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• A huge effort has been/is dedicated to Gauge Theories. 
It is probably fair to say that most studies are for 
connected gauge groups (at least comparatively). 

• In fact…
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We point out that local symmetries can masquerade as discrete global symmetries to an observer
equipped with only low-energy probes. The existence of the underlying local gauge invariance can, how-
ever, result in observable Aharonov-Bohm-type eA'ects. Black holes can therefore carry discrete gauge
charges —a form of nonclassical "hair. " Neither black-hole evaporation, wormholes, nor anything else
can violate discrete gauge symmetries. In supersymmetric unified theories such discrete symmetries can
forbid proton-decay amplitudes that might otherwise be catastrophic.
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Although it is a common and fruitful practice to con-
sider local gauge invariance under discrete groups in lat-
tice theories, the implications of such invariance in the
continuum have not been widely discussed. (They have
been invoked in one class of solutions to the axion
domain-wall problem. ' )
At first sight the notion of local discrete symmetry in

the continuum appears rather silly. Indeed, the most im-
portant dynamical consequence of a continuous local
symmetry is the existence of a new field, the gauge field.
This field is introduced in order to formulate covariant
derivatives. Covariant derivatives are, of course, neces-
sary so that invariant interactions involving gradients
may be formed; such interactions in turn are necessary in
order that charged fields may propagate. In the case of a
discrete symmetry there is no similar need to introduce a
gauge potential, because the ordinary derivative already
transforms simply.
To make the discussion more concrete, let us consider

a specific realization of the general idea of discrete local
symmetry, where we produce a local Z~ symmetry. Con-
sider a U(1) gauge theory containing two scalar fields ri
and g carrying charge pe and e, respectively. Suppose
that g undergoes a condensation at some very high mass
scale iM, while g does not condense and produces quanta
of relatively small mass. Then the effective low-energy
theory wi11 simply be the theory of the single complex
scalar field g. This theory will be invariant under the
transformation.

2+i /pg

as a consequence of the original gauge invariance. The
only implication of the original gauge symmetry for the
low-energy effective theory is the absence of interaction
terms forbidden by Eq. (1). And this implication does
not distinguish between local and global symmetry.
Nevertheless, there is a fundamental difference be-

tween local and global symmetries, whether continuous
or discrete. It is that global symmetry is a statement
that the laws of physics take the same form when ex-
pressed in terms of various distinct variables, while lo

cal symmetry is a statement that the variables used in a
physical theory are redundant In la.nguage that may be
more familiar, this redundancy is often stated as the fact
that in a gauge theory, only gauge-invariant quantities
are physically meaningful.
From this point of view, it is clear that no processes,

not even such exotic ones as black-hole evaporation or
wormhole tunneling, can violate a gauge symmetry.
There are two striking theoretical consequences of this
observation:
(i) It has been argued recently that wormhole tunnel-

ing induces all local interactions consistent with continu-
ous gauge symmetries. (The restriction to continuous
local symmetries is not always made explicitly, but has
been tacitly assumed in the conclusions drawn. ) The
theory of wormholes is presently in no fit state to supply
quantitative estimates of the magnitude of the induced
interactions. Still, something can be said. Plausibly,
nonrenormalizable interactions induced by wormholes
are suppressed by inverse powers of the Planck mass—or
the wormhole scale, if this is different —but there is no
evident small parameter suppressing renormalizable in-
teractions. Taken at face value, this feature is a consid-
erable embarrassment. For example, in models with
low-energy supersymmetry, there are numerous renor-
malizable interactions which violate baryon number, and
are capable of causing proton decay at a rapid rate.
Traditionally, such interactions have been argued away
by invoking R parity or discrete fiavor symmetries. If
wormholes made it impossible to maintain such sym-
metries, they would therefore create a great difhculty in
reconciling the interesting possibility of 1ow-energy su-
persymmetry with the stability of matter. As another
example, it is an attractive idea that the structure of the
quark mass matrix is largely dictated by discrete sym-
metries. This idea also appears to be endangered by
worm holes.
In either case, promoting the relevant discrete sym-

metries to local symmetries would permit us to ensure
that they are maintained, independent of the vicissitudes
of wormhole dynamics.
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• Nevertheless, on a second thought, discrete gauge 
theories can find many interesting applications e.g. 

• The last point suggests that all global symmetries, 
including discrete ones, should be gauged at a 
fundamental level. Indeed, this story has been recently 
revived

• Many Condensed Matter (and lattice) models include discrete 
gauge theories.  

