Subleading Microstate Counting of AdS_4 Black Hole Entropy

Leo Pando Zayas University of Michigan and ICTP

Holography, Generalized Geometry and Duality Workshop Mainz, Germany, May 16, 2019

arXiv:1905.01559, D. Gang, N. Kim and LPZ arXiv:1808.10445, J. Liu, LPZ and S. Zhou PRL 120, 221602 (2018), J. Liu, LPZ, V. Rathee and W. Zhao JHEP 1801 (2018) 026, J. Liu, LPZ, V. Rathee and W. Zhao

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

$$S = \frac{k_B c^3}{\hbar} \frac{A}{4G_N}$$

- A confluence of thermodynamical, relativistic, gravitational, and quantum aspects. Hydrogen atom of QG. [Strominger-Vafa].
- An explicit example in AdS₄/CFT₃: The large-N limit of the topologically twisted index of ABJM correctly reproduces the leading term in the entropy of magnetically charged black holes in asymptotically AdS₄ spacetimes [Benini-Hristov-Zaffaroni].
- Extended also to: dyonic black holes, black holes with hyperbolic horizons, black holes in massive IIA theory and M5-branes.
- Agreement has been shown beyond the large N limit by matching the coefficient of $\log N$ [Liu-PZ-Rathee-Zhao], [Gang-Kim-PZ] (Beyond Bohr energies).

< ロト < 同ト < ヨト < ヨト

Outline

- The Topologically Twisted Index of ABJM Theory beyond large N
- Magnetically Charged Asymptotically AdS_4 Black Holes
- Logarithmic Corrections in Quantum Supergravity
- Suleading Microstate Counting for the Entropy of Wrapped M5 branes
- Conclusions

ABJM Theory

- AB¹JM: A 3d Chern-Simons-matter theory with $U(N)_k \times U(N)_{-k}$ gauge group with opposite levels.
- Matter sector: Four complex scalar fields Φ_I , (I = 1, 2, 3, 4) in the bifundamental representation $(\mathbf{N}, \overline{\mathbf{N}})$ and fermionic partners.
- SCFT $\mathcal{N} = 6$ supersymmetry generically but for k = 1, 2, the symmetry is enhanced to $\mathcal{N} = 8$.
- See Pilch's talk for a thorough introduction to ABJM.

 $\Phi^1 \Phi^2$

 Φ^3, Φ^4

The Topologically Twisted Index of ABJM Theory

- The topologically twisted index for three dimensional $\mathcal{N} = 2$ field theories was defined in [Benini-Zaffaroni] (Honda '15, Closset '15) by evaluating the supersymmetric partition function on $S^1 \times S^2$ with a topological twist on S^2 .
- Hamiltonian: The supersymmetric partition function of the twisted theory, $Z(n_a, \Delta_a) = \operatorname{Tr} (-1)^F e^{-\beta H} e^{iJ_a \Delta_a}$. It depends on the fluxes, n_a , through H and on the chemical potentials Δ_a .
- The topologically twisted index for $\mathcal{N} \geq 2$ supersymmetric theories on $S^2 \times S^1$ can be computed via supersymmetric localization [Crichigno].
- The supersymmetric localization computation of the topologically twisted index can be extended to theories defined on $\Sigma_g \times S^1$.

イロト イポト イヨト イヨト

General form of the Index

• Background:

$$ds^{2} = R^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + \beta^{2}dt^{2}, \quad A^{R} = \frac{1}{2}\cos\theta d\phi.$$

• The index can be expressed as a contour integral:

$$Z(n_a,y_a) = \sum_{\mathfrak{m}\in\Gamma_{\mathfrak{h}}} \oint_{\mathcal{C}} Z_{int}(x,\mathfrak{m};n_a,y_a).$$

- Z_{int} meromorphic form, Cartan-valued complex variables $x = e^{i(A_t + i\beta\sigma)} = e^{iu}$, lattice of magnetic gauge fluxes $\Gamma_{\mathfrak{h}}$.
- Flavor magnetic fluxes n_a and fugacities $y_a = e^{i(A_t^a + i\beta\sigma^a)}$.
- Localization: $Z_{int} = Z_{class} Z_{one-loop}$.
- E.G.: $Z_{class}^{CS} = x^{k\mathfrak{m}}, \ Z_{1-loop}^{gauge} = \prod_{\alpha \in G} (1-x^{\alpha}) (idu)^r, \ r \text{rank of the gauge group, } \alpha \text{roots of } G \text{ and } u = A_t + i\beta\sigma.$

