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1. Introduction

The problem of incorporating gravity into the framework of quantum physics is still
largely open. Due to the rareness of observational hints for a solution, rather speculative
ideas dominate the discussion, and it appears difficult to judge whether any of them will
lead to a satisfactory answer. Cosmology might be the rather unique field of physics
where both fundamental theories, quantum field theory and general relativity, are both
needed for a better understanding; moreover, the increasing amount of observational
data make a consistent framework urgent.

To reach such a consistent theory which contains the quantum field theory of particle
physics and Einstein’s theory of gravitation as limiting cases, one may proceed in the
following way: Standard quantum field theory just ignores effects of gravity. This is
justified in many cases due to the weakness of gravitational interactions at the presently
accessible scales. In a first step beyond this approximation one may consider an external
gravitational field which is not influenced by the quantum fields. Here one may think of
sources of gravitational fields which are not influenced by the quantum fields under con-
sideration, as high energy experiments in the gravitational field of the earth or quantum
fields in the gravitational field of dark matter and dark energy. This approach amounts
to the treatment of quantum field theory on curved spacetimes.

As a little step beyond this approximation one may also study perturbative gravity
around a classical background. Up to problems of renormalizability and a somewhat
tricky characterization of observables, this can also be subsumed in this framework [1].
In lowest nontrivial order, one thus reproduces cosmological perturbation theory [2].

Full quantum gravity might be rather remote from the perturbative approach; on
the other hand, a satisfactory perturbative formulation might suggest features of the
full theory; moreover, one may hope that its predictions can be tested in cosmological
observations.

In the following we want to describe the crucial steps for the treatment of quantum
field theory on manifolds with a Lorentzian metric 1. Up to the mid-nineties, mainly
free fields were discussed, and one looked for states generalizing the vacuum, and tried
to understand the meaning of particles in such a background. A highlight was Hawk-
ing’s discovery of radiation of black holes [5] which up to the present day motivated a
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huge number of papers which try to use his finding for guessing structural properties of
quantum gravity.

The discussion on the choice of a vacuum state ended essentially with the conclusion
that instead one has to select a class of states, the so-called Hadamard states which
have locally the same singularities as the vacuum on Minkowski space (see Kay in [6]
and Haag, Narnhofer and Stein in [7]). Unfortunately, a precise characterization of
Hadamard states, first achieved in [8], looked rather cumbersome.

A breakthrough was then the observation of Radzikowski [9] that the Hadamard states
can be directly characterized in terms of their wave front sets, a concept of microlocal
analysis [10]. The condition might be interpreted as a local version of the positive energy
condition which is crucial for quantum field theory on Minkowski space.

The result of Radzikowski immediately opened the way for a perturbative approach to
quantum field theory on curved spacetimes. Based on the concepts of causal perturbation
theory (Stückelberg, Bogoliubov, Epstein-Glaser [11]) and of algebraic quantum field
theory (Haag-Kastler [12, 13]), the renormalized perturbation series for generic quantum
field theories on globally hyperbolic spacetimes could be constructed [14], and also the
principle of general covariance could be incorporated [15, 16, 20]. What is still missing
is a detailed interpretation of the state space, since the standard interpretation in terms
of multiparticle configurations is meaningful only in special situations.

2. Free scalar field

We consider a scalar field φ on a globally hyperbolic 4d spacetime M , i.e. a 4d
Lorentzian manifold with a Cauchy surface. On such a spacetime, the initial value
problem for the Klein-Gordon equation is well posed, and there exist unique advanced
and retarded Green’s functions ∆A,∆R [17]. A special role is played by the so-called
causal propagator

∆ = ∆R −∆A .

Observables may be understood as functionals on the space of classical field configura-
tions which may be identified with smooth real valued functions on the manifold. Regular
observables F ∈ F0 are defined as functionals of the form

F [φ] =

N∑
n=0

∫
fn(x1, . . . , xn)φ(x1) . . . φ(xn)

with compactly supported smooth densities fn on Mn.
The causal propagator induces a noncommutative associative product on F0 by

F ? G =

∞∑
n=0

in

2nn!
〈F (n),∆⊗nG(n)〉

with the functional derivatives

〈F (n)[φ], ψ⊗n〉 =
dn

dλn
F [φ+ λψ]|λ=0 .