• Discrete symmetries are often needed in BSM to avoid forbidden 
processes (such as proton decay). If only global, when coupled 
to gravity, BH’s would wash out their effect. This suggests to 
gauge them (indeed, in pheno scenarios, discrete gauge theories 
appear ``often”)

Banks & Seiberg’10



• Discrete gauge theories also appear associated to the 
global properties of the gauge group: for instance, in a 
O(2N+1) gauge theory, the gauge group is the direct 
product of SO(2N+1) and a discrete Z2 

• In the very controlled set-up of (at least) N=2 4d theories, 
the “landscape” contains theories which include discrete 
components in the gauge group 

• Today we will explore the simplest such case: the 
gauging of charge conjugation symmetry

These “corners of the N=2 landscape” actually hide very 
interesting treasures: upon gauging appropriately chosen discrete 
symmetries (inlcuding S-duality), one may find N=3 theories

Garcia-Etxebarria & Regalado’16

In the past, this has been partially considered for phenomenological 
aplications by Schwartz in 1982, leading to the famous Alice strings (in 
fact, it has found a Condensed Matter avatar by Leonhardt & Volovik’00 )
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• A first approach to gauging charge conjugation is to take 
some theory with such symmetry and quotient by it… 

• …however this is subtle 

• Charge conjugation is essentially complex conjugation. It 
mixes nontrivially with gauge transformations 

• So the combination of G and C cannot simply be the 
direct product G x C

(G2 � C � G1)� = G2C(ei�1�) = G2(e
�i�1��) = ei(��1+�2)��

(G1 � C � G2)� = G1C(ei�2�) = G1(e
�i�2��) = ei(�1��2)��

See e.g. Argyres & Martone



• So one needs a fresh start. A natural approach is to 
consider a gauge group which, ab initio includes the 
gauging of charge conjugation 

• If such thing exists (not obvious a priori), the standard 
technology can be directly imported 

• Today we will argue for the existence of such gauge groups: 
in the math literature they are called Principal Extensions 

• They lead to very surprising consequences
• Non-freely generated Coulomb branches (contrary to standard 

lore, first example of such thing!!!) 

• An “exotic” pattern of global symmetries



• Note that, starting with these “new” gauge groups we 
may consider gauge theories in arbitrary dimensions… 

• Today we will concentrate on the 4d N=2 case for 
definitness…

…but there is a whole new world to explore!!!



A primer in Principal 
Extensions

• Charge conjugation is essentially complex 
conjugation. It mixes nontrivially with gauge 
transformations 

• So the combination of G and C cannot simply be 
the direct product G x C

(G2 � C � G1)� = G2C(ei�1�) = G2(e
�i�1��) = ei(��1+�2)��

(G1 � C � G2)� = G1C(ei�2�) = G1(e
�i�2��) = ei(�1��2)��



• Let us take instead a fresh start…Let’s consider the group SU(N). 
Its Dynkin diagram is 

• As a graph, it has an automorphism group     of order 2 

• In the graph 

• Flipping the Dynkin diagram is like exchanging fundamental and 
antifundamental: we want an extension of SU(N) by the outer 
automorphism group of the Dynkin diagram and use that as 
gauge group (Principal Extension*)

AN�1 · · ·

AN�1 · · ·

P

1

� = {1, P} � Z2

�

AN�1 · · ·

AN�1 · · ·

P

1

*In an enlarged sense



• An extension is the exact sequence of groups 

• It turns out that if one can define a morphism as below 
the sequence is said to be split and the extension is a 
semidirect product 

• Let us work out an example: consider O(N).
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1 Group extensions

Consider the short exact sequence

1 �! N
◆�! eG q�! G �! 1 (1.1)

We then call eG the extension of a group G by N .
Note that, being an exact sequence, Im q = G, and hence q is surjective.

2 O(N) and SO(N)

Consider the group O(N). Its elements are N ⇥N matrices R satisfying

M
T
M = l1 (2.1)

Obviously (detM)2 = 1, and hence O(N) = O(N)+�O(N)�, where the elements of O(N)+
are those in O(N) with determinant 1 and the elements of O(N)� are those in O(N) with
determinant -1. A more common name for O(N)+ is SO(N).

Suppose the matrix

I =

✓
�1

l1N�1

◆
(2.2)

Obviously I
T
I = l1 and detI = �1. Note that we may construct the group � = { l1, I}.

Obviously � ⇠ Z2. Note that stictly speaking the matrices { l1, I} are a matrix represen-
tation. We may write the group elements as � = {e, !}, with !