The Index

• The topologically twisted index for ABMJ theory:

$$Z(y_{a}, n_{a}) = \prod_{a=1}^{4} y_{a}^{-\frac{1}{2}N^{2}n_{a}} \sum_{I \in BAE} \frac{1}{\det \mathbb{B}} \times \frac{\prod_{i=1}^{N} x_{i}^{N} \tilde{x}_{i}^{N} \prod_{i \neq j} \left(1 - \frac{x_{i}}{x_{j}}\right) \left(1 - \frac{\tilde{x}_{i}}{\tilde{x}_{j}}\right)}{\prod_{i,j=1}^{N} \prod_{a=1,2} (\tilde{x}_{j} - y_{a}x_{i})^{1-n_{a}} \prod_{a=3,4} (x_{i} - y_{a}\tilde{x}_{j})^{1-n_{a}}}$$

• Contour integral \rightarrow Evaluation (Poles): $e^{iB_i} = e^{i\tilde{B}_i} = 1$

$$\begin{split} e^{iB_i} &= x_i^k \prod_{j=1}^N \frac{(1-y_3\frac{\tilde{x}_j}{x_i})(1-y_4\frac{\tilde{x}_j}{x_i})}{(1-y_1^{-1}\frac{\tilde{x}_j}{x_i})(1-y_2^{-1}\frac{\tilde{x}_j}{x_i})},\\ e^{i\tilde{B}_j} &= \tilde{x}_j^k \prod_{i=1}^N \frac{(1-y_3\frac{\tilde{x}_j}{x_i})(1-y_4\frac{\tilde{x}_j}{x_i})}{(1-y_1^{-1}\frac{\tilde{x}_j}{x_i})(1-y_2^{-1}\frac{\tilde{x}_j}{x_i})}. \end{split}$$

• The $2N \times 2N$ matrix \mathbb{B} is the Jacobian relating the $\{x_i, \tilde{x}_j\}$ variables to the $\{e^{iB_i}, e^{i\tilde{B}_j}\}$ variables

Algorithmic Summary:

• Given the chemical potentials Δ_a according to $y_a = e^{i\Delta_a}$, and variables $x_i = e^{iu_i}$, $\tilde{x}_j = e^{i\tilde{u}_j}$, the equations (poles):

$$\begin{split} 0 &= k u_i - i \sum_{j=1}^N \left[\sum_{a=3,4} \log \left(1 - e^{i \left(\tilde{u}_j - u_i + \Delta_a \right)} \right) - \sum_{a=1,2} \log \left(1 - e^{i \left(\tilde{u}_j - u_i - \Delta_a \right)} \right) \right] - 2 \pi n_i, \\ 0 &= k \tilde{u}_j - i \sum_{i=1}^N \left[\sum_{a=3,4} \log \left(1 - e^{i \left(\tilde{u}_j - u_i + \Delta_a \right)} \right) - \sum_{a=1,2} \log \left(1 - e^{i \left(\tilde{u}_j - u_i - \Delta_a \right)} \right) \right] - 2 \pi \tilde{n}_j. \end{split}$$

• The topologically twisted index: (i) solve these equations for $\{u_i, \tilde{u}_j\}$; (ii) insert the solutions into the expression for Z.

The large-N limit

• In the large-N limit, the eigenvalue distribution becomes continuous, and the set $\{t_i\}$ may be described by an eigenvalue density $\rho(t)$.

$$u_i = iN^{1/2} t_i + \pi - \frac{1}{2}\delta v(t_i), \qquad \tilde{u}_i = iN^{1/2} t_i + \pi + \frac{1}{2}\delta v(t_i),$$

Figure: Eigenvalues for $\Delta_a = \{0.4, 0.5, 0.7, 2\pi - 1.6\}$ and N = 60.

The Index

• Description of the eigenvalue distribution.

