Observables in perturbative quantum gravity and perturbative quantum cosmology

Kasia Rejzner

University of York

MITP 03.06.2019

The pAQFT perspective

The main message of this talk

Perturbative algebraic QFT (pAQFT) is a machinery to turn functionals of classical field configurations (classical observables) into quantum observables. The choice of diffeomorphism invariant observables is made on the classical level.

The pAQFT perspective

The main message of this talk

Perturbative algebraic QFT (pAQFT) is a machinery to turn functionals of classical field configurations (classical observables) into quantum observables. The choice of diffeomorphism invariant observables is made on the classical level.

• The aim of this program is to study some aspects of observables in QG that are accessible to perturbative methods and to learn more about the algebraic structure they define.

The pAQFT perspective

The main message of this talk

Perturbative algebraic QFT (pAQFT) is a machinery to turn functionals of classical field configurations (classical observables) into quantum observables. The choice of diffeomorphism invariant observables is made on the classical level.

- The aim of this program is to study some aspects of observables in QG that are accessible to perturbative methods and to learn more about the algebraic structure they define.
- The ultimate goal is to break away from the classical picture and have an intrinsically quantum formulation.

Diffeomorphism invariant observables

• In classical theory we have the metric g on a manifold M and observables are (smooth) functionals of the metric.

Diffeomorphism invariant observables

- In classical theory we have the metric g on a manifold M and observables are (smooth) functionals of the metric.
- A functional is *strictly local* if we can write it as

$$F(g) = \int_M f(j_x^k(g)) \,,$$

where *f* has compact support and $j_x^k(g)$ is the *k*-th jet of *g* at *x* (i.e. *f* depends on derivatives of *g* up to order *k*).

Diffeomorphism invariant observables

- In classical theory we have the metric g on a manifold M and observables are (smooth) functionals of the metric.
- A functional is *strictly local* if we can write it as

$$F(g) = \int_M f(j_x^k(g)) \,,$$

where *f* has compact support and $j_x^k(g)$ is the *k*-th jet of *g* at *x* (i.e. *f* depends on derivatives of *g* up to order *k*).

• Strict locality is in conflict with diffeomorphism invariance (at least for non-compact *M*). Main proposals for non-local diff invariant observables: relational observables, dressed observables (analogy to QED and Wilson loops).

Diffeomorphism invariant observables

- In classical theory we have the metric g on a manifold M and observables are (smooth) functionals of the metric.
- A functional is *strictly local* if we can write it as

$$F(g) = \int_M f(j_x^k(g)) \,,$$

where *f* has compact support and $j_x^k(g)$ is the *k*-th jet of *g* at *x* (i.e. *f* depends on derivatives of *g* up to order *k*).

- Strict locality is in conflict with diffeomorphism invariance (at least for non-compact *M*). Main proposals for non-local diff invariant observables: relational observables, dressed observables (analogy to QED and Wilson loops).
- A weaker notion: require all the functional derivatives $\frac{\delta^n F}{\delta g^n}(g_0)[h]$ to be local. This is sufficient for perturbative renormalization in the sense of Epstein-Glaser.

Relational observables I

• We want to construct functionals that describe relations between classical fields (relational observables).

- We want to construct functionals that describe relations between classical fields (relational observables).
- We realize the choice of a coordinate system by constructing four scalars X^μ_g, μ = 0,..., 3 which will parametrize points of spacetime. The fields X^μ_g should transform under diffeomorphisms χ as

$$X^{\mu}_{\chi^*g} = X^{\mu}_g \circ \chi \; ,$$

Relational observables II

• Fix a background g_0 such that the map

$$X_{g_0}: x \mapsto (X_{g_0}^0, \dots, X_{g_0}^3)$$

is injective.

Relational observables II

• Fix a background g_0 such that the map

$$X_{g_0}: x \mapsto (X_{g_0}^0, \dots, X_{g_0}^3)$$

is injective.

• Take $g = g_0 + h$ sufficiently near to g_0 and set

$$\alpha_g = X_g^{-1} \circ X_{g_0} \,.$$

• Fix a background g_0 such that the map

$$X_{g_0}: x \mapsto (X_{g_0}^0, \dots, X_{g_0}^3)$$

is injective.

• Take $g = g_0 + h$ sufficiently near to g_0 and set

$$\alpha_g = X_g^{-1} \circ X_{g_0} \,.$$

• α_g transforms under formal diffeomorphisms as

$$\alpha_{\chi^*g} = \chi^{-1} \circ \alpha_g \,.$$

• Fix a background g_0 such that the map

$$X_{g_0}: x \mapsto (X_{g_0}^0, \dots, X_{g_0}^3)$$

is injective.

• Take $g = g_0 + h$ sufficiently near to g_0 and set

$$\alpha_g = X_g^{-1} \circ X_{g_0} \,.$$

• α_g transforms under formal diffeomorphisms as

$$\alpha_{\chi^*g} = \chi^{-1} \circ \alpha_g \,.$$

• Take another local field A[g](x) (e.g. a metric scalar). Then

$$\mathcal{A}_g := A_g \circ \alpha_g$$

is invariant under diffeos.