2 = e.
Let us consider R 2 SO(N), and construct the matrices

A = R B = RI (2.3)

Note that detA = 1 while detB = �1. Note that it obviously follows that AT
A = B

T
B =

l1. Hence we have that the elements of SO(N) are of the form of A, the elements of O(N)�
are of the form of B and therefore {A, B} are the elements of O(N). Hence we may write
the elements of O(N) as g(R, �), and construct the matrix representation in the following
way

g(R, �) ! M I (2.4)

1

One can then construct the exact sequence

1 �! N
◆�! eG q�! G �! 1 (1.4)

We then call eG the extension of a group G by N .
One may define

CN : eG �! Aut(N) / CN(eg)(n) = ◆�1(eg ◆(n) eg�1) (1.5)

One may construct a map �

� : G �! eG / q � � = idG (1.6)

With it one can construct S = CN � � : G �! Aut(N). Restricting to classes up to inner
automorphisms, we can construct the characteristic homomorphism

s = [CN � �] : G �! Out(N) (1.7)

Note that S depends on an element of G, so we may take such dependence into account
by writting Sg(M), for M 2 N .

1.1 The case of trivial extensions

If � is not just some map but a morphism, then the sequence is split (or trivial). Note that
this implies that S is a homomorphism. In that case eG has the structure of a semidirect
product where eG = N oS G with product defined as

(A, ↵) · (B, �) = (AS↵(B), ↵�) (1.8)

where the elements of N oS G are written as (A, ↵) with A 2 N and ↵ 2 G.

Proof. Let us first consider the group N oS G, where S is a homomorphism S : G !
Aut(N); and prove that it is a split extension. One may imagine writting the elements of
N oS G as (A, ↵) with A 2 N and ↵ 2 G. Then one can introduce the maps

◆ : N ! eG
A 7! (A, 1)

q : eG ! G
(A, ↵) 7! ↵

(1.9)

Note that the set of elements of N oS G mapped to the identity in G by q –i.e. Ker(q)–
is that of the form (A, 1), which is precisely the image of ◆. Hence we can construct the
exact sequence

1 �! N
◆�! N oS G

q�! G �! 1 (1.10)

We may now construct the map

� : G ! eG
↵ 7! (1, ↵)

(1.11)

2
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where M is an N ⇥ N matrix satisfying M
T
M = l1 and I = { l1, I}. A straightforward

calculation shows that

g(R1, �1) g(R2, �2) = g(R1 �1 R2 �1, �1 �2) (2.5)

Thus we have that in general O(N) = SO(N)oZ2. Nevertheless, if N = 2n+1 is odd we
may consider the rotation

R0 =

✓
1

� l1N�1

◆
(2.6)

which indeed has determinant 1 if N = 2n+1. Using R0 we may conjugate I into Ĩ = � l1,
which obviously commutes with all elements of SO(N). Thus, the semidirect product law
becomes

g(R1, �1) g(R2, �2) = g(R1 R2, �1 �2) (2.7)

Hence the semidirect product becomes just a direct product. Hence

O(2n+ 1) = SO(2n+ 1)⇥ Z2 , O(2n) = SO(2n)o Z2 (2.8)

2.1 O(n) as an extension

Starting with a general element of O(N) of the form g(R, �) we may construct the maps

q : O(N) ! �
g(R, �) 7! �

◆ : SO(N) ! O(N)
R 7! g(R, e)

(2.9)

and

r : � ! 0
� 7! 0

l : 0 ! SO(N)
0 7! l1

(2.10)

It is obvious that these maps are homomorphisms. Moreover, it is also obvious that

Ker r = I = Im q Im l = 1 = Ker ◆ (2.11)

Hence we may construct the short exact sequence

1 �! SO(N)
◆�! O(N)

q�! Z2 �! 1 (2.12)

where we have used that � ⇠ Z2 and we have omitted the names of the trivial homo-
morphisms r, l at the right/left ends respectively. This is precisely the structure of an
extension above.

Note that we may construct as well another homomorphism

� : � ! O(N)
� 7! g( l1, �)

(2.13)

2



• Note that the product rule is that of a semidirect product 

• We can also regard it as an extension of SO(N) by Z(2) 

• Note that the sequence is split! 

• Actually, if N is odd it becomes a direct product. If N is 
even this is actually a Principal Extension!
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Hence the semidirect product becomes just a direct product. Hence

O(2n+ 1) = SO(2n+ 1)⇥ Z2 , O(2n) = SO(2n)o Z2 (2.8)

2.1 O(n) as an extension

Starting with a general element of O(N) of the form g(R, �) we may construct the maps

q : O(N) ! �
g(R, �) 7! �

◆ : SO(N) ! O(N)
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and

r : � ! 0
� 7! 0

l : 0 ! SO(N)
0 7! l1

(2.10)

It is obvious that these maps are homomorphisms. Moreover, it is also obvious that

Ker r = I = Im q Im l = 1 = Ker ◆ (2.11)