Figure: The eigenvalue density $\rho(t)$ and the function $\delta v(t)$ for $\Delta_a = \{0.4, 0.5, 0.7, 2\pi - 1.6\}$ and N = 60, compared with the leading order expression.

$$\operatorname{Re}\log Z = -\frac{N^{3/2}}{3}\sqrt{2\Delta_1\Delta_2\Delta_3\Delta_4}\sum_a \frac{n_a}{\Delta_a}$$

Leo Pando Zayas (Michigan/ICTP)

Subleading Black Hole Entropy

Beyond Large N: Numerical Fits

Δ_1	Δ_2	Δ_3	$\int f_1$	f_2	f_3
$\pi/2$	$\pi/2$	$\pi/2$	3.0545	-0.4999	-3.0466
$\pi/4$	$\pi/2$	$\pi/4$	$4.2215 - 0.0491n_1$	$-0.4996 + 0.0000n_1$	$-4.1710 - 0.2943n_1$
			$-0.1473n_2 - 0.0491n_3$	$+0.0000n_2 + 0.0000n_3$	$+0.0645n_2 - 0.2943n_3$
0.3	0.4	0.5	$7.9855 - 0.2597n_1$	$-0.4994 - 0.0061n_1$	$-9.8404 - 0.9312n_1$
			$-0.5833n_2 - 0.6411n_3$	$-0.0020n_2 - 0.0007n_3$	$-0.0293n_2 + 0.3739n_3$
0.4	0.5	0.7	$6.6696 - 0.1904n_1$	$-0.4986 - 0.0016n_1$	$-7.5313 - 0.6893n_1$
			$-0.4166n_2 - 0.4915n_3$	$-0.0008n_2 - 0.0001n_3$	$-0.1581n_2 + 0.2767n_3$

• Numerical fit for:

$$\operatorname{Re} \log Z = \operatorname{Re} \log Z_0 + f_1 N^{1/2} + f_2 \log N + f_3 + \cdots$$

- The values of N used in the fit range from 50 to N_{max} where $N_{\text{max}} = 290, 150, 190, 120$ for the four cases, respectively.
- The index is independent of the magnetic fluxes in the special case $\Delta_a = \{\pi/2, \pi/2, \pi/2, \pi/2\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Index

• In the large-N limit, the k = 1 index takes the form

$$F = -\frac{N^{3/2}}{3}\sqrt{2\Delta_1\Delta_2\Delta_3\Delta_4}\sum_a \frac{n_a}{\Delta_a} + N^{1/2}f_1(\Delta_a, n_a) -\frac{1}{2}\log N + f_3(\Delta_a, n_a) + \mathcal{O}(N^{-1/2}),$$

where $F = \operatorname{\mathsf{Re}} \log Z$.

- The leading $\mathcal{O}(N^{3/2})$ term [BHZ], and exactly reproduces the Bekenstein-Hawking entropy of a family of extremal AdS₄ magnetic black holes admitting an explicit embedding into 11d supergravity, once extremized with respect to the flavor and *R*-symmetries.
- The $-\frac{1}{2}\log N$ term [Liu-PZ-Rathee-Zhao].

Topologically twisted index on Riemann surfaces

- The topologically twisted index can be defined on Riemann surfaces with arbitrary genus. There is a simple relation between the index on $\Sigma_g \times S^1$ and that on $S^2 \times S^1$: $F_{S^2 \times S^1}(n_a, \Delta_a) = (1 - g)F_{\Sigma_g \times S^1}(\frac{n_a}{1 - a}, \Delta_a).$
- \bullet Since the coefficient of the logarithmic term in $F_{S^2\times S^1}$ does not depend on n_a we simply have

$$F_{\Sigma_g \times S^1}(n_a, \Delta_a) = \dots - \frac{1-g}{2} \log N + \dots$$

• The $-\frac{1-g}{2}\log N$ from quantum supergravity [Liu-PZ-Rathee-Zhao].

ヘロト 人間ト ヘヨト ヘヨト

AdS_4/CFT_3

- Holographically, ABJM describes a stack of N M2-branes probing a $\mathbb{C}^4/\mathbb{Z}_k$ singularity, whose low energy dynamics is effectively described by 11 dimensional supergravity.
- The index is computed for ABJM theory with a topological twist, equivalently, fluxes on S^2 . On the gravity side it corresponds to microstate counting of magnetically charged asymptotically AdS₄ black holes.

