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Motivation

S =
kBc

3

~
A

4GN

A confluence of thermodynamical, relativistic, gravitational, and
quantum aspects. Hydrogen atom of QG. [Strominger-Vafa].

An explicit example in AdS4/CFT3: The large-N limit of the
topologically twisted index of ABJM correctly reproduces the leading
term in the entropy of magnetically charged black holes in
asymptotically AdS4 spacetimes [Benini-Hristov-Zaffaroni].

Extended also to: dyonic black holes, black holes with hyperbolic
horizons, black holes in massive IIA theory and M5-branes.

Agreement has been shown beyond the large N limit by matching the
coefficient of logN [Liu-PZ-Rathee-Zhao], [Gang-Kim-PZ] (Beyond
Bohr energies).
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The Index

ABJM Theory

AB1JM: A 3d Chern-Simons-matter theory with U(N)k × U(N)−k
gauge group with opposite levels.

Matter sector: Four complex scalar fields ΦI , (I = 1, 2, 3, 4) in the
bifundamental representation (N, N̄) and fermionic partners.

SCFT N = 6 supersymmetry generically but for k = 1, 2, the
symmetry is enhanced to N = 8.

See Pilch’s talk for a thorough introduction to ABJM.

N
k

N−k

Φ1,Φ2

Φ3,Φ4

1Red acknowledging authors present in the audience.
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The Index

The Topologically Twisted Index of ABJM Theory

The topologically twisted index for three dimensional N = 2 field
theories was defined in [Benini-Zaffaroni] (Honda ‘15, Closset ‘15) by
evaluating the supersymmetric partition function on S1 × S2 with a
topological twist on S2.

Hamiltonian: The supersymmetric partition function of the twisted
theory, Z(na,∆a) = Tr (−1)F e−βHeiJa∆a . It depends on the fluxes,
na, through H and on the chemical potentials ∆a.

The topologically twisted index for N ≥ 2 supersymmetric theories on
S2× S1 can be computed via supersymmetric localization [Crichigno].

The supersymmetric localization computation of the topologically
twisted index can be extended to theories defined on Σg × S1.

Leo Pando Zayas (Michigan/ICTP) Subleading Black Hole Entropy 5 / 36



The Index

General form of the Index

Background:

ds2 = R2(dθ2 + sin2 θdφ2) + β2dt2, AR =
1

2
cos θdφ.

The index can be expressed as a contour integral:

Z(na, ya) =
∑
m∈Γh

∮
C

Zint(x,m;na, ya).

Zint meromorphic form, Cartan-valued complex variables
x = ei(At+iβσ) = eiu, lattice of magnetic gauge fluxes Γh.

Flavor magnetic fluxes na and fugacities ya = ei(A
a
t+iβσa).

Localization: Zint = ZclassZone−loop.

E.G.: ZCSclass = xkm, Zgauge1−loop =
∏
α∈G

(1− xα) (idu)r, r – rank of the

gauge group, α – roots of G and u = At + iβσ.
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The Index

The topologically twisted index for ABMJ theory:

Z(ya, na) =

4∏
a=1

y
− 1

2N
2na

a

∑
I∈BAE

1

detB
×

∏N
i=1 x

N
i x̃

N
i

∏
i6=j

(
1− xi

xj

)(
1− x̃i

x̃j

)
∏N

i,j=1

∏
a=1,2(x̃j − yaxi)1−na

∏
a=3,4(xi − yax̃j)1−na

.

Contour integral → Evaluation (Poles): eiBi = eiB̃i = 1

eiBi = xki

N∏
j=1

(1− y3
x̃j
xi

)(1− y4
x̃j
xi

)

(1− y−1
1

x̃j
xi

)(1− y−1
2

x̃j
xi

)
,

eiB̃j = x̃kj

N∏
i=1

(1− y3
x̃j
xi

)(1− y4
x̃j
xi

)

(1− y−1
1

x̃j
xi

)(1− y−1
2

x̃j
xi

)
.

The 2N × 2N matrix B is the Jacobian relating the {xi, x̃j} variables

to the {eiBi , eiB̃j} variables
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The Index

Algorithmic Summary:

Given the chemical potentials ∆a according to ya = ei∆a , and
variables xi = eiui , x̃j = eiũj , the equations (poles):

0 = kui − i
N∑
j=1

 ∑
a=3,4

log
(
1− ei(ũj−ui+∆a)

)
−

∑
a=1,2

log
(
1− ei(ũj−ui−∆a)

)− 2πni,

0 = kũj − i
N∑
i=1

 ∑
a=3,4

log
(
1− ei(ũj−ui+∆a)

)
−

∑
a=1,2

log
(
1− ei(ũj−ui−∆a)

)− 2πñj .