Hence we may construct the short exact sequence

1 �! SO(N)
◆�! O(N)

q�! Z2 �! 1 (2.12)

where we have used that � ⇠ Z2 and we have omitted the names of the trivial homo-
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Note that we may construct as well another homomorphism
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Since the composition q �� = e we have that the sequence is split. This implies that O(N)
is a semidirect product, as we have explicitly seen above.
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• Likewise, one may do the same with SU(N) and extend it 
with the order 2 group of automorphisms of the Dynkin 
diagram 

• With this one can construct the Principal Extension 

• The sequence is split and so again the Principal 
Extension will be a semidirect product

One can then construct the exact sequence

1 �! N
◆�! eG q�! G �! 1 (1.4)

We then call eG the extension of a group G by N .
One may define

CN : eG �! Aut(N) / CN(eg)(n) = ◆�1(eg ◆(n) eg�1) (1.5)

One may construct a map �

� : G �! eG / q � � = idG (1.6)

With it one can construct S = CN � � : G �! Aut(N). Restricting to classes up to inner
automorphisms, we can construct the characteristic homomorphism

s = [CN � �] : G �! Out(N) (1.7)

Note that S depends on an element of G, so we may take such dependence into account
by writting Sg(M), for M 2 N .

1.1 The case of trivial extensions

If � is not just some map but a morphism, then the sequence is split (or trivial). Note that
this implies that S is a homomorphism. In that case eG has the structure of a semidirect
product where eG = N oS G with product defined as

(A, ↵) · (B, �) = (AS↵(B), ↵�) (1.8)

where the elements of N oS G are written as (A, ↵) with A 2 N and ↵ 2 G.

Proof. Let us first consider the group N oS G, where S is a homomorphism S : G !
Aut(N); and prove that it is a split extension. One may imagine writting the elements of
N oS G as (A, ↵) with A 2 N and ↵ 2 G. Then one can introduce the maps

◆ : N ! eG
A 7! (A, 1)

q : eG ! G
(A, ↵) 7! ↵

(1.9)

Note that the set of elements of N oS G mapped to the identity in G by q –i.e. Ker(q)–
is that of the form (A, 1), which is precisely the image of ◆. Hence we can construct the
exact sequence

1 �! N
◆�! N oS G

q�! G �! 1 (1.10)

We may now construct the map

� : G ! eG
↵ 7! (1, ↵)

(1.11)
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• Let’s try to find a matrix representation 

• Demanding that these matrices consistently multiply 
according to the semidirect product rule gives 

• Thus there are two types of Principal Extension groups

2 Construction of two disconnected groups

The groups we are interested in are extensions of Z2 by a Lie group, which in this paper

we will take to be SU(N). In [15], the so-called principal extension were considered, but it

turns out that although the group of outer automorphisms of SU(N) is Out(SU(N)) ⇠= Z2,

there are in some cases more than one (in fact, exactly two) inequivalent ways of construct-

ing a semi-direct product of SU(N) by Out(SU(N)). This section aims at studying this

issue in depth.

For concreteness, we will start with a pedestrian approach to the problem, and we

will see that the two disconnected groups arise in a natural way. Then we will provide

a more abstract, but also more rigorous construction, of the semi-direct products. As

we will explain, they are built from involutive outer automorphisms (IOA) of SU(N), i.e.

automorphisms which are their own inverse. In turn, we will see that these are classified

by real forms of the complex Lie algebra sl(N,C), or equivalently by symmetric spaces.

This last feature will also help us understand the global symmetry of the gauge theories

constructed in later sections.

2.1 Explicit matrix realization

Let’s construct the (disconnected) gauge group of an SU(N) theory in which charge conju-

gation is gauged as well. In such a theory, the lowest-dimensional non-trivial representation

has dimension 2N , so we will construct our group as a 2N⇥2N matrix group. It has a sub-

group, denoted G, which is isomorphic to SU(N) in the fundamental plus antifundamental

representation:

G =

(
U =

 
M 0

0 M
?

!�����M 2 SU(N)

)
⇠= SU(N) , (2.1)

where the star denotes complex conjugation. The charge conjugation is a Z2 group which

exchanges the fundamental and antifundamental of SU(N), so it has to be of the form

�A =

( 
l1 0

0 l1

!
,

 
0 A

A
�1 0

!)
⇠= Z2 , (2.2)

where A 2 SU(N) is a matrix on which we will come back later. The total gauge group,

which we call eGA, is the image of the Cartesian product G⇥ �A under the multiplication

map,
eGA = {g� | g 2 G, � 2 �A} . (2.3)

We have added the subscript A to insist on the fact that this depends on the matrix A

chosen above. The product in this group is simply matrix multiplication. Thus for two

elements g� and g
0
�
0 of eGA, we have

g� · g
0
�
0 = g�g

0
�
0 = (g'�(g

0))(��0) , (2.4)
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where the last rewriting is necessary for the product to be manifestly in the form g
00
�
00.