Supergravity solution

- A solution of four dimensional $\mathcal{N} = 2$ gauged sugra with prepotential $F = -2i\sqrt{X^0X^1X^2X^3}$ coming from M theory on $AdS_4 \times S^7$ with $U(1)^4 \in SO(8)$.
- Background metric :

$$ds^{2} = -e^{\mathcal{K}(X)} \left(g r - \frac{c}{2g r}\right)^{2} dt^{2} + e^{-\mathcal{K}(X)} \frac{dr^{2}}{\left(g r - \frac{c}{2g r}\right)^{2}} + 2e^{-\mathcal{K}(X)} r^{2} d\Omega_{2}^{2}$$

Magnetic charges

$$F^a_{\theta\phi} = -\frac{n_a}{\sqrt{2}}\sin\theta, \qquad F^1_{tr} = 0.$$

Bekenstein-Hawking entropy and Index

• The Bekenstein-Hawking entropy:

$$S(n_a) = \frac{1}{4G_N} A = \frac{2\pi}{G_N} e^{-\mathcal{K}(X_h)} r_h^2 = \frac{2\pi}{G_N} (F_2 + \sqrt{\Theta})^{1/2}$$

$$F_2 = \frac{1}{2} \sum_{a < b} n_a n_b - \frac{1}{4} \sum_a n_a^2, \quad \Theta = (F_2)^2 - 4n_1 n_2 n_3 n_4.$$

- Extremize the index $Z(n_a, y_a)$ with respect to y_a coincides with the entropy $\ln \operatorname{Re} Z(n_a, \tilde{y}_a) = S_{BH}$.
- Goal: Compute one-loop corrections around this sugra background in 11 Sugra and compare with field theory.

Logarithmic terms in one-loop effective actions

- One-loop effective action is equivalent to computations of determinants.
- For a given kinetic operator A one naturally defines the logarithm of its determinant as

$$\frac{1}{2} \, \ln \det' A = \frac{1}{2} \sum_{n}' \, \ln \kappa_n$$

where prime denotes that the sum is over non-vanishing eigenvalues, κ_n , of A.

 $\bullet\,$ It is further convenient to define the heat Kernerl of the operator A as

$$K(\tau) = e^{-\tau A} = \sum_{n} e^{-\kappa_n \tau} \mid \phi_n \rangle \langle \phi_n \mid .$$

Logarithmic terms in one-loop effective actions

- The heat kernel contains information about both, the non-zero modes and the zero modes.
- Let n_A^0 be the number of zero modes of the operator A.

$$-\frac{1}{2} \, \ln \det' A = \frac{1}{2} \int_{\epsilon}^{\infty} \, \frac{d\tau}{\tau} \left(\mathrm{Tr} K(\tau) - n_A^0 \right)$$

where ϵ is a UV cutoff.

• At small τ , the Seeley-DeWitt expansion for the heat kernel is appropriate:

$$\operatorname{Tr} K(\tau) = \frac{1}{(4\pi)^{d/2}} \sum_{n=0}^{\infty} \tau^{n-d/2} \int d^d x \sqrt{g} \, a_n(x,x).$$

Logarithmic terms in one-loop effective actions

• Since, non-zero eigenvalues of a standard Laplace operator A scale as L^{-2} , it is natural to redefine $\bar{\tau} = \tau/L^2$.

$$-\frac{1}{2} \, \ln \det' A = \frac{1}{2} \int_{\bar{\epsilon}}^{\infty} \, \frac{d\bar{\tau}}{\bar{\tau}} \, \left(\sum_{n=0}^{\infty} \, \frac{1}{(4\pi)^{d/2}} \, \bar{\tau}^{n-d/2} \, L^{2n-d} \, \int d^d x \, \sqrt{g} \, a_n(x,x) - n_A^0 \right).$$

• The logarithmic contribution to $\ln \det' A$ comes from the term n=d/2,

$$-rac{1}{2} \, \ln \det' A = \left(rac{1}{(4\pi)^{d/2}} \, \int d^d x \, \sqrt{g} \, a_{d/2}(x,x) - n_A^0
ight) \log L + \dots .$$

• On very general grounds (diffeomorphism), the coefficient $a_{d/2}$ vanishes in odd-dimensional spacetimes,.