Physical interpretation

Fields X_g^{μ} are configuration-dependent coordinates such that $[A[g] \circ X_g^{-1}](Y)$ corresponds to the value of the quantity A[g] provided that the quantity X_g has the value $X_g = Y$.

Physical interpretation

Fields X_g^{μ} are configuration-dependent coordinates such that $[A[g] \circ X_g^{-1}](Y)$ corresponds to the value of the quantity A[g] provided that the quantity X_g has the value $X_g = Y$.

• Thus $A[g] \circ X_g^{-1}$ is a partial or relational observable (cf. Rovelli, Dittrich, Thiemann).

Physical interpretation

Fields X_g^{μ} are configuration-dependent coordinates such that $[A[g] \circ X_g^{-1}](Y)$ corresponds to the value of the quantity A[g] provided that the quantity X_g has the value $X_g = Y$.

- Thus A[g] ∘ X_g⁻¹ is a partial or relational observable (cf. Rovelli, Dittrich, Thiemann).
- By considering $\mathcal{A}[g] = A_g \circ X_g^{-1} \circ X_{g_0}$ we identify this observable with a functional

$$F_{\mathcal{A}}(g) = \int \mathcal{A}[g](x)f(x) = \int A[g](X_g^{-1}(Y))f(X_{g_0}^{-1}(Y)),$$

for a test density f.

Physical interpretation

Fields X_g^{μ} are configuration-dependent coordinates such that $[A[g] \circ X_g^{-1}](Y)$ corresponds to the value of the quantity A[g] provided that the quantity X_g has the value $X_g = Y$.

- Thus A[g] ∘ X_g⁻¹ is a partial or relational observable (cf. Rovelli, Dittrich, Thiemann).
- By considering $\mathcal{A}[g] = A_g \circ X_g^{-1} \circ X_{g_0}$ we identify this observable with a functional

$$F_{\mathcal{A}}(g) = \int \mathcal{A}[g](x)f(x) = \int A[g](X_g^{-1}(Y))f(X_{g_0}^{-1}(Y)),$$

for a test density f.

• If X_g^{μ} and A[g] are all local fields themselves, then $F_{\mathcal{A}}$ is non-local with local derivatives.

Examples:

• On generic backgrounds g₀ one can use traces of the powers of the Ricci operator:

$$X_g^a := \operatorname{Tr}(\mathbf{R}^a), \qquad a \in \{1, 2, 3, 4\}$$

• On generic backgrounds g₀ one can use traces of the powers of the Ricci operator:

$$X_g^a := \operatorname{Tr}(\mathbf{R}^a), \qquad a \in \{1, 2, 3, 4\}$$

• More examples: [Bergmann 61, Bergmann-Komar 60].

• On generic backgrounds g₀ one can use traces of the powers of the Ricci operator:

$$X_g^a := \operatorname{Tr}(\mathbf{R}^a), \qquad a \in \{1, 2, 3, 4\}$$

- More examples: [Bergmann 61, Bergmann-Komar 60].
- When matter fields are present in the model, also these can serve as coordinates, e.g. the dust fields in the Brown-Kuchař model [Brown-Kuchař 95]; 4 scalar fields coupled to the metric.

• On generic backgrounds g₀ one can use traces of the powers of the Ricci operator:

$$X_g^a := \operatorname{Tr}(\mathbf{R}^a), \qquad a \in \{1, 2, 3, 4\}$$

- More examples: [Bergmann 61, Bergmann-Komar 60].
- When matter fields are present in the model, also these can serve as coordinates, e.g. the dust fields in the Brown-Kuchař model [Brown-Kuchař 95]; 4 scalar fields coupled to the metric.
- For an explicit construction on a cosmological background see my work with R. Brunetti, K. Fredenhagen, T.-P. Hack and N. Pinnamonti: *Cosmological perturbation theory and quantum gravity*, (JHEP 2016).

• On generic backgrounds g_0 one can use traces of the powers of the Ricci operator:

$$X_g^a := \operatorname{Tr}(\mathbf{R}^a), \qquad a \in \{1, 2, 3, 4\}$$

- More examples: [Bergmann 61, Bergmann-Komar 60].
- When matter fields are present in the model, also these can serve as coordinates, e.g. the dust fields in the Brown-Kuchař model [Brown-Kuchař 95]; 4 scalar fields coupled to the metric.
- For an explicit construction on a cosmological background see my work with R. Brunetti, K. Fredenhagen, T.-P. Hack and N. Pinnamonti: *Cosmological perturbation theory and quantum gravity*, (JHEP 2016).
- See also papers by Fröb et. al. [1703.01158], [1801.02632].

Diffeomorphism invariant observables

• Perturbative algebraic quantum field theory (pAQFT) is a mathematically rigorous framework that allows to build interacting QFT models on curved spacetimes.

- Perturbative algebraic quantum field theory (pAQFT) is a mathematically rigorous framework that allows to build interacting QFT models on curved spacetimes.
- It combines Haag's idea of local quantum physics with methods of perturbation theory.