This is a semi-direct product structure, with

'� : G ! G

U 7! �U �
�1

(2.5)

Note that for the non-trivial element � 2 �A one has

'�(U) =

 
AM

?
A

�1 0

0 A
�1

M A

!
. (2.6)

Writing down the requirement that this matrix belongs to G defined in (2.1) leads to the

condition that AA
† = l1 together with A

�1
M A = (AM

?
A

�1)? for all M 2 SU(N). From

the last condition it follows that M (AA
?) = (AA

?)M , which is solved for AA
? = � l1.

Since A 2 SU(N), by multiplying on the left by A
†, we could as well write A

? = �A
†.

Likewise, we could take the complex conjugate of the equation to write A
?
A = �

? l1.

Multiplying now on the right by A
† leads to A

? = �
?
A

†, which requires � 2 R. Then,

since A 2 SU(N), by taking the determinant, |det(A)|2 = �
N = 1. Hence, we obtain

AA
? =

8
<

:
± l1 for N even

+ l1 for N odd .
(2.7)

Thus, all in all, we have found a family of matrix groups given by (2.3) where

• for odd N one needs AT = �A. This defines a group that we call fSU(N)I.

• for even N we have two cases:

– A = �A
T : this defines a group that we call fSU(N)I (the even N version).

– A = A
T : this defines a group that we call fSU(N)II.

While this gives an intuitive construction of two di↵erent groups fSU(N)I and fSU(N)II,

several questions are left unanswered: why did we choose to represent eGA in the specific

form (2.3)? Is the symmetry property of the matrix A enough to characterize entirely the

groups eGA? Do this construction really yield two non-isomorphic groups?

As for the last point, a preliminary observation is that had the two groups been con-

jugated one to the other, there should be an invertible 2N ⇥ 2N matrix X such that

�II = X �IX
�1, where we denoted by �I,II the non-trivial element of �A in the two cases.

A natural ansatz for the matrix X is

X =

 
X 0

0 X
?

!
, (2.8)

for some X 2 SU(N). A short computation shows that the condition for both choices to

be conjugated translates into AII = X AIX
T , where AI,II denotes in the obvious way the A

matrix for the corresponding choice. Transposing this equation leads to AII = �X AIX
T ,
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• The semidirect product is then defined through the 
homomorphism in its product rule 

• This homomorphism has to be an involution of G. 

• Hence another way (actually more rigurous) to argue for 
our groups is by studying the classification of involutive 
automorphisms of G. 

• This problem as solved by Cartan: our problem boils 
down to checking the classification of symmetric spaces!

Cartan Class G K dimK Involution ⇥

AI SL(N,R) SO(N) 1
2N(N � 1) g 7! (g�1)T

AII (N even) SL(N/2,H) USp(N) 1
2N(N + 1) g 7! �JN (g�1)TJN

AIII,AIV SU(p,N � p) S(U(p)⇥U(N � p)) p
2 + (N � p)2 � 1 g 7! Ip,N�pgIp,N�p

Table 2: The three (types of) symmetric spaces for which Gc = SU(N). In each case we

indicate the dual group G, the compact subgroup K and the lift to the group SU(N) of

the involutions ✓ in Table 1. One can check that K is the subgroup of G fixed by ⇥.

From now on, we focus on the first two lines of Tables 1 and 2, and borrowing names

from the Cartan classification, we define the two following groups:

fSU(N)I = SU(N)o⇥I Z2 ,

(2.18)

fSU(N)II = SU(N)o⇥II Z2 , (N even) .

Note that these are indeed the groups constructed in the previous subsection, thus con-

firming the claim that indeed there are the two possible extensions of Z2 by SU(N).

2.4 A construction of automorphisms

Now we explain how to construct explicitly automorphisms in the various classes corre-

sponding to the lines of Table 1. We will use a method based on the Weyl group.

General theory Consider a simple complex Lie algebra g. Let � : � ! � be an

isomorphism of the root system �, and let� be a set of simple roots in �. The isomorphism

� extends in a trivial way on the Cartan subalgebra h, giving an isomorphism ✓ : h ! h,

and we want to extend it to the whole Lie algebra g. To do this, let us first choose a

non-zero element X↵ in each root space g↵ for ↵ 2 �. We also choose a family of non-zero

complex numbers c↵ for ↵ simple. Then (see [28], Theorem 14.2) there exist a unique

isomorphism ✓ : g ! g that extends ✓ : h ! h and such that

✓(X↵) = c↵X�(↵) (2.19)

for every simple root ↵ 2 �.