イロト イポト イヨト イヨト

Quantum Supergravity: Key Facts

- The coefficient of the logarithmic term is well-defined.
- $\bullet\,$ In odd-dimensional spaces the coefficient of the $\log\,$ can only come from zero modes or boundary modes.
- Corrections to entropy from one-loop part of the partition function:

$$S_1 = \lim_{\beta \to \infty} (1 - \beta \partial_\beta) \left(\sum_D (-1)^D (\frac{1}{2} \log \det' D) + \Delta F_0 \right),$$

- D stands for kinetic operators corresponding to various fluctuating fields and $(-1)^D = -1$ for bosons and 1 for fermions.
- The zero modes are accounted for separately by

$$\Delta F_0 = \log \int [d\phi]|_{D\phi=0},$$

where
$$\exp(-\int d^d x \sqrt{g} \phi D \phi) = 1$$
.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Quantum Supergravity: Key Facts

• The structure of the logarithmic term in 11d Sugra:

$$\log Z[\beta,\ldots] = \sum_{\{D\}} (-1)^D (\beta_D - 1) n_D^0 \log L + \Delta F_{\text{Ghost}}.$$

- Subtract the zero modes (-1) and add them appropriately due to integration over zero modes (β_D) .
- The ghost contributions are treated separately.
- An IR window into the UV physics: Requires only information about the massless spectrum and confronts the UV theory!

Zero modes and L^2 cohomology

- For zero modes of A_p in compact space, one requires $\langle dA_p, dA_p \rangle = 0$. This amounts to requiring A_p to be closed. But A_p and $A_p + d\alpha_{p-1}$ are gauge equivalent, and the redundant contributions in the path integral are canceled by the Faddeev-Popov procedure (Closed modulo exact forms). The number of the zero modes is the dimension of the *p*-th de-Rham cohomology.
- Problem in non-compact spaces: The gauge transformation $d\alpha_{p-1}$ can be normalizable and included in the physical spectrum yet the gauge parameter α_{p-1} can be non-normalizable p-1. Faddeev-Popov procedure can only cancel gauge transformations with normalizable α_{p-1} .
- A physical spectrum with some pure gauge modes with non-normalizable gauge parameter is ubiquitous in one-loop gravity computations in AdS [Sen].
- Mathematically, one considers L^2 cohomology, $H^p_{L^2}(M,\mathbb{R})$.

(B) (B)

Zero modes

• The Euler characteristics contains relevant information about the number of zero modes

$$\chi(M) = \sum_{p} (-1)^{p} \dim \mathcal{H}^{p}(M, \mathbb{R}).$$

• There is an appropriate modification of the Gauss-Bonnet theorem in the presence of a boundary:

$$\chi = \frac{1}{32\pi^2} \left(\int E_4 - 2 \int \epsilon_{abcd} \,\theta_b^a \,\mathcal{R}_d^c + \frac{4}{3} \int \epsilon_{abcd} \,\theta_b^a \,\theta_e^c \,\theta_d^e \right)$$

= 2.

- Euler density: $E_4 = \frac{1}{64} \left(R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} 4 R_{\mu\nu} R^{\mu\nu} + R^2 \right).$
- Generalize to black hole with horizon of Σ_g : $\chi = 2(1-g)$.

・ロト ・ 日 ・ ・ ヨ ト ・ 日 ト

Zero modes

- In the non-extremal case the topology of the black hole is homotopic to its horizon Σ_g due to the contractible (t,r) directions.
- The Euler characteristic of the non-extremal black hole is simply $\chi_{\rm BH}=2(1-g).$
- It also indicates that all but the second relative de-Rham cohomology vanish

$$\dim^R \mathcal{H}^2_{L^2}(M,\mathbb{R}) = \int^{\operatorname{Reg}} \operatorname{Pf}(R) = \chi_{\operatorname{BH}} = 2(1-g).$$

• The no- extremal black hole background has only two-form zero modes and their regularized number is:

$$n_2^0 = 2(1-g).$$

• Where are the 2-forms in 11d Sugra?

Quantizing a p-form

- The general action for quantizing a p-form A_p requires a set of (p j + 1)-form ghost fields, with $j = 2, 3, \ldots, p + 1$.
- The ghost is Grassmann even if *j* is odd and Grassmann odd if *j* is even [Siegel '80]

$$\Delta F_{\text{Ghost}} = \sum_{j} (-1)^{j} (\beta_{A_{p-j}} - j - 1) n_{A_{p-j}}^{0} \log L.$$

(人間) トイヨト イヨト

Quantizing C_3 and zero modes

- The quantization of the three-form $C_{\mu\nu\rho}$ introduces 2 two-form ghosts that are Grassmann odd, 3 one-form ghosts that are Grassmann even and 4 scalar ghosts that are Grassmann odd[Siegel '80].
- Note that $C_{\mu\nu\rho}$ itself can't decompose as a massless two-form in the black hole background and a massless one-form in the compact dimension since S^7 does not admit any non-trivial 1-cycles.
- The only two-form comes from the two-form ghosts when quantizing $C_{\mu\nu\rho}$

Quantizing C_3 and zero modes

• Ghost contribution to one-loop effective action:

 $\Delta F = \Delta F_{\text{Ghost2form}}.$

• The logarithmic term in the one-loop contribution to the entropy is

$$(2-\beta_2)n_2^0\log L,$$

 Recall β₂ comes from integrating the zero modes in the path integral, and the minus sign takes care of the Grassmann odd nature of A₂.

