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o Example: topological defect formation in a phase
transition.
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o Example: Axion perturbations when axions acquire a
mass at the QCD scale (M. Axenides, R.B. and M.
Turner, 1983).
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Introduction uoc V.

oo o Thus, generically models with dominant adiabatic
fluctuations lead to a large value of r. A large value of r
ronleatons is not a smoking gun for inflation.

@ During a phase transition EoS changes and u evolves
S differently than v
Recent

@ — Suppression of r.

o This happens during the inflationary reheating
Conclusions transition_
o Simple inflation models typically predict very small

value of r.
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Fig. la. Diagram of gravitational instability in the ‘big-bang’ model. The region of instability is

located to the right of the line Mi(2); the region of stability to the left. The two additional lines of

the graph demonstrate the temporal evolution of density perturbations of matter: growth until the

moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. It is

apparent that at the moment of recombination perturbations corresponding to different masses
correspond to different phases.
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Quantum o Scales of cosmological interest today must originate
Applications inside the Hubble radius (Criterium 2)

G @ Long propagation on super-Hubble scales (Criterium 3)
Recent @ Scale-invariant spectrum of adiabatic cosmological
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‘ (Press, 1980).
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Quantum o Fluctuations originate on sub-Hubble scales.
APIesons o Long period of super-Hubble evolution.

Paradigms

Compuatr o Curvature fluctuations starting from the vacuum acquire
fRecent a scale-invariant spectrum on scales which exit the
Hubble radius during matter domination.

Conclusions
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Overview of the Ekpyrotic Bounce
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Introduction o Assume the existence of matter with an Ekpyrotic
Newtonian equation of state w = p/p > 1.

e o Begin with a contracting phase in which Ekpyrotic
matter dominates. In this phase, fluctuations of current
cosmological interest exit the Hubble radius.

o New physics provides a nonsingular (or singular)
cosmological bounce.

o Fluctuations originate as quantum vacuum
perturbations on sub-Hubble scales in the contracting
phase.

Quantum

Applications

Conclusions
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Addressing the Criteria
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Horizon infinite, Hubble radius decreasing.
Fluctuations originate on sub-Hubble scales.
Long period of super-Hubble evolution.

Original adiabatic fluctuations retain a vacuum
spectrum.

o Entropy fluctuations acquire a scale-invariant spectrum
on super-Hubble scales.

o Entropy fluctuations seed a scale-invariant spectrum of
curvature perturbations (A. Notari and A. Riotto, 2002;
F. Finelli, 2002; J-L. Lehners et al, 2007; E. Buchbinder
et al, 2007; P. Creminelli and L. Senatore, 2007).
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Conclusions

Space-time sketch of an Emergent Universe

N.B. Perturbations originate as thermal fluctuations.
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Overview of the Emergent Universe Scenario

AtlanticGR

Brandenberger

Introduction

o The Universe begins in a quasi-static phase.

el o After a phase transition there is a transition to the Hot
Quantum Big Bang phase of Standard Cosmology.

Al o Fluctuations originate as thermal perturbations on

eneral

paracgms sub-Hubble scales in the emergent phase.

Recent o Adiabatic fluctuation mode acquires a scale-invariant
spectrum of curvature perturbations on super-Hubble
vepin scales if the thermal fluctuations have holographic
Conclusions Sca”ng_

Newtonian
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Addressing the Criteria
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Introduction

Horizon given by the duration of the quasi-static phase,
Hubble radius decreass suddenly at the phase
transition — horizon > Hubble radius at the beginning
of the Standard Big Bang phase.

o Fluctuations originate on sub-Hubble scales.
o Long period of super-Hubble evolution.

@ Curvature fluctuations starting from thermal matter
inhomogeneities acquire a scale-invariant spectrum if
Conclusions the thermodynamics obeys holographic scaling.

