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* A huge effort has been/is dedicated to Gauge Theories.
it is probably fair to say that most studies are for
connected gauge groups (at least comparatively).

In fact...
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We point out that local symmetries can masquerade as discrete global symmetries to an observer
equipped with only low-energy probes. The existence of the underlying local gauge invariance can, how-
ever, result in observable Aharonov-Bohm-type effects. Black holes can therefore carry discrete gauge
charges—a form of nonclassical “hair.” Neither black-hole evaporation, wormholes, nor anything else
can violate discrete gauge symmetries. In supersymmetric unified theories such discrete symmetries can
forbid proton-decay amplitudes that might otherwise be catastrophic.

PACS numbers: 11.30.—j, 13.30.Ce, 97.60.Lf

Although it is a common and fruitful practice to con-
sider local gauge invariance under discrete groups in lat-
tice theories, the implications of such invariance in the
continuum have not been widely discussed. (They have
been invoked in one class of solutions to the axion
domain-wall problem.'-?)

At first sight the notion of local discrete symmetry in
the continuum appears rather silly. Indeed, the most im-
portant dynamical consequence of a continuous local
symmetry is the existence of a new field, the gauge field.
This field is introduced in order to formulate covariant
derivatives. Covariant derivatives are, of course, neces-
sary so that invariant interactions involving gradients
may be formed; such interactions in turn are necessary in

cal symmetry is a statement that the variables used in a
physical theory are redundant. In language that may be
more familiar, this redundancy is often stated as the fact
that in a gauge theory, only gauge-invariant quantities
are physically meaningful.

From this point of view, it is clear that no processes,
not even such exotic ones as black-hole evaporation or
wormhole tunneling, can violate a gauge symmetry.
There are two striking theoretical consequences of this
observation:

(i) It has been argued recently that wormhole tunnel-
ing induces all local interactions consistent with continu-
ous gauge symmetries.> (The restriction to continuous
local symmetries is not always made explicitly. but has



* Nevertheless, on a second thought, discrete gauge
theories can find many interesting applications e.g.

« Many Condensed Matter (and lattice) models include discrete
gauge theories.

e Discrete symmetries are often needed in BSM to avoid forbidden
processes (such as proton decay). If only global, when coupled
to gravity, BH's would wash out their effect. This suggests to
gauge them (indeed, in pheno scenarios, discrete gauge theories
appear often”)

* The last point suggests that all global symmetries,
iIncluding discrete ones, should be gauged at a
fundamental level. Indeed, this story has been recently
revived

Banks & Seiberg’10



* Discrete gauge theories also appear associated to the
global properties of the gauge group: for instance, in a
O(2N+1) gauge theory, the gauge group is the direct
oroduct of SO(2N+1) and a discrete Z2

* In the very controlled set-up of (at least) N=2 4d theories,
the “landscape” contains theories which include discrete
components in the gauge group

These “corners of the N=2 landscape” actually hide very
Interesting treasures: upon gauging appropriately chosen discrete
symmetries (inlcuding S-duality), one may find N=3 theories
Garcia-Etxebarria & Regalado’16

* Today we will explore the simplest such case: the
gauging of charge conjugation symmetry

In the past, this has been partially considered for phenomenological
aplications by Schwartz in 1982, leading to the famous Alice strings (in
fact, it has found a Condensed Matter avatar by Leonhardt & Volovik'00 )
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A first approach to gauging charge conjugation is to take
some theory with such symmetry and quotient by it...

...however this IS sulotleS

ee e.q. Argyres & Martone

Charge conjugation is essentially complex conjugation. It
mixes nontrivially with gauge transtormations

(G20 Co0Gr)Yp = GoC(e" M p) = Ga(e™"1q*) = 'l mortaz)yr
(G10C oGy = G1C(e"?9h) = Gy (e *2y*) = o172y

So the combination of G and C cannot simply be the
direct product G x C



SO one needs a fresh start. A natural approach is to
consider a gauge group which, ab initio includes the
gauging of charge conjugation

It such thing exists (not obvious a priori), the standard
technology can be directly imported

Today we will argue for the existence of such gauge groups:
INn the math literature they are called Principal Extensions

They lead to very surprising conseguences

e Non-freely generated Coulomb branches (contrary to standard
lore, first example of such thing!!!)

« An “exotic” pattern of global symmetries



* Note that, starting with these "new” gauge groups we
may consider gauge theories in arbitrary dimensions...

 fToday we will concentrate on the 4d N=2 case for
definitness...

...but there is a whole new world to explore!!