- Perturbative algebraic quantum field theory (pAQFT) is a mathematically rigorous framework that allows to build interacting QFT models on curved spacetimes.
- It combines Haag's idea of local quantum physics with methods of perturbation theory.
- Main contributions:

- Perturbative algebraic quantum field theory (pAQFT) is a mathematically rigorous framework that allows to build interacting QFT models on curved spacetimes.
- It combines Haag's idea of local quantum physics with methods of perturbation theory.
- Main contributions:
 - Free theory obtained by the formal deformation quantization of Poisson (Peierls) bracket: *-product ([Dütsch-Fredenhagen 00, Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, ...]).

- Perturbative algebraic quantum field theory (pAQFT) is a mathematically rigorous framework that allows to build interacting QFT models on curved spacetimes.
- It combines Haag's idea of local quantum physics with methods of perturbation theory.
- Main contributions:
 - Free theory obtained by the formal deformation quantization of Poisson (Peierls) bracket: *-product ([Dütsch-Fredenhagen 00, Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, ...]).
 - Interaction introduced in the causal approach to renormalization due to Epstein and Glaser ([Epstein-Glaser 73]),

- Perturbative algebraic quantum field theory (pAQFT) is a mathematically rigorous framework that allows to build interacting QFT models on curved spacetimes.
- It combines Haag's idea of local quantum physics with methods of perturbation theory.
- Main contributions:
 - Free theory obtained by the formal deformation quantization of Poisson (Peierls) bracket: *-product ([Dütsch-Fredenhagen 00, Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, ...]).
 - Interaction introduced in the causal approach to renormalization due to Epstein and Glaser ([Epstein-Glaser 73]),
 - Generalization to gauge theories using homological algebra ([Hollands 08, Fredenhagen-KR 11]).

• A globally hyperbolic spacetime *M* (i.e. has a Cauchy surface), with metric *g*.

- A globally hyperbolic spacetime *M* (i.e. has a Cauchy surface), with metric *g*.
- Configuration space $\mathcal{E}(M)$: choice of objects we want to study in our theory (scalars, vectors, tensors,...).

- A globally hyperbolic spacetime *M* (i.e. has a Cauchy surface), with metric *g*.
- Configuration space $\mathcal{E}(M)$: choice of objects we want to study in our theory (scalars, vectors, tensors,...).
- Typically *E(M)* is a space of smooth sections of some vector bundle *E* → *M* over *M*. For the scalar field: *E(M)* ≡ *C*[∞](*M*, ℝ). For perturbative gravity *E(M)* = Γ((*T***M*)^{⊗2}).

- A globally hyperbolic spacetime *M* (i.e. has a Cauchy surface), with metric *g*.
- Configuration space $\mathcal{E}(M)$: choice of objects we want to study in our theory (scalars, vectors, tensors,...).
- Typically *E*(*M*) is a space of smooth sections of some vector bundle *E* → *M* over *M*. For the scalar field: *E*(*M*) ≡ *C*[∞](*M*, ℝ). For perturbative gravity *E*(*M*) = Γ((*T***M*)^{⊗2}).
- The choice of action functional *S* specifies the dynamics. We use a modification of the Lagrangian formalism (fully covariant).

Building models in pAQFT: Free theory

• We model observables as functionals $\mathcal{F}(M)$ on the space $\mathcal{E}(M)$ of all possible (off-shell) field configurations.

Building models in pAQFT: Free theory

- We model observables as functionals $\mathcal{F}(M)$ on the space $\mathcal{E}(M)$ of all possible (off-shell) field configurations.
- On $\mathcal{F}(M)$ we introduce first classical dynamics by means of a Poisson structure (Peierls bracket): $\{F, G\} = \left\langle \frac{\delta F}{\delta \varphi}, \Delta \frac{\delta G}{\delta \varphi} \right\rangle$,

where $\Delta = \Delta^{R} - \Delta^{A}$ (Green functions for the linearized action).

Building models in pAQFT: Free theory

- We model observables as functionals $\mathcal{F}(M)$ on the space $\mathcal{E}(M)$ of all possible (off-shell) field configurations.
- On $\mathcal{F}(M)$ we introduce first classical dynamics by means of a Poisson structure (Peierls bracket): $\{F, G\} = \left\langle \frac{\delta F}{\delta \varphi}, \Delta \frac{\delta G}{\delta \varphi} \right\rangle$,

where $\Delta = \Delta^{R} - \Delta^{A}$ (Green functions for the linearized action).

 Use the deformation quantization to construct the non-commutative algebra A(M) = (F(M)[[ħ]], *), such that

$$F \star G \xrightarrow{\hbar=0} FG \quad \frac{1}{i\hbar} (F \star G - G \star F) \xrightarrow{\hbar=0} \{F, G\}.$$

Building models in pAQFT: Free theory

- We model observables as functionals $\mathcal{F}(M)$ on the space $\mathcal{E}(M)$ of all possible (off-shell) field configurations.
- On $\mathcal{F}(M)$ we introduce first classical dynamics by means of a Poisson structure (Peierls bracket): $\{F, G\} = \left\langle \frac{\delta F}{\delta \varphi}, \Delta \frac{\delta G}{\delta \varphi} \right\rangle$,

where $\Delta = \Delta^{R} - \Delta^{A}$ (Green functions for the linearized action).