Zero modes: Two form zero modes

- The properly normalized measure is ∫ d[A_{µν}] exp(-L⁷ ∫ d¹¹x √g⁽⁰⁾g^{(0)µν}g^{(0)ρσ}A_{µρ}A_{νσ}) = 1, where we single out the L dependence of the metric, g⁽⁰⁾_{µν} = ¹/_{L²}g_{µν}. Thus the normalized measure is ∏_x d(L^{⁷/₂}A_{µν}). For each zero mode, there is a L^{⁷/₂} factor. Thus in the logarithmic determinant, one has β₂ = ⁷/₂.
 Recall that the log L correction to the partition function is
 - $((2-\beta_2)n_2^0\log L;$ using that $\beta_2=7/2$ and $n_2^0=2(1-g))$ leads to:

$$\log Z[\beta, \dots] = -3(1-g)\log L + \cdots$$

Final Result

 $\bullet\,$ The coefficient of the logarithmic term does not depend on $\beta\,$

$$S_{1-\text{loop}} = (1 - \beta \partial_{\beta})(-3(1 - g)\log L) + \cdots$$
$$= -3(1 - g)\log L + \cdots$$

- As this is β independent, it is also valid in the extremal limit, $\beta \to \infty$.
- The AdS/CFT dictionary establishes that $L\sim N^{1/6}$ leading to a logarithmic correction to the extremal black hole entropy of the form

$$S = \dots - \frac{1-g}{2} \log N + \dots,$$

Perfectly agrees with the microscopic result!!!

Wrapped M5 branes in AdS/CFT

• Se talks by Bah, Crichigno for treatments of M5 branes and localization, respectively.

AdS_4/CFT_3	from M2-branes	from M5-branes
M-theory set-up	N M2-branes probing Cone(Y_7)	$N~{ m M5}{ m -branes}$ wrapped on M_3
Dual	Known only for	Systematic algorithm
Field theory	special examples of Y_7	applicable to general M_3
Gravity dual	$AdS_4 \times Y_7$	Warped $AdS_4 imes M_3 imes ilde{S}^4$
Symmetry	Isometry of $Y_7 (\supset U(1)_R)$	Only $U(1)_R$
L^2/G_4	$\frac{N^{3/2}\pi^2}{\sqrt{27/8\mathrm{vol}(Y_7)}}$	$\frac{2N^3 \operatorname{vol}(M_3)}{3\pi^2}$
L/L_p	$\propto N^{1/6}$	$\propto N^{1/3}$

Field theory topologically twisted partition function

• The twisted partition functions for general $\mathcal{N} = 2$ theory can be written as [Closset et al. '17, '18].

$$\mathcal{Z}_{p,g}^{\nu_R} = \sum_{\alpha} (\mathcal{H}_{\nu_R}^{\alpha})^{g-1} (\mathcal{F}_{\nu_R}^{\alpha})^p , \qquad (1)$$

• where α labels vacua of the 3d $\mathcal{N} = 2$ on $\mathbb{R}^2 \times S^1$, called Bethe-vacua, and \mathcal{H} and \mathcal{F} are called 'handle-gluing' and 'fibering' operators, respectively.

The 3d-3d Correspondence

3D $\mathcal{T}_N[M_3]$ theory on $\mathbb{R}^2 imes S^1$	$PSL(N,\mathbb{C})$ CS theory on M_3
Bethe vacuum $lpha$	Irreducible flat connection \mathcal{A}^{lpha}
Fibering operator $\mathcal{F}^{lpha}_{ u_R=rac{1}{2}}$	$\exp(-\frac{1}{2\pi i}S_0^{\alpha}) = \exp(\frac{1}{4\pi i}CS[\mathcal{A}^{\alpha}; M_3])$
Handle gluing operator $\mathcal{H}^{lpha}_{ u_R=rac{1}{2}}$	$N \exp(-2S_1^{\alpha}) = N \times \operatorname{Tor}_{M_3}^{(\alpha)}(\tau_{\mathrm{adj}}, N)$

- $\operatorname{Tor}_{M_3}^{(\alpha)}(\tau, N)$ is analytic torsion (Ray-Singer torsion) for an associated vector bundle in a representation $\tau \in \operatorname{Hom}[PSL(N, \mathbb{C}) \to GL(V_{\tau})]$ twisted by a flat connection \mathcal{A}^{α} .
- The dictionary for the handle gluing operator works only for M_3 with vanishing $H_1(M_3, \mathbb{Z}_N)$.