The topologically twisted index: (i) solve these equations for {ui, ũj};
(ii) insert the solutions into the expression for Z.
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The Index

The large-N limit

In the large-N limit, the eigenvalue distribution becomes continuous,
and the set {ti} may be described by an eigenvalue density ρ(t).

ui = iN1/2 ti + π − 1
2δv(ti), ũi = iN1/2 ti + π + 1

2δv(ti),

Figure: Eigenvalues for ∆a = {0.4, 0.5, 0.7, 2π − 1.6} and N = 60.
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The Index

Description of the eigenvalue distribution.

Figure: The eigenvalue density ρ(t) and the function δv(t) for
∆a = {0.4, 0.5, 0.7, 2π − 1.6} and N = 60, compared with the leading order
expression.

Re logZ = −N
3/2

3

√
2∆1∆2∆3∆4

∑
a

na
∆a
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The Index

Beyond Large N : Numerical Fits

∆1 ∆2 ∆3 f1 f2 f3
π/2 π/2 π/2 3.0545 −0.4999 −3.0466
π/4 π/2 π/4 4.2215− 0.0491n1 −0.4996 + 0.0000n1 −4.1710− 0.2943n1

−0.1473n2 − 0.0491n3 +0.0000n2 + 0.0000n3 +0.0645n2 − 0.2943n3
0.3 0.4 0.5 7.9855− 0.2597n1 −0.4994− 0.0061n1 −9.8404− 0.9312n1

−0.5833n2 − 0.6411n3 −0.0020n2 − 0.0007n3 −0.0293n2 + 0.3739n3
0.4 0.5 0.7 6.6696− 0.1904n1 −0.4986− 0.0016n1 −7.5313− 0.6893n1

−0.4166n2 − 0.4915n3 −0.0008n2 − 0.0001n3 −0.1581n2 + 0.2767n3

Numerical fit for:

Re logZ = Re logZ0 + f1N
1/2 + f2 logN + f3 + · · ·

The values of N used in the fit range from 50 to Nmax where
Nmax = 290, 150, 190, 120 for the four cases, respectively.

The index is independent of the magnetic fluxes in the special case
∆a = {π/2, π/2, π/2, π/2}
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The Index

In the large-N limit, the k = 1 index takes the form

F = −N
3/2

3

√
2∆1∆2∆3∆4

∑
a

na
∆a

+N1/2f1(∆a, na)

−1

2
logN + f3(∆a, na) +O(N−1/2),

where F = Re logZ.

The leading O(N3/2) term [BHZ], and exactly reproduces the
Bekenstein-Hawking entropy of a family of extremal AdS4 magnetic
black holes admitting an explicit embedding into 11d supergravity,
once extremized with respect to the flavor and R-symmetries.

The −1
2 logN term [Liu-PZ-Rathee-Zhao].
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The Index

Topologically twisted index on Riemann surfaces

The topologically twisted index can be defined on Riemann surfaces
with arbitrary genus. There is a simple relation between the index on
Σg × S1 and that on S2 × S1:
FS2×S1(na,∆a) = (1− g)FΣg×S1( na

1−g ,∆a).

Since the coefficient of the logarithmic term in FS2×S1 does not
depend on na we simply have

FΣg×S1(na,∆a) = · · · − 1− g
2

logN + · · · .

The −1−g
2 logN from quantum supergravity [Liu-PZ-Rathee-Zhao].
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One-loop Supergravity

AdS4/CFT3

Holographically, ABJM describes a stack of N M2-branes probing a
C4/Zk singularity, whose low energy dynamics is effectively described
by 11 dimensional supergravity.

The index is computed for ABJM theory with a topological twist,
equivalently, fluxes on S2. On the gravity side it corresponds to
microstate counting of magnetically charged asymptotically AdS4

black holes.
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One-loop Supergravity

Supergravity solution

A solution of four dimensional N = 2 gauged sugra with prepotential
F = −2i

√
X0X1X2X3 coming from M theory on AdS4 × S7 with

U(1)4 ∈ SO(8).

Background metric :

ds2 = −eK(X)

(
g r − c

2g r

)2

dt2+e−K(X) dr2(
g r − c

2g r

)2 +2e−K(X)r2dΩ2
2.