 Use the deformation quantization to construct the non-commutative algebra A(M) = (F(M)[[ħ]], *), such that

$$F \star G \xrightarrow{\hbar=0} FG \quad \frac{1}{i\hbar} (F \star G - G \star F) \xrightarrow{\hbar=0} \{F, G\}.$$

 We work all the time on the same vector space of functionals, but we equip it with different algebraic structures (Poisson bracket, *-product). Diffeomorphism invariant observables Perturbative quantization Background independence

Extended Lagrangian

• For our construction of Δ we need globally hyperbolic equations of motion.

- For our construction of Δ we need globally hyperbolic equations of motion.
- We add extra fields: *B*, *C*, \overline{C} and extend the Einstein-Hilbert Lagrangian with the gauge-fixing term, Fadeev-Popov term and an antifield term (BV/BRST method).

- For our construction of Δ we need globally hyperbolic equations of motion.
- We add extra fields: B, C, \overline{C} and extend the Einstein-Hilbert Lagrangian with the gauge-fixing term, Fadeev-Popov term and an antifield term (BV/BRST method).
- We use the split of the metric g into background g_0 and perturbation h to expand the BRST-extended Lagrangian L into a Taylor series.

- For our construction of Δ we need globally hyperbolic equations of motion.
- We add extra fields: B, C, \overline{C} and extend the Einstein-Hilbert Lagrangian with the gauge-fixing term, Fadeev-Popov term and an antifield term (BV/BRST method).
- We use the split of the metric g into background g_0 and perturbation h to expand the BRST-extended Lagrangian L into a Taylor series.
- We take the quadratic contribution and call it *the linearized free Lagrangian L*₀.

- For our construction of Δ we need globally hyperbolic equations of motion.
- We add extra fields: *B*, *C*, \overline{C} and extend the Einstein-Hilbert Lagrangian with the gauge-fixing term, Fadeev-Popov term and an antifield term (BV/BRST method).
- We use the split of the metric g into background g_0 and perturbation h to expand the BRST-extended Lagrangian L into a Taylor series.
- We take the quadratic contribution and call it *the linearized free Lagrangian L*₀.
- We define the interaction term as $V = L L_0$.

- For our construction of Δ we need globally hyperbolic equations of motion.
- We add extra fields: *B*, *C*, \overline{C} and extend the Einstein-Hilbert Lagrangian with the gauge-fixing term, Fadeev-Popov term and an antifield term (BV/BRST method).
- We use the split of the metric g into background g_0 and perturbation h to expand the BRST-extended Lagrangian L into a Taylor series.
- We take the quadratic contribution and call it *the linearized free Lagrangian L*₀.
- We define the interaction term as $V = L L_0$.
- Later on we will see that physical quantities do not depend on this split (background independence).

Propagators and Green functions

• Write the gauge-fixed linearized equation of motion as $P\varphi = 0$, where *P* is a normally hyperbolic operator and $\varphi = (h, B, C, \overline{C})$ is the full field multiplet.

Propagators and Green functions

- Write the gauge-fixed linearized equation of motion as $P\varphi = 0$, where *P* is a normally hyperbolic operator and $\varphi = (h, B, C, \overline{C})$ is the full field multiplet.
- If *M* is globally hyperbolic (has a Cauchy surface), *P* admits retarded and advanced Green's functions Δ^{R} , Δ^{A} . They satisfy: $P \circ \Delta^{R/A} = id$, $\Delta^{R/A} \circ P = id$ and

$$\begin{aligned} \sup(\Delta^{\mathbf{R}}) &\subset \{(x, y) \in M^2 | y \in J_-(x)\},\\ \sup(\Delta^{\mathbf{A}}) &\subset \{(x, y) \in M^2 | y \in J_+(x)\}. \end{aligned} \qquad \begin{aligned} \sup \Delta^{\mathbf{R}}(f) \\ & \sup f \\ & \sup \Delta^{\mathbf{A}}(f) \end{aligned}$$

Propagators and Green functions

- Write the gauge-fixed linearized equation of motion as $P\varphi = 0$, where *P* is a normally hyperbolic operator and $\varphi = (h, B, C, \overline{C})$ is the full field multiplet.
- If *M* is globally hyperbolic (has a Cauchy surface), *P* admits retarded and advanced Green's functions Δ^{R} , Δ^{A} . They satisfy: $P \circ \Delta^{R/A} = id$, $\Delta^{R/A} \circ P = id$ and

$$\begin{aligned} \sup(\Delta^{\mathbf{R}}) &\subset \{(x, y) \in M^2 | y \in J_-(x)\}, \\ \sup(\Delta^{\mathbf{A}}) &\subset \{(x, y) \in M^2 | y \in J_+(x)\}. \end{aligned}$$