Newtonian
Classical
Quantum

Applications
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Conclusions

Structure formation in inflationary cosmology

N.B. Perturbations originate as quantum vacuum
fluctuations.
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Origin of Scale-Invariance in Inflation

AtlanticGR

Bandenbarger o Initial vacuum spectrum of ¢ (¢ ~ v): (Chibisov and
Introduction MUKhanOV, 1 981 )

Newtonian

Classical Pg(k) = k3|<(k)|2 ~ k2
Quantum

@ v ~ z ~ aon super-Hubble scales
o At late times on super-Hubble scales

Computations

Recent
Els

at)
a(ti(k)

Pe(k, t) = Pe(k, ti(K))( )2 ~ K2a(ti(k)) 2

Conclusions

o Hubble radius crossing: ak—!' = H~1
0 — P¢(k,t) ~ const
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Scale-Invariance of Gravitational Waves in

Inflation

AtlanticGR

Brandenberger o Initial vacuum spectrum of u (Starobinsky, 1978):

Introduction
Newtonian Ph(k) = ksyh(k)‘z ~ k2

Classical

. @ u ~ aon super-Hubble scales
uantum
Applications o At late times on super-Hubble scales

aaaaa

Palk, ) = & ()P, 1) (5 fs)° = KPa(t() 2

Conclusions o Hubble radius crossing: ak—' = H~1
o = Pp(k,t) ~ H?
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Scale-Invariance of Gravitational Waves in

Inflation

AtlanticGR

Bandenbarger o Initial vacuum spectrum of u (Starobinsky, 1978):

Introduction
Newtonian Ph(k) = ksyh(k)‘z ~ k2

Classical

—— @ u ~ aon super-Hubble scales
Applications o At late times on super-Hubble scales

aaaaa

Palk, ) = & ()P, 1) (5 fs)° = KPa(t() 2

Conclusions o Hubble radius crossing: ak—' = H~1
0 — Pk, t) ~ H?
Note: If NEC holds, then H < 0 — red spectrum, n; < 0
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Matter Bounce: Origin of Scale-Invariant

Spectrum

AllanicGR o The initial vacuum spectrum is blue:

Brandenberger

Introduction Pg(k) = k3’<(k)|2 ~ k2

Newtonian

o The curvature fluctuations grow on super-Hubble
scales in the contracting phase:

Classical

Quantum

Applications

Vk(n) = cin® + can” ',
o For modes which exit the Hubble radius in the matter

phase the resulting spectrum is scale-invariant:

Computations

Recent

wampland

Conclusions PC(k’ 77) ~ k3| Vk(n) |Za—2(n)
k)\2 1
~ kS’Vk(T/H(k))‘Q(nH?g )) ~ K3-1-2
~  const,
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Transfer of the Spectrum through the Bounce
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@ In a nonsingular background the fluctuations can be

Hifoduction tracked through the bounce explicitly (both numerically

ewanE in an exact manner and analytically using matching
conditions at times when the equation of state
changes).

o Explicit computations have been performed in the case

Sl of quintom matter (Y. Cai et al, 2008), mirage

e cosmology (R.B. et al, 2007), Horava-Lifshitz bounce

(X. Gang et al, 2009).

. o Result: On length scales larger than the duration of the
bounce the spectrum of v goes through the bounce
unchanged.

Classical

Quantum
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Conclusions

Structure Formation in Emergent Cosmology

N.B. Perturbations originate as thermal fluctuations.
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Method
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Introduction

Newtonian

T o Calculate matter correlation functions in the static

Quantum phase (neglecting the metric fluctuations)
Szl o For fixed k, convert the matter fluctuations to metric
— fluctuations at Hubble radius crossing t = fi(k)

Recent o Evolve the metric fluctuations for t > t;(k) using the
. usual theory of cosmological perturbations

Conclusions
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Extracting the Metric Fluctuations
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Ansatz for the metric including cosmological perturbations
and gravitational waves:

Introduction
Newtonian
Classical

Quantum

ds? = 22(n)((1 +2)dn? — [(1 — 20)5; + hyldx'dx’) .

ooy Inserting into the perturbed Einstein equations yields

Recent
Els

([O(K)[F) = 1672G2k~*(6T (k)5 T % (K))

Conclusions

(Ih(K)[?) = 1672 GPKk=*(5T' (K)o T';(K)) .
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Power Spectrum of Cosmological Perturbations
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Key ingredient: For thermal fluctuations:

Introduction

Newtonian
2 T2
Classical .