Magnetic charges

F aθφ = − na√
2

sin θ, F 1
tr = 0.
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One-loop Supergravity

Bekenstein-Hawking entropy and Index

The Bekenstein-Hawking entropy:

S(na) =
1

4GN
A =

2π

GN
e−K(Xh)r2

h =
2π

GN
(F2 +

√
Θ)1/2

F2 =
1

2

∑
a<b

nanb −
1

4

∑
a

n2
a, Θ = (F2)2 − 4n1n2n3n4.

Extremize the index Z(na, ya) with respect to ya coincides with the
entropy ln ReZ(na, ỹa) = SBH .

Goal: Compute one-loop corrections around this sugra background in
11 Sugra and compare with field theory.
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One-loop Supergravity

Logarithmic terms in one-loop effective actions

One-loop effective action is equivalent to computations of
determinants.

For a given kinetic operator A one naturally defines the logarithm of
its determinant as

1

2
ln det′A =

1

2

∑
n

′ lnκn

where prime denotes that the sum is over non-vanishing eigenvalues,
κn, of A.

It is further convenient to define the heat Kernerl of the operator A as

K(τ) = e−τA =
∑
n

e−κnτ | φn〉〈φn | .
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One-loop Supergravity

Logarithmic terms in one-loop effective actions

The heat kernel contains information about both, the non-zero modes
and the zero modes.

Let n0
A be the number of zero modes of the operator A.

−1

2
ln det′A =

1

2

∫ ∞
ε

dτ

τ

(
TrK(τ)− n0

A

)
where ε is a UV cutoff.

At small τ , the Seeley-DeWitt expansion for the heat kernel is
appropriate:

TrK(τ) =
1

(4π)d/2

∞∑
n=0

τn−d/2
∫
ddx
√
g an(x, x).
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One-loop Supergravity

Logarithmic terms in one-loop effective actions

Since, non-zero eigenvalues of a standard Laplace operator A scale as
L−2, it is natural to redefine τ̄ = τ/L2.

−
1

2
ln det′A =

1

2

∫ ∞
ε̄

dτ̄

τ̄

( ∞∑
n=0

1

(4π)d/2
τ̄
n−d/2

L
2n−d

∫
d
d
x
√
g an(x, x)− n0

A

)
.

The logarithmic contribution to ln det′A comes from the term
n = d/2,

−1

2
ln det′A =

(
1

(4π)d/2

∫
ddx
√
g ad/2(x, x)− n0

A

)
logL+ . . . .

On very general grounds (diffeomorphism), the coefficient ad/2
vanishes in odd-dimensional spacetimes,.
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One-loop Supergravity

Quantum Supergravity: Key Facts

The coefficient of the logarithmic term is well-defined.

In odd-dimensional spaces the coefficient of the log can only come
from zero modes or boundary modes.

Corrections to entropy from one-loop part of the partition function:

S1 = lim
β→∞

(1− β∂β)

(∑
D

(−1)D(1
2 log det′D) + ∆F0

)
,

D stands for kinetic operators corresponding to various fluctuating
fields and (−1)D = −1 for bosons and 1 for fermions.

The zero modes are accounted for separately by

∆F0 = log

∫
[dφ]|Dφ=0,

where exp(−
∫
ddx
√
gφDφ) = 1.
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One-loop Supergravity

Quantum Supergravity: Key Facts

The structure of the logarithmic term in 11d Sugra:

logZ[β, . . . ] =
∑
{D}

(−1)D(βD − 1)n0
D logL+ ∆FGhost.

Subtract the zero modes (−1) and add them appropriately due to
integration over zero modes (βD).

The ghost contributions are treated separately.

An IR window into the UV physics: Requires only information about
the massless spectrum and confronts the UV theory!
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One-loop Supergravity

Zero modes and L2 cohomology

For zero modes of Ap in compact space, one requires 〈dAp, dAp〉 = 0.
This amounts to requiring Ap to be closed. But Ap and Ap + dαp−1

are gauge equivalent, and the redundant contributions in the path
integral are canceled by the Faddeev-Popov procedure (Closed
modulo exact forms). The number of the zero modes is the dimension
of the p-th de-Rham cohomology.

Problem in non-compact spaces: The gauge transformation dαp−1

can be normalizable and included in the physical spectrum yet the
gauge parameter αp−1 can be non-normalizable p− 1.
Faddeev-Popov procedure can only cancel gauge transformations with
normalizable αp−1.