• Their difference is the Pauli-Jordan function $\Delta \doteq \Delta^{R} - \Delta^{A}.$ supp $\Delta^{A}(f)$

Poisson structure and the \star -product

• The Poisson bracket of the free theory is $\{F, G\} = \left\langle \frac{\delta F}{\delta \varphi}, \Delta \frac{\delta G}{\delta \varphi} \right\rangle$

Poisson structure and the \star -product

- The Poisson bracket of the free theory is $\{F, G\} = \left\langle \frac{\delta F}{\delta \varphi}, \Delta \frac{\delta G}{\delta \varphi} \right\rangle$
- We define the *-product (deformation of the pointwise product):

$$(F \star G)(\varphi) \doteq \sum_{n=0}^{\infty} \frac{\hbar^n}{n!} \left\langle F^{(n)}(\varphi), W^{\otimes n} G^{(n)}(\varphi) \right\rangle ,$$

where W is a Hadamard function and it differs from $\frac{i}{2}\Delta$ by a symmetric bidistribution, denoted by H.

Poisson structure and the \star -product

- The Poisson bracket of the free theory is $\{F, G\} = \left\langle \frac{\delta F}{\delta \varphi}, \Delta \frac{\delta G}{\delta \varphi} \right\rangle$
- We define the *-product (deformation of the pointwise product):

$$(F \star G)(\varphi) \doteq \sum_{n=0}^{\infty} \frac{\hbar^n}{n!} \left\langle F^{(n)}(\varphi), W^{\otimes n} G^{(n)}(\varphi) \right\rangle$$

where W is a Hadamard function and it differs from $\frac{l}{2}\Delta$ by a symmetric bidistribution, denoted by H.

The free QFT is defined as 𝔄₀(M) ≐ (𝓕(M)[[ħ]], ★, *), where F^{*}(φ) ≐ F(φ) and 𝓕(M) is an appropriate functional space (some WF set conditions on F⁽ⁿ⁾(φ)s induced by W).

• Smeared fields: Let $\mathcal{D}(M) = \mathcal{C}^{\infty}_{c}(M, \mathbb{R})$ and $f, f' \in \mathcal{D}(M)$.

$$\Phi(f)[\varphi] \doteq \int f(x)\varphi(x)d\mu_g(x), \quad \Phi(f')[\varphi] \doteq \int f'(x)\varphi(x)d\mu_g(x)$$

• Smeared fields: Let $\mathcal{D}(M) = \mathcal{C}^{\infty}_{c}(M, \mathbb{R})$ and $f, f' \in \mathcal{D}(M)$.

$$\Phi(f)[\varphi] \doteq \int f(x)\varphi(x)d\mu_g(x), \quad \Phi(f')[\varphi] \doteq \int f'(x)\varphi(x)d\mu_g(x)$$

•
$$[\Phi(f), \Phi(f')]_{\star} = \Phi(f) \star \Phi(f') - \Phi(f') \star \Phi(f) = i\hbar \langle \Delta, f \otimes f' \rangle.$$

• Smeared fields: Let $\mathcal{D}(M) = \mathcal{C}^{\infty}_{c}(M, \mathbb{R})$ and $f, f' \in \mathcal{D}(M)$.

$$\Phi(f)[\varphi] \doteq \int f(x)\varphi(x)d\mu_g(x), \quad \Phi(f')[\varphi] \doteq \int f'(x)\varphi(x)d\mu_g(x)$$

•
$$[\Phi(f), \Phi(f')]_{\star} = \Phi(f) \star \Phi(f') - \Phi(f') \star \Phi(f) = i\hbar \langle \Delta, f \otimes f' \rangle.$$

Formally, we can consider Φ_x ≐ Φ(δ_x), where δ_x is the Dirac delta supported at some x ∈ M.

• Smeared fields: Let $\mathcal{D}(M) = \mathcal{C}_c^{\infty}(M, \mathbb{R})$ and $f, f' \in \mathcal{D}(M)$.

$$\Phi(f)[\varphi] \doteq \int f(x)\varphi(x)d\mu_g(x), \quad \Phi(f')[\varphi] \doteq \int f'(x)\varphi(x)d\mu_g(x)$$

•
$$[\Phi(f), \Phi(f')]_{\star} = \Phi(f) \star \Phi(f') - \Phi(f') \star \Phi(f) = i\hbar \langle \Delta, f \otimes f' \rangle.$$

Formally, we can consider Φ_x ≐ Φ(δ_x), where δ_x is the Dirac delta supported at some x ∈ M.

Building models in pAQFT: Interaction

• To introduce the interaction, we construct, for a given interaction term $V \in \mathcal{F}(M)$, the formal S-matrix

$$\mathcal{S}(\lambda V) \doteq \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{i\lambda}{\hbar}\right)^n V \cdot \tau \dots \cdot \tau V,$$

where $\cdot \tau$ is the renormalized (using the Epstein-Glaser method) time-ordered product.

