− χ2−
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Background independence

LetM1 = (M, g1) andM2 = (M, g2),
where g1 and g2 differ by a (compactly
supported) symmetric tensor h (see the
diagram).

Define Θµν(x)
.
=

δβh

δhµν(x)

∣∣∣
h=0

.

The infinitesimal background
independence is the condition Θµν = 0.

(M, g1) (M, g2)

N+

N−

supp(h)

χ1+ χ2+

χ1− χ2−

Kasia Rejzner Diff invariant observables 24 / 27



Diffeomorphism invariant observables
Perturbative quantization

Background independence

Background independence

LetM1 = (M, g1) andM2 = (M, g2),
where g1 and g2 differ by a (compactly
supported) symmetric tensor h (see the
diagram).

Define Θµν(x)
.
=

δβh

δhµν(x)

∣∣∣
h=0

.

The infinitesimal background
independence is the condition Θµν = 0.

(M, g1) (M, g2)

N+

N−

supp(h)

χ1+ χ2+

χ1− χ2−

Kasia Rejzner Diff invariant observables 24 / 27



Diffeomorphism invariant observables
Perturbative quantization

Background independence

Background independence

LetM1 = (M, g1) andM2 = (M, g2),
where g1 and g2 differ by a (compactly
supported) symmetric tensor h (see the
diagram).

Define Θµν(x)
.
=

δβh

δhµν(x)

∣∣∣
h=0

.

The infinitesimal background
independence is the condition Θµν = 0.

(M, g1) (M, g2)

N+

N−

supp(h)

χ1+ χ2+

χ1− χ2−

Kasia Rejzner Diff invariant observables 24 / 27



Diffeomorphism invariant observables
Perturbative quantization

Background independence

Background independence II

We have shown that

(Θµν(F))int
o.s.
= − i

~
[Tµνint ,Fint]? ,

where Tµνint is the interacting stress-energy tensor of L.

Next we used the renormalization freedom to ensure that
Tµνint = 0 holds, so the interacting theory is background
independent.
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Conclusions

AQFT is a convenient framework to solve conceptual problems
of QFT on curved spacetimes. It also allows to formulate the
theory of effective QG.

In this framework we have constructed classical and quantum
gauge invariant observables for the effective QG.

To quantize the theory, we make a tentative split into a free and
interacting part. We quantize the free theory first and then use
the Epstein-Glaser renormalization to introduce the interaction.

We have shown that our theory is background independent, i.e.
independent of the split into free and interacting part.
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Thank you very much for your attention!
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