The Weyl groupW , generated by reflections with respect to the hyperplanes orthogonal

to the simple roots in h⇤, corresponds to a set of automorphisms of the root system, and

by the construction of the previous paragraph, gives rise to inner automorphisms of g.

Outer automorphisms will arise from root system isomorphisms that are not in the Weyl

group.
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• We have established the existence of our groups and 
exhausted their classification 

• In particular, the matrix representation above provides a 
concrete realization. Recall 

• With this we can explicitly construct a few particularly 
interesting representations for our purposes

2 Construction of two disconnected groups
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• This acts on a 2N dim. space: the fundamental 
representation. Explicitly 

• The transformation rule is 

• The adjoint in turn is simply 

• The transformation rule is

Conjugating adjoint into pseudoadjoint?

Let us start with the pseudoadjoint, and let us concatenate a Ppseudo and a gauge transfor-
mation, so that M ! �UPpseudoM (UPpseudo)†. Let us choose the gauge transformation

such that U = i A. Note that detU = (�1)
N
2 . Thus generically U is a U(N) element, and

not a strictly SU(N) element. With this minor modification

UPpseudo = i

✓
0 l1
l1 0

◆
= iPrep (1.10)

Therefore the putative adjoint and pseudoadjoint are equivalent up to a –strictly speaking,
U(N)– gauge transformation. Thus it is to be expected that the ring of invariants –in the
end the operators in the Coulomb branch– are identical.

1.3 Fundamental representation

In order to construct the fundamentals, consider now

Q =

✓
x
y

◆
(1.11)

Under a gauge transformation

Q ! UQ (1.12)

In turn, under a non-trivial � transformation

Q ! PQ (1.13)

It is useful to introduce

Q ⌘ QT �0 , �0 =

✓
0 1
↵ 0

◆
(1.14)

Hence, under gauge and � transformations

Q ! UQ Q ! PQ

(1.15)

Q ! QU�1 Q ! QP�1

Since, for even N , there are two possible choices of P, we conclude that again there are
two fundamentals (corresponding respectively to each of the possible transformations), to
which we will refere as fundamental and pseudofundamental.

Note that now we cannot use the trick of using a U(N) gauge transformation to con-
jugate fundamental into pseudofundamental, since the �0 matrix needed to construct eQ is
di↵erent. Thus, the fundamentals are intrinsically di↵erent.

3

Type A Type B

G-representations U all Ux isomorphic all Ux distinct
eG-representations V all V ⌦ ⌦(k) distinct all V ⌦ ⌦(k) isomorphic

Table 4: Types of representations related by induction and restriction. See theorem

VI.7.3 of [29]: If U is a representation of G of type A, the induced representation of eG
is ind

eG
U =

L
k V ⌦ ⌦(k). If Ux, x 2 eG/G are of type B, they all induce the same

representation on eG, ind
eG
Ux = V .

• If an SU(N) representation U has �i 6= �N�i for some i, then the induced represen-

tation on fSU(N) is irreducible (and is the same as the induced representation from

[�N�1, · · · ,�1]).

For instance, we have

• The fundamental [1, 0, · · · , 0] of SU(N) induces a unique irreducible representation

of fSU(N). It has dimension 2N .

• The adjoint [1, 0, · · · , 0, 1] of SU(N) induces a reducible representation of fSU(N),

which decomposes into two irreducibles.

Let us now explicitly construct the fundamental and the adjoint representations, which

will be relevant for our later purposes.

3.1.1 The fundamental representation

A particularly important representation will be the fundamental representation. It cor-

responds to the the matrix representation introduced in section 2.1, which acts on a 2N

dimensional complex space CN
⇥C

N . Note that we may alternatively think of this space as

C
N
⇥ (C?)N , thus making explicit that fSU(N)I,II representations comprise a fundamental

and antifundamental of the connected component SU(N). The elements of this space are

of the form

Q =

 
~x

~y

!
, ~x =

0

BBBB@

x1

x2
...

xN

1

CCCCA
, ~y =

0

BBBB@

y1

y2
...

yN

1

CCCCA
. (3.2)

It is useful to introduce a “conjugate”

Q = Q
T
�0 , with �0 =

 
0 l1

�c l1 0

!
. (3.3)

Then, for a generic eU 2 eG, Q and Q transform as

Q ! eUQ , Q ! Q eU†
. (3.4)
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3.1.2 The adjoint representation

Another very important representation for our purposes is the adjoint representation.