Building models in pAQFT: Interaction

• To introduce the interaction, we construct, for a given interaction term $V \in \mathcal{F}(M)$, the formal S-matrix

$$S(\lambda V) \doteq \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{i\lambda}{\hbar}\right)^n V \cdot \tau \dots \cdot \tau V,$$

where $\cdot \tau$ is the renormalized (using the Epstein-Glaser method) time-ordered product.

• Let $F \in \mathcal{F}(M)$ be a functional with local derivatives. It can be non-local, e.g. $F = \int \mathcal{A}_g(x) f(x)$.

Building models in pAQFT: Interaction

• To introduce the interaction, we construct, for a given interaction term $V \in \mathcal{F}(M)$, the formal S-matrix

$$S(\lambda V) \doteq \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{i\lambda}{\hbar}\right)^n V \cdot \tau \dots \cdot \tau V,$$

where $\cdot \tau$ is the renormalized (using the Epstein-Glaser method) time-ordered product.

- Let F ∈ F(M) be a functional with local derivatives. It can be non-local, e.g. F = ∫ A_g(x)f(x).
- We define the interacting field corresponding to *F* by

$$F_{\text{int}} = -i\hbar \left. \frac{d}{dt} \left(\mathcal{S}(V)^{-1} \star \mathcal{S}(V + tF) \right) \right|_{t=0} \,,$$

where the inverse of S is the \star -inverse.

• The main technical ingredient we need in order to define interacting quantum fields in effective QG is Epstein-Glaser renormalization.

- The main technical ingredient we need in order to define interacting quantum fields in effective QG is Epstein-Glaser renormalization.
- Advantage: gives finite contributions in each order in \hbar and λ , even for power-counting non-renormalizable theories.

- The main technical ingredient we need in order to define interacting quantum fields in effective QG is Epstein-Glaser renormalization.
- Advantage: gives finite contributions in each order in \hbar and λ , even for power-counting non-renormalizable theories.
- The aim is to construct the formal S-matrix S, which is a map on *F*(M)[[λ]] (functionals with local derivatives), satisfying the Epstein-Glaser axioms:

- The main technical ingredient we need in order to define interacting quantum fields in effective QG is Epstein-Glaser renormalization.
- Advantage: gives finite contributions in each order in \hbar and λ , even for power-counting non-renormalizable theories.
- The aim is to construct the formal S-matrix S, which is a map on *F*(M)[[λ]] (functionals with local derivatives), satisfying the Epstein-Glaser axioms:
 - Causal factorization: $S(F + G) = S(F) \star S(G)$, if supp(F) is later than supp(G).

- The main technical ingredient we need in order to define interacting quantum fields in effective QG is Epstein-Glaser renormalization.
- Advantage: gives finite contributions in each order in \hbar and λ , even for power-counting non-renormalizable theories.
- The aim is to construct the formal S-matrix S, which is a map on *F*(M)[[λ]] (functionals with local derivatives), satisfying the Epstein-Glaser axioms:
 - Causal factorization: $S(F + G) = S(F) \star S(G)$, if supp(F) is later than supp(G).
 - Starting element: S(0) = 1, $S^{(1)}(0) = id$.

- The main technical ingredient we need in order to define interacting quantum fields in effective QG is Epstein-Glaser renormalization.
- Advantage: gives finite contributions in each order in \hbar and λ , even for power-counting non-renormalizable theories.
- The aim is to construct the formal S-matrix S, which is a map on *F*(M)[[λ]] (functionals with local derivatives), satisfying the Epstein-Glaser axioms:
 - Causal factorization: $S(F + G) = S(F) \star S(G)$, if supp(F) is later than supp(G).
 - Starting element: S(0) = 1, $S^{(1)}(0) = id$.
 - Sield configuration independence

- The main technical ingredient we need in order to define interacting quantum fields in effective QG is Epstein-Glaser renormalization.
- Advantage: gives finite contributions in each order in \hbar and λ , even for power-counting non-renormalizable theories.
- The aim is to construct the formal S-matrix S, which is a map on *F*(M)[[λ]] (functionals with local derivatives), satisfying the Epstein-Glaser axioms:
 - Causal factorization: $S(F + G) = S(F) \star S(G)$, if supp(F) is later than supp(G).
 - Starting element: S(0) = 1, $S^{(1)}(0) = id$.
 - Sield configuration independence
 - **Output** Unitarity: $S(\overline{F}) \star S(F) = 1$.

- The main technical ingredient we need in order to define interacting quantum fields in effective QG is Epstein-Glaser renormalization.
- Advantage: gives finite contributions in each order in \hbar and λ , even for power-counting non-renormalizable theories.
- The aim is to construct the formal S-matrix S, which is a map on *F*(M)[[λ]] (functionals with local derivatives), satisfying the Epstein-Glaser axioms:
 - Causal factorization: $S(F + G) = S(F) \star S(G)$, if supp(F) is later than supp(G).
 - Starting element: S(0) = 1, $S^{(1)}(0) = id$.
 - Sield configuration independence
 - **Output:** Unitarity: $\overline{\mathcal{S}(\overline{F})} \star \mathcal{S}(F) = 1.$
- Gauge invariance is guaranteed by additional renormalization conditions (Ward identities).