(0p7) = z6Cv.
Quantum R
Applications
Paradig
Computations

Recent
Els

wampland

Conclusions
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Power Spectrum of Cosmological Perturbations
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P Key ingredient: For thermal fluctuations:

Newtonian

o] [ 2 T2
assical 5 = C X
Quantum < p > FI,G v

plications Key assumption: holographic scaling of thermodynamical

s quantities: Cy ~ R?

Computations

Hecent Exampile: for string thermodynamics in a compact space
R? /03

C\. oy~ 2 P ll

onclusions T (1 _ T/ TH)
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Power spectrum of cosmological fluctuations

Introduction

Newtonian

Classical P(D(k) = 862k_1 < |6p(k)|2 =
Ouar.wtum = 862/(2 < ((5M)2 >R
App\lfét\orws _ 8sz_4 < (6p)2 >R
~ 8GT

Recent

Elemer

Conclusions
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Power spectrum of cosmological fluctuations

Introduction

Newtonian
Classical P¢(k) = Ssz_1 < |6p(k)|2 >
Quantum _ 862/(2 < ((5’\/’)2 >g
Applications ) 4 2

| = 8G*k* < (dp)* >n
Compu(anruns ~ 8 GQ T
Recent

Key features:

Conclusions @ scale-invariant like for inflation

o slight red tilt like for inflation
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Comments
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Introduction

Newtonian

o Evolution for t > fj(k): ¢ ~ const since the equation of
state parameter 1 + w stays the same order of
magnitude unlike in inflationary cosmology.

@ Squeezing of the fluctuation modes takes place on

Classical
Quantum

Applications

gms

R” super-Hubble scales like in inflationary cosmology —
ecent . . . .
acoustic oscillations in the CMB angular power
spectrum

Conclusions
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Requirements
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Introduction

Newtonian

Classical

o static phase — new physics required.

Quantum

Applications Q CV(R) ~ RZ
s o Cosmological fluctuations in the IR are described by
T Einstein gravity.

Conclusions
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Spectrum of Gravitational Waves
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Introduction 1 67T2 sz_1 < | 7-,/(k) ’2 >

Newtonian — 1 67T2 GZk—4 < | T,/(R)|2 >
Classical
T
Quantum ~ 1 671'2 G2 6_3(1 _ T/ TH)
plications S
A Key ingredient for string thermodynamics
Recent
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Spectrum of Gravitational Waves
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Introduction 1 6772 sz_1 < | 7-,/(k) |2 >
Newtonian — 1 67T2 sz—4 < | T,/(R)|2 >

Classical T
167r262€—3(1 —T/Th)
S

Quantum

2

plications

A Key ingredient for string thermodynamics

Recent T

El 3 2 - B
<ITRE >~ a1 = T/Tw)

Conclusions

Key features:

o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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Consistency Relations
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Introduction

Newtonian

o Two free parameters: (1 — T/Ty)) and Iy /Is

Classical

Quantum o Four observables: amplitudes and tilts of the scalar and
Applications tensor mOdeS

— o — two consistency relations

Recent QI ~ (1 — T/ TH)Z

on=1-—ng

Conclusions
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() Recent Developments
o Elements of String Theory
o String Gas Cosmology
o Swampland Conjectures
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New Degrees of Freedom
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Introduction
Newtonian Assumption: All spatial dimensions toroidal, radius R.
Classical

Quantum

Applications Stnng states:

ey © momentum modes: E, = n/R

R t . R
et o winding modes: E,, = mR

@ oscillatory modes: E independent of R

Conclusions
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New Symmetries: T-Duality
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Introduction T-Duallty

Newtonian

. @ Momentum modes: E, = n/R

Quantum o Winding modes: E;, = mR

e o Duality: R — 1/R (n,m) — (m, n)

Gomputo o Mass spectrum of string states unchanged
e o Symmetry of vertex operators

@ Symmetry at non-perturbative level — existence of
Conclusions D-braneS
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Absence of a Temperature Singularity in String
Cosmology

AtlanticGR

eeeesd  Temperature-size relation in string gas cosmology

T-dual Phase
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Conclusions
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Singularity Problem in Standard and
Inflationary Cosmology
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Temperature-size relation in standard cosmology
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Assume some action gives us R(t)
T