Given the matrix representation in section 2.1, an element � in the adjoint representation

is the 2N ⇥ 2N block-diagonal matrix (recall that � 2 su(N), so �† = � and the Lie

algebra automorphism –complex conjugation for hermitean generators– is � 7! ��?)

� =

 
� 0

0 ��?

!
. (3.5)

Under eG it transforms as

� ! eU� eU†
. (3.6)

For future purposes, it is interesting to note that

�0�
T
�0 = c� . (3.7)

Note that since one block is complex-conjugated of the other, the number of degrees of

freedom is really N
2
�1 as it should be for the adjoint. On the other hand, expressing the

adjoint in this way turns out to be most convenient for our latter purposes of constructing

gauge theories based on fSU(N)I,II due to the transformation properties expressed as (3.6).

3.2 Invariants

Having explicitly constructed the fundamental and the adjoint representations, we now

study the invariants which can be constructed out of them. To that matter, let us consider

F copies of the fundamental representation in addition to an adjoint representation. To

set notation, we will denote eG indices by e↵ with e↵ = 1, · · · , 2N ; and “global symmetry

indices” by I with I = 1, · · · , F . To be explicit with the notation, the fundamentals will

be (QI)e↵. Note that it follows that the indices of the conjugate are (QI)e↵.

With the transformation rules described above for these representations, we may con-

struct all possible group invariants made out of them. Let us stress that the list of such

group invariants is infinite and we will not attempt for an exhaustive classification. In-

stead, we will focus on the ones which will be of uttermost relevance for our purposes.

Indeed, we use a gauge-theoretic inspired naming with an eye on applications to gauge

theories. Such most relevant invariants are

1. Meson-like invariants: consider

MIJ = (QI)e↵ (QJ)
e↵
⌘ QI QJ . (3.8)

It is clear that such quantity is an invariant of the group action, using (3.4). More-

over, a short computation10 shows that, as a F ⇥ F matrix

MIJ = �cMJI . (3.9)
10MIJ = QI QJ = (QI QJ)

T = QT
J�0

TQI = �cQT
J�0QI = �cMJI .
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Value of c↵ N odd N even

c↵ = +1 I II

c↵ = �1 � I

Table 3: Type of outer involutive automorphisms generated by the flip of the Dynkin

diagram of AN�1 as a function of the parity of N and of the choice of the constant c↵,

taken to be the same for all the simple roots.

Now we can do the same exercise with c↵ = �1. In that case, there are only 6 inner

involutions generated by the Weyl group, two of them of type p = 1 and four of them of

type p = 2. There are 10 outer involutions generated by �W , all of them of type I.

The flip involution Let us focus on a particular element of �W , namely the flip defined

by

↵i ! ↵N�i . (2.26)

When N is odd, the flip is of course always of type I. On the other hand, it turns out

that when N is even, the flip generates an outer involutive automorphism of type I when

we choose c↵ = �1, while it generated an outer involutive automorphism of type II when

we choose c↵ = +1. This observation gives us a definition of the two groups fSU(N)I,II

that just di↵ers by a sign, namely, we use (2.18) where ⇥I,II is the flip defined using for

all simple root ↵

c↵ ⌘ c =

8
<

:
�1 for type I

+1 for type II
(2.27)

This is summarized in Table 3. It is easy to prove by recursion on the height9 of the root

↵ that the extensions of the flip to the Lie algebra are defined by

✓I,II (X↵) = �(�c)ht(↵)X�(↵) , (2.28)

for any root ↵ (in the case of simple roots, this reduces to (2.19)). The corresponding Lie

group morphisms are called ⇥I,II.

The fundamental representation is given by (2.3), where the matrix A is

A =

0

BBBBBBBBB@

1

�c

(�c)2

. . .

. . .

(�c)N�1

1

CCCCCCCCCA

. (2.29)

One checks that these matrices satisfy the symmetry properties encountered in section

2.1.
9We recall that the height of a root ↵, denoted by ht(↵), is the sum of its coe�cients when expressed

in the basis of simple roots.
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• We may now constuct some interesting invariants 

• We can also write an explicit Haar measure on the 
groups
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2. Baryon-like invariants: introduce the ✏-like tensor ⌥e↵1···e↵N
such that

⌥e↵1···e↵N
=

8
>>><

>>>:

✏e↵1···e↵N
if e↵i 2 1, · · ·N 8i

✏e↵1···e↵N
if e↵i 2 N + 1, · · · 2N 8i

0 otherwise

; (3.10)

where ✏e↵1···e↵N
is the standard ✏-tensor in SU(N). Then we have the baryon-like

invariants BI1···IF given by

BI1···IF = (QI1)
e↵1 · · · (QIF )

e↵F ⌥e↵1···e↵N
. (3.11)

Note that BI1···IF is completely antisymmetric on its F indices.