With respect to complex conjugation, F0 becomes an involutive algebra A0,

F ∗[φ] = F [φ]
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such that

(F ? G)∗ = G∗ ? F ∗ .

Functionals F which vanish on solutions of the Klein-Gordon equation form an ideal.
The quotient A0 is the on shell algebra of regular observables.

There are, however, many important observables which are not represented by regular
functionals, as e.g. the energy momentum tensor. As a simple example we may consider
functionals of the form

F [φ] =

∫
f(x)φ(x)2

For them the ?-product is ill defined since it would require to square the causal prop-
agator which is not a meaningful operation. Actually, this problem occurs in the same
way in Minkowski space where it is circumvented by replacing these functionals by their
normal ordered versions.

To find a generalization of normal ordering on generic spacetimes one can proceed
in the following way. The problem of singularities of distributions can be analyzed in
terms of their wave front sets. Roughly speaking, the wave front set is a local version
of the support in momentum space. More precisely, one multiplies the distribution t
with a testfunction χ with sufficiently small support and studies in some chart the decay
properties of its Fourier transform. In this way one obtains for each point x a set Σx of
directions in momentum space in which the Fourier transform of χt does not decay fast
for all testfunctions χ with χ(x) 6= 0. The collection

WF(t) = {(x, k)|x ∈M,k 6= 0, the direction of k belongs to Σx }

is called the wave front set of the distribution t. It can be identified with a subset of the
cotangent bundle T ∗M and is independent of the choice of a chart.

We will use two crucial facts on wave front sets [10]:

• The product of two distributions t and s is a well defined distribution, if it is not
possible to find (x, k) ∈WF(t) and (x, k′) ∈WF(s) such that k + k′ = 0.
• Let P be a real differential operator with principal symbol σ(P ) and let t be a

distribution with Pt smooth. Then the wave front set of t is invariant under the
Hamiltonian flow generated by σ(P ) and contained in its zero set.

The causal propagator ∆ is a bisolution of the Klein Gordon operator whose principal
symbol is the inverse metric. Therefore the wave front set of ∆ is invariant under
the geodesic flow and contains only lightlike momenta. Since ∆ vanishes for spacelike
separated points, we can determine its wave front set to be

WF(∆) = {(x, x′; k, k′) ∈ T ∗M2|∃ a lightlike geodesics connecting x and x′,

k, k′ are coparallel to the geodesics,

and the parallel transport of k along the geodesics is − k′}
Normal ordering in Minkowski space is related to the separation of positive and negative
energies,

i∆ = ∆+ −∆−

where ∆+ is the Wightman 2-point function in Minkowski space and ∆− its complex
conjugate.
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A similar splitting can be performed with respect to wave front sets. A Hadamard
function H is defined as a symmetric real bisolution of the Klein Gordon equation with
the property

WF(H +
i

2
∆) = {(x, x′; k, k′) ∈WF(∆)|k ∈ V+}

where V+ denotes the closed forward light cone in momentum space. Hadamard functions
in 4d possess an asymptotic expansion

H =
u

σ
+

∞∑
n=0

vnσ
n logµ2σ + w

where σ is the squared geodesic distance (equipped with the appropriate sign), u and vn
are smooth functions depending only on the metric and its derivatives on the geodesics
connecting the arguments. µ is an arbitrary scale with the dimension of a mass and w
is a smooth function which depends on the choice of H.

The positivity condition on the wave front set (the microlocal spectrum condition) is
weaker than the positive energy condition on the Wightman function. In Minkowski
space, e.g., the microlocal spectrum condition is satisfied not only for the vacuum, but
also for the 2-point functions of KMS states. Different Hadamard functions can differ
only by a smooth, real and symmetric bisolution.

Normal ordering with respect to a given Hadamard function H is defined by

:F :H=
∞∑
n=0

1

2nn!
〈F (2n), H⊗n〉 .