Introduction

Elements

E Hagedom|Phase 3

Jonclusions

1: Emergent Universe

2: Bouncing Cosmology
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Position operators (dual to momenta)

Introduction

Newtonian ’X >= E eXp(iX . p)lp >
Classical p

Quantum

Applications
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Position operators (dual to momenta)

Introduction
Newtonian ’X >= E eXp(iX . p)lp >
Classical p

Quantum

PN Dual position operators (dual to windings)

)

X >= exp(iX - w)|lw >
Recent | ; p( )‘

=
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Position Operators
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Position operators (dual to momenta)

Introduction
Newtonian ’X >= E eXp(iX . p)lp >
Classical p

Quantum

PN Dual position operators (dual to windings)

X >= exp(iX - w)|lw >
Recent | g p( )‘

Elemel

ring

Note:

Conclusions 1

x>= |[x+27R>, |[x>= |)"(+27r§>

82/113



Heavy vs. Light Modes
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iR @ R > 1: momentum modes light.
Newionian o R < 1: winding modes light.
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iR @ R > 1: momentum modes light.

Newionian o R < 1: winding modes light.
Z';S::: o R > 1: length measured in terms of |x >.
T o R < 1: length measured in terms of [x >
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Heavy vs. Light Modes
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R > 1: momentum modes light.
R < 1: winding modes light.

R > 1: length measured in terms of |x >.
R < 1: length measured in terms of |x >
R ~ 1: both |x > and |X > important.
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Heavy vs. Light Modes
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R > 1: momentum modes light.
R < 1: winding modes light.

R > 1: length measured in terms of |x >.
R < 1: length measured in terms of |x >
R ~ 1: both |x > and |X > important.

Introduction
Newtonian
Classical

Quantum

© 0 0 ©

Applications

©

e Conclusion: At string scale densities usual effective field
theory (EFT) based on supergravity will break down.
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Heavy vs. Light Modes
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R > 1: momentum modes light.
R < 1: winding modes light.

R > 1: length measured in terms of |x >.
R < 1: length measured in terms of |x >
R ~ 1: both |x > and |X > important.

Introduction

Newtonian
Classical

Quantum

© © 0 ©

Applications

©

Recent Conclusion: At string scale densities usual effective field
theory (EFT) based on supergravity will break down.

S Conclusion: If an effective field theory description is valid, it
must be an EFT in 18 spatial dimensions.
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String Theory Moduli |
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o Dimension of space-time in superstring theory: 10
o — 6 compact spatial dimensions.

Introduction

Ziv:::n o Sizes of the extra dimensions: Kahler moduli.

Quanium o Shapes of the extra dimensions: Complex Structure
Sl moduli.

Computtors o These moduli can provide new scalar field degrees of
Recent freedom in the effective 4-d field theory description.

Elements

o Question: Can some of these fields play an important
role in cosmology?

Conclusions
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String Theory Moduli |
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o Dimension of space-time in superstring theory: 10
o — 6 compact spatial dimensions.

Introduction

Ziv:::n o Sizes of the extra dimensions: Kahler moduli.
Quantm @ Shapes of the extra dimensions: Complex Structure
Ap’?ti;c‘auons mOdU”.

o These moduli can provide new scalar field degrees of
Recent freedom in the effective 4-d field theory description.

o Question: Can some of these fields play an important
role in cosmology?

o The typical range of these fields is of the order of the
string scale.

Conclusions
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String Theory Moduli Il
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Introduction

Newtonian o Extra degrees of freedom: branes

Cla al ono - . . .
e o Brane positions in the extra dimensions yield scalar
uantur .
- fields.

pplications

o Range of these scalar fields of the order of the string

e scale.
Recent . . X X

Eme o Axion fields associated with the fluxes on the brane.

ring

o Axion field range of the order of the string scale,

Conclusions
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Moduli Stabilization

Alafses Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

Brandenberger

@ winding modes prevent expansion
inroduction @ momentum modes prevent contraction

Newtonian
Classical
Quantum
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Recent

oo [V-K. Cheung, S. Watson and R.B., 2005]
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Moduli Stabilization

Azt Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

Brandenberger

@ winding modes prevent expansion

inroduction @ momentum modes prevent contraction

e 0 — Ve(R) has a minimum at a finite value of

R, — Hmin

PE— @ in heterotic string theory there are enhanced symmetry
states containing both momentum and winding which

i are massless at Ry,

o o — Veff(Rmin) =0

@ — size moduli stabilized in Einstein gravity background

Conclusions Shape Moduli [Y-K. Cheung, S. Watson and R.B., 2005]

@ enhanced symmetry states

@ — harmonic oscillator potential for 8
@ — shape moduli stabilized

Classical

Quantum
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Dilaton stabilization in SGC
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Hifoduction o The only remaining modulus is the dilaton.