A primer In Principal
Extensions

* Charge conjugation is essentially complex
conjugation. It mixes nontrivially with gauge
transtormations

(G2 oC o Gl)w _ GQC(@ialw) — G2(e—ia1w*) _ Gi(_a1+a2)¢*
(G10C 0 Ga)d = G1O(EH) = G (e7i"2y) = el =)y

S0 the combination of G and C cannot simply be
the direct product G x C



Let us take instead a fresh start...Let's consider the group SU(N).
lts Dynkin diagram Is

AN o—0O 00
As a graph, it has an automorphism group 1" of order 2

[ ={1, P} ~ Zs

In the graph

Flipping the Dynkin diagram is like exchanging fundamental and
antifundamental: we want an extension of SU(N) by the outer
automorphism group of the Dynkin diagram and use that as
gauge group (Principal Extension™)

*In an enlarged sense



* An extension is the exact sequence of groups

~

1l s N 5G35G —>1

* |t turns out that it one can define a morphism as below
the sequence Is said to be split and the extension is a

semidirect product

o:G =G | qoo=idg

e et us work out an example: consider O(N).

MM =1

A=R B=RI 1("1 ) g(R,v) = MT =111}



Note that the product rule is that of a semidirect product

g(Ri, M) 9(Ra, 7v2) = g(R1v1 B2 1, 71 72)

We can also regard it as an extension of SO(N) by Z(2)

g: ON) — T L SO(N) = O(N r: I' = 0 [: 0 — SO(N)
g(R,v) = v R~ g(R, e v = 0 0 — 1
Kerr =1 =Img Im/l=1=Kere — 1%50(]\7)40(]\[)&22 — 1

Note that the sequence is spilit!
o: I' - O(N) oo — o
v o= g(l, ) e

Actually, it N is odd it becomes a direct product. It N is
even this is actually a Principal Extension!



» [ikewise, one may do the same with SU(N) and extend it
with the order 2 group of automorphisms of the Dynkin
diagram __

e~

SU(N) SU(N) SU(N) I
L. N — G q : G — G
A — (A1) (A, a) — «

* With this one can construct the Principal Extension

—

SU(N) SU(N) I'
1l >N S5 NxeG 5 G =1

* The sequence is split and so again the Principal
Extension will be a semidirect product

~

G

c: G —
a — (1, a)



o |et'stryto find a matrix representation

M 0 N B 1 0 0 A ~
o fon (0 0 wesbesn. = {(30).( 2 1)}

« Demanding that these matrices consistently multiply
according to the semidirect product rule gives

+1 for N even
AA* =
+1 for N odd.

o Thus there are two types of Principal Extension groups

SU(N);: A=-AT
SU(N)]]Z A:AT (evenN)

Arias-Tamargo, Bourget, Pini & D.R-G’19



The semidirect product is then defined through the
homomorphism in its product rule

This homomorphism has to be an involution of G.
Hence another way (actually more rigurous) to argue for
our groups is by studying the classification of involutive

automorphisms of G.

This problem as solved by Cartan: our problem boils
down to checking the classification of symmetric spaces!

Cartan Class G K dimK Involution © -
AT SL(N,R) SO(N) IN(N —1) g (g7 < SU(N);
AL (N even) | SL(N/2H) | Usp(N) | INN+1) | g=—Ixg )y | <= SU(N)p
AIIT, AIV | SU(p,N —p) | S(U(p) x UN —p)) | P> + (N =p)* =1 | g= Iy n—pglpN—p

Arias-Tamargo, Bourget, Pini & D.R-G’19



 We have established the existence of our groups and
exhausted their classification

e |n particular, the matrix representation above provides a
concrete realization. Recall

M 0 N {10 0 A\ o
oo (0 0 Y wesnhesum, - f(10) (0 1))

o With this we can explicitly construct a few particularly
interesting representations for our purposes



 This acts on a 2N dim. space: the fundamental
representation. Explicitly

2

— 0 1 —1  for type I
Q:<x> Q:QTro, with F0< >C< b WPe

Yy —c1l 0 +1  for type II

\

e The transformation rule is
Q- UQ, Q- QU

 [he adjoint In turn is simply

e [The transformation rule is

d - USdU'.



 We may now constuct some interesting invariants

e meson-like: Mjj= (Ql)a (QJ)& = QI Q. Mjpj=—-cMyj
e superpotential-like: Q; Q. Q,PQ,=cQ,;®Q;
 Kahler-like: Q' Qy

 We can also write an explicit Haar measure on the
groups

Lo auosen = ( RO Ory dMI,H(Z)f(@I,H(Z)))
SU(N)1 11 SU(N) SU(N)O1 11 ,

(see Arias-Tamargo, Bourget, Pini & D.R-G. for details)



Ad N = 2 based onSU(N)

* One may Imagine gauge theories based on
Principal Extensions

* Since, at the end of the day, Principal Extensions
are simply Lie groups, one can construct gauge
theories following the textbook procedure

* This can be done In arbitrary dimensions. Today
concentrate on N=2 in 4d as proof of concept

e To that matter we will use the fundamental and
adjoint as above



The W will come from the superpotential-like invariant.
Note that

QI(I)QJ:CQJ(I)QI Mpj = —cMy;

|

The meson is Symm (adjoint of
Sp)/Antisymm (adjoint of SO)
depending on the type or rep.

| % @

This quantity is Antisymm/Symm depending on the type of rep. We
can form an invariant (the W!) contracting with the symplectic
matrix/identity matrix

o é[vJ(N )1: G is antisymmetric. The global symmetry is Sp(%).