Diffeomorphism invariant observables Perturbative quantization Background independence

Interacting quantum fields

• Let
$$F = \int \mathcal{A}_g(x) f(x)$$
 be a classical field functional.

Interacting quantum fields

• Let
$$F = \int \mathcal{A}_g(x) f(x)$$
 be a classical field functional.

• We define the interacting field corresponding to F by

$$F_{\text{int}} = -i\hbar \left. \frac{d}{dt} \left(\mathcal{S}(V)^{-1} \star \mathcal{S}(V + tF) \right) \right|_{t=0} \,,$$

where the inverse of S is the \star -inverse.

Interacting quantum fields

• Let
$$F = \int \mathcal{A}_g(x) f(x)$$
 be a classical field functional.

• We define the interacting field corresponding to F by

$$F_{\text{int}} = -i\hbar \left. \frac{d}{dt} \left(\mathcal{S}(V)^{-1} \star \mathcal{S}(V + tF) \right) \right|_{t=0},$$

where the inverse of S is the \star -inverse.

• Given *s*, the free classical BV operator, the interacting quantum BV operator \hat{s} is defined by

$$s(F_{\text{int}}) = (\hat{s}F)_{\text{int}}$$
.

The cohomology of \hat{s} characterizes the space of gauge invariant quantum observables.

Correlation functions

• In the algebraic approach, states are functionals $\omega : \mathfrak{A}(M) \to \mathbb{C}$ with $\omega(\mathbb{1}) = 1$ and $\omega(A^*A) \ge 0$. (Relation to Hilbert spaces via GNS theorem).

Correlation functions

- In the algebraic approach, states are functionals $\omega : \mathfrak{A}(M) \to \mathbb{C}$ with $\omega(\mathbb{1}) = 1$ and $\omega(A^*A) \ge 0$. (Relation to Hilbert spaces via GNS theorem).
- A natural state on $\mathcal{F}(M)$ and hence $\mathfrak{A}(M)$ is given by evaluation at a given field configuration. For the scalar field we can take $\omega(F) = F(0)$.

Correlation functions

V

- In the algebraic approach, states are functionals ω : 𝔅(M) → ℂ with ω(𝔅) = 1 and ω(A*A) ≥ 0. (Relation to Hilbert spaces via GNS theorem).
- A natural state on $\mathcal{F}(M)$ and hence $\mathfrak{A}(M)$ is given by evaluation at a given field configuration. For the scalar field we can take $\omega(F) = F(0)$.
- Wightman *n*-point functions of the free theory are

$$W_n(f_1, \dots, f_n) = (\Phi(f_1) \star \dots \star \Phi(f_n))(0),$$

where $\Phi(f)(\varphi) = \int \varphi(x) f(x) d\mu(x).$

Correlation functions

- In the algebraic approach, states are functionals $\omega : \mathfrak{A}(M) \to \mathbb{C}$ with $\omega(\mathbb{1}) = 1$ and $\omega(A^*A) \ge 0$. (Relation to Hilbert spaces via GNS theorem).
- A natural state on $\mathcal{F}(M)$ and hence $\mathfrak{A}(M)$ is given by evaluation at a given field configuration. For the scalar field we can take $\omega(F) = F(0)$.
- Wightman *n*-point functions of the free theory are

$$W_n(f_1,\ldots,f_n)=(\Phi(f_1)\star\cdots\star\Phi(f_n))(0)\,,$$

where $\Phi(f)(\varphi) = \int \varphi(x)f(x)d\mu(x).$

• Interacting correlation functions are obtained as:

$$(\Phi_{\mathrm{int}}(f_1) \star \cdots \star \Phi_{\mathrm{int}}(f_n))(0),$$

similarly for other observables in the theory.

Diffeomorphism invariant observables Perturbative quantization Background independence

What about gravity?

• All these structures exist (perturbatively) also for non-local functionals with local derivatives (e.g. relational observables in gravity for appropriate choice of X^{μ}).

What about gravity?

- All these structures exist (perturbatively) also for non-local functionals with local derivatives (e.g. relational observables in gravity for appropriate choice of X^{μ}).
- One needs to make the split $g = g_0 + \lambda h$ and expand the action *S* around an on-shell background g_0 (i.e. $L = L_0 + \lambda V$). The algebraic structure is (perturbatively) independent of the splitting.

What about gravity?

- All these structures exist (perturbatively) also for non-local functionals with local derivatives (e.g. relational observables in gravity for appropriate choice of X^{μ}).
- One needs to make the split $g = g_0 + \lambda h$ and expand the action *S* around an on-shell background g_0 (i.e. $L = L_0 + \lambda V$). The algebraic structure is (perturbatively) independent of the splitting.
- In fact, one can introduce the interacting product \star_{int} defined through

$$(F \star_{\operatorname{int}} G)_{\operatorname{int}} = F_{\operatorname{int}} \star G_{\operatorname{int}}$$
.