The product of normal ordered functionals is

(1) :F :H ? :G :H=:F ?H G :

with the product ?H (the Wick product in the sense of deformation quantization)

F ?H G =

∞∑
n=0

1

n!
〈F (n), (H +

i

2
∆)⊗nG(n)〉 .

In contrast to the product ? (the Weyl-Moyal product) the Wick product is well defined
also on more singular functionals F (the microcausal functionals) where the densities fn
might be distributions with wave front sets satisfying the condition

WF(fn) ∩ (Mn, V+
n ∪ V−

n
) = ∅ .

This includes in particular the local functionals where the support of fn is restricted to
the thin diagonal

Diagonal(Mn) = {(x1, . . . , xn) ∈Mn|x1 = · · · = xn} .
One can now enlarge the algebra of regular functionals by normal ordered microcausal
functionals where the product is defined by (1). This algebra does not depend on the
choice of H; a change of H amounts only to a relabeling of its elements in terms of
normal ordered microcausal functionals,

:F :H′=

∞∑
n=0

1

2nn!
:〈F (2n), (H ′ −H)⊗n〉 :H
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where we exploited the fact that the difference of two Hadamard functions is smooth.

3. Interactions

Interactions are induced by normal ordered local functionals. In order to avoid infrared
problems we restrict ourselves to local functionals V which have compact spacetime
support

supp(V ) =
⋃
φ

suppV (1)[φ] .

The easiest way of constructing the algebra of interacting observables uses the time
ordered product. On regular observables it is defined by

F ·T G =

∞∑
n=0

in

n!
〈F (n),∆⊗nD G(n)〉

with the Dirac propagator

∆D =
1

2
(∆R + ∆A)

For normal ordered regular functionals one obtains

:F :H ·T :G :H=:F ·T,H G :H

with

F ·T,H G =
∞∑
n=0

1

n!
〈F (n), (H + i∆D)⊗nG(n)〉

Here H + i∆D
.
= ∆H

F is the H-dependent generalization of the Feynman propagator for
generic spacetimes. For arguments x, x′ with x′ outside of the future of x, it coincides
with H + i

2∆, and for x′ outside of the past of x with its complex conjugate. As
a Green’s function, it has at coinciding points the same singular directions as the δ-
function. Therefore its wave front set is

WF(∆H
F ) = {(x, x; k,−k)|x ∈M,k 6= 0}∪{(x, x′; k, k′) ∈WF(∆)|k ∈ V± if x′ is in the future (past) of x} .

By the criterion for multiplicability of distributions we see that the time ordered products
of normal ordered local functionals are well defined if their supports are disjoint.

The extension of the time ordered product to arbitrary normal ordered local func-
tionals corresponds to renormalization. Such an extension (a renormalized time ordered
product) is always possible but in general not unique. The possible extensions are related
by the renormalization group in the original sense of Stückelberg and Petersen [18].

Once the time ordered product is given, one defines the interacting observables by
Bogoliubov’s formula

FV = S(:V :H)−1 ? (S(:V :H) ·T F )

with the time ordered exponential (formal S-matrix)

S(G) =

∞∑
n=0

1

n!
G ·Tn

Note that the interacting theory depends on the choice of H and on the choice of the
renormalized time ordered product.
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4. Adiabatic limit and general covariance

On the side of the algebra of local observables it is straightforward to eliminate the
restriction to compactly supported interactions. Namely, due to the causal properties of
the propagators the algebraic relations for the interacting observables depend only on
the interaction within a causally closed region where the observables are localized. This
can be used to define the algebra of all local observables for an arbitrary local interaction
(algebraic adiabatic limit) [19, 14].