W=Q,2Q,G"” —  _
e SU(N)i: G is symmetric. The global symmetry is SO(F).



Higgs/Coulomb branches

* One particularly powerful tool to study theories is to
compute their index: information about the
protected operators

/N

| = /dng\ﬁ(]\r) PE[f] “Single particle” contribution

* |n particular, we have the integration formula over
Principal Extensions, and so we can hope to
extract protected useful information



HIQQS branches

* We are considering SQCD-like theories, with one vector

multiplet and F matter fields (real/pseudo
representations)

* In the SU theory the flavor symmetry would be U(F).
What about the Principal Extension?

* We can use the index as a probe. This time we will
compute the Hall-Littlewood Iimit of the index, a.k.a.
nggS braﬂCh Hl|bel’t SerleS Gadde, Rastelli, Razamat& Yan’13

det (1 — tQQ)Adj (X))
det (1 — tPpp (X))

HS(N7 Nf) :/ d?]Go (X)
GO



e [or Instance

1
I _ 2 4 6 8 10 12
HS (4 ¢)(t) = (1= 231+ )17 (1 + 19¢t° + 621¢™ + 9672t° + 115781¢° + 1012392¢™ + 6929353t “+

37647616t + 1667631916 + 610159441t + 1871499527120 + 48554406843 + 107514228234 +
2043522487025 + 3352190301728 + 47610887368t°C + 5871758335432 + 6295119995634 +
.. + palindrome + ...+ t68) ,

1
11 2 4 6 8 10
HS{ ) (t) = (S <1+11t + 749¢* + 8520t0 + 123173t3 + 975504t 10+

70798012 + 37130520t + 16829028716 + 606231681+'® + 188038678320 + 4837617956122+
10783278743t%* + 2038425887820 + 3359512964128 + 4751617874430 + 5882802769032+

628349620526 + ... + palindrome +...+t68> ,

For more examples, refined & unrefined,
check Bourget, Pini & D.R-G'18 and
Arias-Tamargo, Bourget, Pini & D.R-G’19

* |n particular, just as expected
g\ﬁ(]\f )r : Sp(%) global symmetry (even F)

gﬁ(N)U . SO(F') global symmetry (even V)



Coulomb branches

e | et us now turn to the Coulomb branch

* We now explicitly need to be inside the conformal
window (otherwise very complicated!)

e ...soassume N, F are tuned so that we have a CFT.



e Use the index...one Iimit is sensitive only to the
Coulomb branch!

2l 0 FV =

Gadde, Rastelli, Razamat& Yan’13

e The Coulomb branch index becomes

1 1 1
Coulomb _ = |
Fvon =5 Hgl—ﬂ' 'HQl—<—t>@'

A.Bourget, A.Pini & D.R-G’18

¢ ThIS can be re'WrItten as Argyres & Martone’l8

Bourton, Pini & Pomoni’l8

. ;k ddtk1+ et > Non-freely generated
gEoulomb )y —_ n R D — Coulomb branch in
o AL (=) 11 (=) general!!!!




* Being more explicit

Coulomb
PL of ZG&momP (1)

+2
t* + 10
t2—|—t4—|—t6
t2—|—t4—|—t6—|—t8—|—t10—t16
£2 4% 4o 4 48 4 10 _ 416
t2 +t* 4+ 260 + 15 + 2610 + 12 4 ¢! —¢1% —¢1% 1 . (infinite)

O Uk w2

 Thus, from N=5 on we have a non-frely generated
Coulomb branch. Note that N=4 is secretly O(06)
(which should have a freely generated CB) and N=2
s trivial (and so should have a freely generated CB)




summary

)

* We have Iintroduced a “new” tamily of gauge
groups on which gauge theories can be based

* Actually one particular case is SO vs. O. Also the
SU case made a modest appeareance

* The rules etc. to construct them are theretore just
the usual ones. We could construct them In
arbitrary dimensions. Today focused on 4d N=2.



* A powerful tool to explore the theories is the index (in
particular because we have an integration formula).
Using it we have seen that

* The Coulomb brach is generically non-freely
generated (first example of such a thing!)

* The Higgs branch exhibits an “"exotic” pattern
of global symmetries



Open guestions

* This only touches upon the tip of the iceberg...
there are loads of things to explore. For instance, in
random order

e String embedding??? Harvey & Royston’07
* Global properties of the theories, spectrum of line operators...
» Construction of quivers???

« \ersions in other dimensions (where perhaps other phenomena manifest)??



Thanks!