A physical spectrum with some pure gauge modes with
non-normalizable gauge parameter is ubiquitous in one-loop gravity
computations in AdS [Sen].

Mathematically, one considers L2 cohomology, Hp
L2(M,R).
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One-loop Supergravity

Zero modes

The Euler characteristics contains relevant information about the
number of zero modes

χ(M) =
∑
p

(−1)pdimHp(M,R).

There is an appropriate modification of the Gauss-Bonnet theorem in
the presence of a boundary:

χ =
1

32π2

(∫
E4 − 2

∫
εabcd θ

a
b Rcd +

4

3

∫
εabcd θ

a
b θ

c
e θ

e
d

)
= 2.

Euler density: E4 = 1
64 (RµνρσR

µνρσ − 4RµνR
µν +R2).

Generalize to black hole with horizon of Σg: χ = 2(1− g).

Leo Pando Zayas (Michigan/ICTP) Subleading Black Hole Entropy 23 / 36



One-loop Supergravity

Zero modes

In the non-extremal case the topology of the black hole is homotopic
to its horizon Σg due to the contractible (t, r) directions.

The Euler characteristic of the non-extremal black hole is simply
χBH = 2(1− g).

It also indicates that all but the second relative de-Rham cohomology
vanish

dimRH2
L2(M,R) =

∫ Reg

Pf(R) = χBH = 2(1− g).

The no- extremal black hole background has only two-form zero
modes and their regularized number is:

n0
2 = 2(1− g).

Where are the 2-forms in 11d Sugra?
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One-loop Supergravity

Quantizing a p-form

The general action for quantizing a p-form Ap requires a set of
(p− j + 1)-form ghost fields, with j = 2, 3, . . . , p+ 1.

The ghost is Grassmann even if j is odd and Grassmann odd if j is
even [Siegel ‘80]

∆FGhost =
∑
j

(−1)j(βAp−j − j − 1)n0
Ap−j logL.
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One-loop Supergravity

Quantizing C3 and zero modes

The quantization of the three-form Cµνρ introduces 2 two-form ghosts
that are Grassmann odd, 3 one-form ghosts that are Grassmann even
and 4 scalar ghosts that are Grassmann odd[Siegel ‘80].

Note that Cµνρ itself can’t decompose as a massless two-form in the
black hole background and a massless one-form in the compact
dimension since S7 does not admit any non-trivial 1-cycles.

The only two-form comes from the two-form ghosts when quantizing
Cµνρ
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One-loop Supergravity

Quantizing C3 and zero modes

Ghost contribution to one-loop effective action:

∆F = ∆FGhost2form.

The logarithmic term in the one-loop contribution to the entropy is

(2− β2)n0
2 logL,

Recall β2 comes from integrating the zero modes in the path integral,
and the minus sign takes care of the Grassmann odd nature of A2.
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One-loop Supergravity

Zero modes: Two form zero modes

The properly normalized measure is∫
d[Aµν ] exp(−L7

∫
d11x

√
g(0)g(0)µνg(0)ρσAµρAνσ) = 1, where we

single out the L dependence of the metric, g
(0)
µν = 1

L2 gµν . Thus the

normalized measure is
∏
x d(L

7
2Aµν). For each zero mode, there is a

L
7
2 factor. Thus in the logarithmic determinant, one has β2 = 7

2 .

Recall that the logL correction to the partition function is
((2− β2)n0

2 logL; using that β2 = 7/2 and n0
2 = 2(1− g)) leads to:

logZ[β, . . . ] = −3(1− g) logL+ · · · .

Leo Pando Zayas (Michigan/ICTP) Subleading Black Hole Entropy 28 / 36



One-loop Supergravity

Final Result

The coefficient of the logarithmic term does not depend on β

S1-loop = (1− β∂β)(−3(1− g) logL) + · · ·
= −3(1− g) logL+ · · · .

As this is β independent, it is also valid in the extremal limit, β →∞.

The AdS/CFT dictionary establishes that L ∼ N1/6 leading to a
logarithmic correction to the extremal black hole entropy of the form

S = · · · − 1− g
2

logN + · · · ,

Perfectly agrees with the microscopic result!!!
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One-loop Supergravity

Wrapped M5 branes in AdS/CFT

Se talks by Bah, Crichigno for treatments of M5 branes and
localization, respectively.