Field Theory Answer from CS invariants

$$\begin{aligned} & |\mathcal{Z}_{g,p=0}^{\nu_{R}=\frac{1}{2}}(\mathcal{T}_{N}[M_{3}])| \\ & \xrightarrow{N \to \infty} 2 \cos\left((1-g)\theta_{N,M_{3}}\right) \\ & \times \exp\left((g-1)\left(\frac{\operatorname{vol}(M_{3})}{3\pi}(N^{3}-N)\right) \\ & -a(M_{3})(N-1) - b(M_{3}) + \log N - c(M_{3};N)\right)\right) \\ & \times \left(1 + e^{-\left(\ldots\right)}\right). \end{aligned}$$

- The 1/N expansion terminates at $o(N^0)$.
- Analytic result, no numerics involved.
- Logarithmic correction to the $\log \mathcal{Z}$ is $(g-1)\log N$.

(2)

- Pernici-Sezgin, Acharya-Gautlett-Kim, Gauntlett-Kim-Waldram, Donos-Gauntlett-Kim-Varela.
- A universal black hole solution, similar to the M2 embedding of [ABCMZ].

$$I = \frac{1}{16\pi G_4} \int d^4 x \sqrt{-g} \left(R + \frac{6}{L^2} - \frac{L^2}{4} F^2 \right) .$$
(3)
$$\frac{ds^2}{L^2} = -(\rho - \frac{1}{2\rho})^2 dt^2 + \frac{1}{(\rho - \frac{1}{2\rho})^2} d\rho^2 + \rho^2 ds^2(\Sigma_g) ,$$
(4)
$$F = \frac{1}{L^2} (\text{volume form on } \Sigma_g) .$$

$$S_{\rm BH} = \frac{A_{\rm horizon}}{4G_4} = \frac{2\pi(g-1)L^2}{4G_4}$$

$$S = \frac{(g-1)\mathrm{vol}(M_3)N^3}{3\pi} \checkmark$$
(5)

Logarithmic correction: one-loop quantum gravity

$$\log Z_{1-loop} = (2 - \beta_2) n_2^0 \log L = (2 - 7/2) 2(1 - g) \log L = (g - 1) \log N \checkmark$$

A challenge (prediction) for field theory for $b_1(M_3) \neq 0$:

$$\log Z \Big|_{C_3} = (-1)^1 (\beta_{C_3} - 1) n_{C_3}^{(0)} \log L$$

= $-\left(\frac{5}{2} - 1\right) 2(1 - g) b_1 \log L$
= $3(g - 1) b_1 \log L$
= $(g - 1) b_1 \log N$, (6)

The full answer:

$$\log Z_{1-loop} = (g-1)(1+b_1)\log N$$

Leo Pando Zayas (Michigan/ICTP)

э

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Conclusions and Open Problems

- The degrees of freedom do not live locally at the horizon. Corrections to the Quantum Entropy Formula, extra hair in AdS [Sen]
 [Hristov-Lodato-Reys]. Reconciling the near-horizon and the asymptotic region in AdS at the quantum level.
- 't Hooft limit: $\lambda = N/k$ held fixed as $N \to \infty$ [PZ-Yu] \checkmark . A window into Mock modularity? [Drukker-Mariño-Putrov] $F_{S^3}(\lambda, N) = \sum_{g=0}^{\infty} \left(\frac{2\pi i \lambda}{N}\right)^{2g-2} F_g(\lambda)$
- Electrically charged, rotating AdS_5 black hole entropy explained from the the $\mathcal{N} = 4$ SYM index on $S^1 \times S^3$: Kim, Martelli, Benini, Honda. [Logarithmic police!]
- A *precise setup* to attack important questions of black hole physics in the AdS/CFT: Information loss paradox.

イロト 不得下 イヨト イヨト