What about gravity?

- All these structures exist (perturbatively) also for non-local functionals with local derivatives (e.g. relational observables in gravity for appropriate choice of X^{μ}).
- One needs to make the split $g = g_0 + \lambda h$ and expand the action *S* around an on-shell background g_0 (i.e. $L = L_0 + \lambda V$). The algebraic structure is (perturbatively) independent of the splitting.
- In fact, one can introduce the interacting product \star_{int} defined through

$$(F \star_{\operatorname{int}} G)_{\operatorname{int}} = F_{\operatorname{int}} \star G_{\operatorname{int}}$$
.

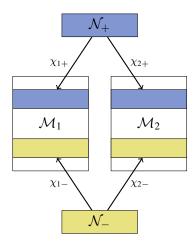
• Formally, this product depends only on *L*, not on the splitting (Hawkins, KR [1612.09157]). Some obstructions could appear when renormalization is performed.

Diffeomorphism invariant observables

Perturbative quantization

Relative Cauchy evolution

 Let N₊ and N₋ be two spacetimes that embed into two other spacetimes M₁ and M₂ around Cauchy surfaces, via admissible embeddings χ_{k,±}, k = 1, 2.

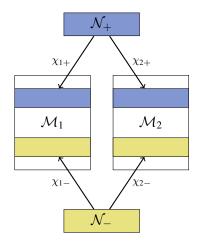


Relative Cauchy evolution

 Let N₊ and N₋ be two spacetimes that embed into two other spacetimes M₁ and M₂ around Cauchy surfaces, via admissible embeddings χ_{k,±}, k = 1, 2.

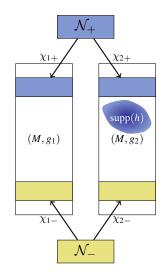
• Then

 $\beta = \mathfrak{A}\chi_{1+} \circ (\mathfrak{A}\chi_{2+})^{-1} \circ \mathfrak{A}\chi_{2-} \circ (\mathfrak{A}\chi_{1-})^{-1}$ is an automorphism of $\mathfrak{A}(\mathcal{M}_1)$. This is the consequence of the Time-slice axiom of LCQFT.



Background independence

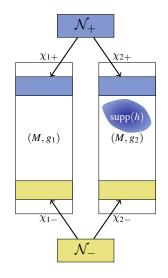
• Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where g_1 and g_2 differ by a (compactly supported) symmetric tensor *h* (see the diagram).



Background independence

• Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where g_1 and g_2 differ by a (compactly supported) symmetric tensor *h* (see the diagram).

• Define
$$\Theta_{\mu\nu}(x) \doteq \frac{\delta\beta_h}{\delta h_{\mu\nu}(x)}\Big|_{h=0}$$
.

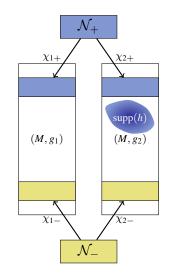


Background independence

• Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where g_1 and g_2 differ by a (compactly supported) symmetric tensor *h* (see the diagram).

• Define
$$\Theta_{\mu\nu}(x) \doteq \frac{\delta\beta_h}{\delta h_{\mu\nu}(x)}\Big|_{h=0}$$
.

• The infinitesimal background independence is the condition $\Theta_{\mu\nu} = 0$.



Diffeomorphism invariant observables Perturbative quantization Background independence

Background independence II

We have shown that

$$(\Theta^{\mu\nu}(F))_{\rm int} \stackrel{o.s.}{=} -\frac{i}{\hbar} [T^{\mu\nu}_{\rm int}, F_{\rm int}]_{\star} \,,$$

where $T_{\text{int}}^{\mu\nu}$ is the interacting stress-energy tensor of *L*.

Background independence II

• We have shown that

$$(\Theta^{\mu\nu}(F))_{\rm int} \stackrel{o.s.}{=} -\frac{i}{\hbar} [T^{\mu\nu}_{\rm int}, F_{\rm int}]_{\star} \,,$$

where $T_{\text{int}}^{\mu\nu}$ is the interacting stress-energy tensor of L.

• Next we used the renormalization freedom to ensure that $T_{\text{int}}^{\mu\nu} = 0$ holds, so the interacting theory is background independent.

• AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.

- AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.
- In this framework we have constructed classical and quantum gauge invariant observables for the effective QG.

- AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.
- In this framework we have constructed classical and quantum gauge invariant observables for the effective QG.
- To quantize the theory, we make a tentative split into a free and interacting part. We quantize the free theory first and then use the Epstein-Glaser renormalization to introduce the interaction.

- AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.
- In this framework we have constructed classical and quantum gauge invariant observables for the effective QG.
- To quantize the theory, we make a tentative split into a free and interacting part. We quantize the free theory first and then use the Epstein-Glaser renormalization to introduce the interaction.
- We have shown that our theory is **background independent**, i.e. independent of the split into free and interacting part.

Diffeomorphism invariant observables Perturbative quantization Background independence

Thank you very much for your attention!