It is more difficult to satisfy the requirement of general covariance. In Minkowski
space the possible choices of the time ordered product are restricted by the condition
of Poincaré invariance. To find a corresponding condition in the general case where the
symmetry group generically is trivial one has to relate theories on different spacetimes.
The leading principle (local covariance) is that for structure preserving embeddings of
spacetimes the correponding algebras should also be properly embedded. Hence con-
sider a diffeomorphic embedding χ of a spacetime N into a spacetime M . χ is called
admissible if it is isometric and preserves the causal relations. In particular, any causal
curve connecting points in the image should be the image of a causal curve in N . Let
A(N),A(M) denote the corresponding algebras of local observables. Then there should
exist an injective homomorphism αχ : A(N) → A(M) such that for admissible embed-
dings χ : N →M and ψ : M → L holds

αψαχ = αψ◦χ .

In more mathematical terms, the association of algebras to spacetimes should be a
functor between the corresponding categories, endowed with the appropriate morphisms
[20].

One can now characterize locally covariant interactions and locally covariant time
ordered products in terms of natural transformations between the functorA of observable
algebras and other functors on the category of spacetimes.

An important example is the concept of a locally covariant scalar field. It is an
association of fields AM for each spacetime M such that for any admissible embedding
χ : N →M the condition of local covariance

αχ(AN (x)) = AM (χ(x))

does hold. Note that this condition specializes on Minkowski space to the usual concept
of a scalar field with the appropriate transformation under Poincaré transformations.
The normal ordering prescription : • :H in general does not produce locally covariant
fields since there does not exist a choice of Hadamard functions HM for every M such
that χ∗HM = HN . Instead one replaces in the normal ordering prescription for local
functionals H by the first terms in the asymptotic expansion. Since this approximation
of H is, in general, no longer a bisolution, one can find anomalies as e.g. the conformal
anomaly of the energy momentum tensor [21]

For the discussion of a locally covariant time ordered product we use the renormal-
ization group. We want to have on each spacetime M a renormalized time ordered ·TM
such that for an admissible embedding χ : N →M and local functionals F1, . . . , Fn the
equation

αχ(F1 ·TN · · · ·TN Fn) = αχ(F1) ·TM · · · ·TM αχ(Fn)
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holds. If we performed the extension of the time ordered product on every spacetime
independently we would obtain the equation above only after a finite renormalization.
In order to analyze this structure it is convenient to pass to the generating functionals
of the time ordered products (the formal S-matrices). According to the Main Theorem
of renormalization (Stora-Popineau [22]) two possible time ordered products are related
by the following relation between their respective formal S-matrices

Ŝ = S ◦ Z

where Z is an bijective map on the space of local functionals (with some further restric-
tions). Let now for each spacetime M a formal S-matrix SM be given. Then, for any
embedding χ : N →M , there exists a renormalization group element Z(χ) such that

αχ ◦ SN = SM ◦ αχ ◦ Z(χ) .

The association χ→ Z(χ) satisfies the cocycle condition

αψ◦χ ◦ Z(ψ ◦ χ) = αψ ◦ Z(ψ) ◦ αχ ◦ Z(χ) .

The cocycle is trivial if there exist renormalization group transformations ZN such that

αχ ◦ Z(χ) = Z−1M ◦ αχ ◦ ZN .

In this case we define a covariant time ordered product in terms of generating functions
by ŜM = S ◦ ZM .

A solution of this cohomological problem was found by Hollands and Wald [15, 16].
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Zürich, Switzerland: Eur. Math. Soc. (2007) 194 p.

[18] E. C. G. Stueckelberg and A. Petermann, “The normalization group in quantum theory,” Helv.
Phys. Acta 24 (1951) 317.

[19] Ilin, V. A., and Slavnov, D. A., “Observable algebras in the S-matrix approach,” Theor.Math.
Phys.36, 32 (1978).

[20] R. Brunetti, K. Fredenhagen and R. Verch, “The Generally covariant locality principle: A New
paradigm for local quantum field theory,” Commun. Math. Phys. 237 (2003) 31.

[21] R. M. Wald, “The Back Reaction Effect in Particle Creation in Curved Spacetime,” Commun. Math.
Phys.54, 1-19 (1977)

[22] G. Popineau and R. Stora, “A pedagogical remark on the main theorem of perturbative renormal-
ization theory,” Nucl. Phys. B 912 (2016) 70.