Newtonian
: @ Make use of gaugino condensation to give the dilaton a
potential with a unique minimum.

Classical

Quantum

Applications o — diltaton is stabilized.
o Dilaton stabilization is consistent with size stabilization
e [R. Danos, A. Frey and R.B., 2008].

@ Gaugino condensation induces (high scale)
wapln supersymmetry breaking [S. Mishra, W. Xue, R.B. and
Conclusions U Yajr"k, 201 2]
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Connection with Cosmology
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Introduction

Newtonian

Classical
Quantm o Can one of the moduli fields naturally yield inflation?

Applications . .
o Does an alternate cosmological scenario naturally
T emerge from string theory?
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String Gas Cosmology

Azt Idea: make use of the new symmetries and new degrees of

freedom which string theory provides to construct a new
Introduction theory of the very early universe.

Newtonian

Brandenberger

Classical
Quantum

Applications

Recent
Elemen

String Gas
Cosmology

Swampland

Conclusions

91/113



String Gas Cosmology

Azt Idea: make use of the new symmetries and new degrees of
sl freedom which string theory provides to construct a new
Introduction theory of the very early universe.

Newtonian

Assumption: Matter is a gas of fundamental strings.

Classical
Quantum

Assumption: gs < 1.

Applications

Key points:

Recent

. o New degrees of freedom: string oscillatory modes

o Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature

o New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R

Conclusions
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Absence of a Temperature Singularity in String
Cosmology

AtlanticGR
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Dynamics
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We will thus consider the following background dynamics for
the scale factor a(t):

a

Introduction
Newtonian
C al
Quantum
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Dynamical Decompactification

AlantoH o Begin with all 9 spatial dimensions small, initial
Brandenberger

temperature close to Ty — winding modes about all

inieduction spatial sections are excited.
e o Expansion of any one spatial dimension requires the
Zl:j:zz annihilation of the winding modes in that dimension.
Applications ) ) L/

> O
Recent i
39? o Decay only possible in three large spatial dimensions.

Swampland

Conclusions

@ — dynamical explanation of why there are exactly three
large spatial dimensions.

Note: For R — 0 there is an analogous decompactification

mechanism which only allows three dual dimensions to be
large.
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Structure formation in string gas cosmology

N.B. Perturbations originate as thermal string gas
fluctuations.
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String Theory and Cosmology
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Introduction

Newtonian

e @ Can one of the moduli fields naturally yield inflation?
Quantum o Can one of the moduli fields yield Dark Energy

APpeRene o Does an alternate early cosmological scenario naturally
emerge from string theory?

Recent o Does an alternate explanation for dark energy emerge
; from string theory?

Swampland

Conclusions
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Consistency Conditions from String Theory
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nesion o Low energy limit of string theory should be
NewonEn describable by an effective field theory.

o Not all low energy effective field theories are consistent

Classical

Quantum

Applications with string theory.
o There is a huge landscape of field theories.
Recen}” o Most of them are inconsistent with string theory - they
are in the “swampland”.
S o Effective field theories consistent with string theories
Foncisns are islands in the swampland.
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Conclusions

Swampland conditions: Scalar fields ¢ emerging from an
effective field theory approximation of string theory must
satisfy the following conditions:

o The effective field theory is only valid for Ay < dmy,
(field range condition).

o The potential of © obeys

/
|7|mp/ > €y or

2
v

Note: d, ¢y, c> constants of order 1.