AdS4/CFT3 from M2-branes from M5-branes

M-theory set-up N M2-branes probing Cone(Y7) N M5-branes wrapped on M3
Dual Known only for Systematic algorithm

Field theory special examples of Y7 applicable to general M3

Gravity dual AdS4 × Y7 Warped AdS4 ×M3 × S̃4

Symmetry Isometry of Y7 (⊃ U(1)R) Only U(1)R

L2/G4
N3/2π2√

27/8vol(Y7)

2N3vol(M3)

3π2

L/Lp ∝ N1/6 ∝ N1/3
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One-loop Supergravity

Field theory topologically twisted partition function

The twisted partition functions for general N = 2 theory can be
written as [Closset et al. ‘17, ‘18].

ZνRp,g =
∑
α

(HανR)g−1(FανR)p , (1)

where α labels vacua of the 3d N = 2 on R2 × S1, called
Bethe-vacua, and H and F are called ‘handle-gluing’ and ‘fibering’
operators, respectively.
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One-loop Supergravity

The 3d-3d Correspondence

3D TN [M3] theory on R2 × S1 PSL(N,C) CS theory on M3

Bethe vacuum α Irreducible flat connection Aα
Fibering operator Fα

νR= 1
2

exp(− 1
2πiS

α
0 ) = exp( 1

4πiCS[Aα;M3])

Handle gluing operator Hα
νR= 1

2

N exp(−2Sα1 ) = N ×Tor
(α)
M3

(τadj, N)

Tor
(α)
M3

(τ,N) is analytic torsion (Ray-Singer torsion) for an associated
vector bundle in a representation τ ∈ Hom[PSL(N,C)→ GL(Vτ )]
twisted by a flat connection Aα.

The dictionary for the handle gluing operator works only for M3 with
vanishing H1(M3,ZN ).
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One-loop Supergravity

Field Theory Answer from CS invariants

|ZνR= 1
2

g,p=0 (TN [M3])|
N→∞−−−−−−−→ 2 cos

(
(1− g)θN,M3

)
× exp

(
(g − 1)

(vol(M3)
3π (N3 −N)

−a(M3)(N − 1)− b(M3) + logN − c(M3;N)
))

×
(

1 + e−
(
...
))

.

(2)

The 1/N expansion terminates at o(N0).

Analytic result, no numerics involved.

Logarithmic correction to the logZ is (g − 1) logN .
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One-loop Supergravity

Pernici-Sezgin, Acharya-Gautlett-Kim, Gauntlett-Kim-Waldram,
Donos-Gauntlett-Kim-Varela.
A universal black hole solution, similar to the M2 embedding of
[ABCMZ].

I =
1

16πG4

∫
d4x
√
−g
(
R+

6

L2
− L2

4
F 2

)
. (3)

ds2

L2
= −(ρ− 1

2ρ
)2dt2 +

1

(ρ− 1
2ρ)2

dρ2 + ρ2ds2(Σg) ,

F =
1

L2
(volume form on Σg) .

(4)

SBH =
Ahorizon

4G4
=

2π(g − 1)L2

4G4

S =
(g − 1)vol(M3)N3

3π
X

(5)
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One-loop Supergravity

Logarithmic correction: one-loop quantum gravity

logZ1−loop = (2− β2)n0
2 logL = (2− 7/2)2(1− g) logL = (g − 1) logNX

A challenge (prediction) for field theory for b1(M3) 6= 0:

logZ
∣∣
C3

= (−1)1(βC3 − 1)n
(0)
C3

logL

= −
(

5

2
− 1

)
2(1− g)b1 logL

= 3(g − 1)b1 logL

= (g − 1)b1 logN, (6)

The full answer:

logZ1−loop = (g − 1)(1 + b1) logN
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One-loop Supergravity

Conclusions and Open Problems

The degrees of freedom do not live locally at the horizon. Corrections
to the Quantum Entropy Formula, extra hair in AdS [Sen]
[Hristov-Lodato-Reys]. Reconciling the near-horizon and the
asymptotic region in AdS at the quantum level.

‘t Hooft limit:λ = N/k held fixed as N →∞ [PZ-Yu] X.
A window into Mock modularity? [Drukker-Mariño-Putrov]

FS3(λ,N) =
∞∑
g=0

(
2π i λ
N

)2g−2
Fg(λ)

Electrically charged, rotating AdS5 black hole entropy explained from
the the N = 4 SYM index on S1 × S3 : Kim, Martelli, Benini,
Honda. [Logarithmic police!]

A precise setup to attack important questions of black hole physics in
the AdS/CFT: Information loss paradox.
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