< -0
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Conditions for Inflation
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o Large field range 6 > my, required if inflation is to be a

Introduction

Newtonian local attractor in initial condition space (R.B.,
Classical arXiv:1601.01918 for a review).
U o Slow roll condition 1:
Applications
V/
";7 ,TUD/ <g: 1 a
‘ o Slow roll condition 2:
Swampland V
_ "
Conclusions 2
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Introduction

Newtonian

Classical o Large field inflation is in the swamp.
Quantur . . «

e o Slow roll inflation is in the swamp.
o No local or global de Sitter minima.
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Introduction

Newtonian

Classical o Large field inflation is in the swamp.
Quantur = o .

S o Slow roll inflation is in the swamp.
Applications

o No local or global de Sitter minima.

L @ — inflation does not naturally fit into string theory [R.B.
and C. Vafa, 1989].
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Consider 6t = H1:

Introduction

Newtonian p ~ p1/210g(p_1/2)mp/ < 1.
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Ekpyrosis: Small field and Large Slope
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Sl Consider 6t = H1:

Introduction

Newtonian p ~ p1/210g(p_1/2)mp/ < 1.

Classical

Quantum

Applications Relative slope of the potential:

V/

|V|mpl ~p P>
Relative curvature of the potential:

Conclusions Vl/ 5 2

Vp/:E>>1.
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—— o Field range condition satisfied in Ekpyrotic scenario.
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Introduction

Newtonian

Classical

—— o Field range condition satisfied in Ekpyrotic scenario.

Applications o Slope and curvature condition on the potential satisfied
‘ in Ekpyrotic scenario.

The Ekpyrotic scenario is not in the swampland.

Conclusions
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Classical o Dark Energy cannot be a cosmological constant.

Quantum o Quintessence as an explanation of Dark Energy is
Szl constrained and may be ruled out by upcoming
observations [L. Heisenberg et al, arXiv:1809.00154].
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Introduction

Newtonian

Classical o Dark Energy cannot be a cosmological constant.

Quantum o Quintessence as an explanation of Dark Energy is
Applications constrained and may be ruled out by upcoming

ol observations [L. Heisenberg et al, arXiv:1809.00154].
Recent @ — we may need radically new ideas to explain Dark

Energy.

Swampland

Conclusions
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o At best, string theory effects could provide metastable
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Newtonian

Classical V/

Quantum |V| > 1
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Recent _— & =1

E v
Consequences:

Conclusions

@ Slow roll inflation in the swampland.

@ No metastable de Sitter — saddle point inflation in the
swampland.
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o o Assume: uniform rollling of .
Classical o Demand: entropy increase due to new string states
Quantum becoming low mass is smaller than the

AU Gibbons-Hawking entropy of an accelerating universe.
o~ |¥|>1.

Hecent o Assume: ¢ close to a local maximum or saddle point.

@ Weak Gravity Conjecture (gravity is the weakest force)
Vl/
% 7 < _1 .
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neral

canpetr Note: In the context of Effective Field Theory it requires
e extreme fine tuning to obtain the low energy scale of Dark
Energy.
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Introduction

Theory of Cosmological Perturbations is the
cornerstone of early universe cosmology.
Classical

—— o Fluctuations generated in an early phase of new
Applications phyS|CS.

o Fluctuations oscillate on sub-Hubble scales and are
squeezed on super-Hubble scales.

o There are several scenarios of primordial cosmology
which are consistent with the current data.

Conelusions o Inflation is only one of the possible scenarios.
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o Cosmology of string theory must take into account
Introduction the key symmetries of string theory, in particular the
Newtonian T—duallty Symmetry.

e o Standard effective field theory of supergravity will break
poleatons down in the very early universe.
o Inflation does not naturally emerge from string theory
: (inflationary models are in the swampland).

o String Gas Cosmology appears to emerge naturally
from string theory.

Conclusions o Dark Energy cannot be a cosmological constant.

o Upcoming observations will provide stringent tests of
quintessence as an explanation for Dark Energy.
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Introduction o String Gas Cosmology provides an alternative to
Newtonian inflation for producing the spectrum of cosmological
Classical perturbations.

e o Cosmological evolution is nonsingular.
Applications
@ Our universe emerges from an early Hagedorn phase.

o Thermal string fluctuations in the Hagedorn phase yield
an almost scale-invariant spectrum of cosmological
fluctuations.

Recent

Swampland

Conclusions o Characteristic signal: blue tilt in the spectrum of
gravitational waves.
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