3. Superpotential-like invariants: consider

QI �QJ . (3.12)

It is clear that such quantity is an invariant. Note that we may replace � by �
n,

since the n-power of an adjoint still transforms in the same way. Moreover, as a

F ⇥ F matrix, we have

QI �QJ = cQJ �QI . (3.13)

4. Coulomb branch-like invariants: consider

Tr�2n
. (3.14)

It is clear that these quantities are invariant under the group transformations above.

Note that these are “holomorphic” invariants in that they do not make use of complex

conjugation. On top of them, and explicitly using complex conjugation, we can construct

the “non-holomorphic” quantity (which we will dub Kähler-like)

Q
†
I QJ , (3.15)

which is also invariant under the above transformations.

3.3 The integration measures

In this section, we consider only the case N even (for N odd, we refer to [15]). In order to

be able to compute index-like quantities for gauge theories based on fSU(N)I,II, we need

the integration measures on said groups. Recall that the standard way of defining the

Haar measure of a connected Lie group, grounded on the fact that conjugation of elements

of the maximal torus of the group is surjective onto the full group, doesn’t apply to our

situation. Instead, to be able to integrate over the disconnected component of fSU(N) we

use Lemma 2.1 of [17], namely the fact that the map

' : SU(N)/S0(⇥)⇥ S0(⇥) ! SU(N)⇥ (3.16)

(yS0(⇥), z) 7! yz⇥y
�1
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QI �QJ = cQJ �QI . (3.13)

4. Coulomb branch-like invariants: consider

Tr�2n
. (3.14)

It is clear that these quantities are invariant under the group transformations above.

Note that these are “holomorphic” invariants in that they do not make use of complex

conjugation. On top of them, and explicitly using complex conjugation, we can construct

the “non-holomorphic” quantity (which we will dub Kähler-like)

Q
†
I QJ , (3.15)

which is also invariant under the above transformations.

3.3 The integration measures

In this section, we consider only the case N even (for N odd, we refer to [15]). In order to

be able to compute index-like quantities for gauge theories based on fSU(N)I,II, we need

the integration measures on said groups. Recall that the standard way of defining the

Haar measure of a connected Lie group, grounded on the fact that conjugation of elements

of the maximal torus of the group is surjective onto the full group, doesn’t apply to our

situation. Instead, to be able to integrate over the disconnected component of fSU(N) we

use Lemma 2.1 of [17], namely the fact that the map

' : SU(N)/S0(⇥)⇥ S0(⇥) ! SU(N)⇥ (3.16)

(yS0(⇥), z) 7! yz⇥y
�1
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• meson-like: 

• superpotential-like: 

• Kahler-like:

where S0(⇥) is the subgroup of the maximal torus of SU(N) left invariant by the involution

⇥, is surjective onto the component of fSU(N) disconnected from the identity. Therefore,

we can use ' as a change of variables, and turn the integration over SU(N)⇥ into one over

S0(⇥). The measure arises from the Jacobian of the change of variables,

det (d') (y, z) = det
�
Ad(z⇥)�1

� Id
���

su(N)/s0(✓)
, (3.17)

where s0(✓) is the Lie algebra of S0(⇥). The Jacobian (3.17) can be easily calculated from

the data in the root system, since the involution ⇥ is completely defined by the flip �

(2.26) of the roots and the sign c introduced in (2.27). As in [15], we use an adapted

parametrization for the fugacities,

z
� =

8
>>>>>>>>><

>>>>>>>>>:

0

@
N�1

2Q
i=1

z
�i+�N�i
i

1

A

0

@
N�1

2Q
i=1

z
�i��N�i
N�1

2 +i

1

A if N is odd

0

@
N
2 �1Q
i=1

z
�i+�N�i
i

1

A

0

@
N
2 �1Q
i=1

z
�i��N�i
N
2 +i

1

A z

�N
2

N
2

if N is even.

(3.18)

If a root ↵ is fixed by �, the corresponding element of the Lie algebra X↵ is transformed to

�(�c)ht(↵)X↵ = cX↵ since the height is necessarily odd, and it will contribute (1�cz
�↵) to

the determinant (3.17). On the other hand, if ↵ is exchanged with �(↵), their contribution

will come from the determinant of the block matrix

det

 
�1 �(�c)ht(↵)z�↵

�(�c)ht(↵)z��(↵)
�1

!
= 1� z

�↵��(↵)
, (3.19)

where we have used (2.28). In total, the integration measure is

dµ�
I,II(z) =

Y

↵=�(↵)

�
1� cz

�↵
� Y

↵ 6=�(↵)

⇣
1� z

�(↵+�(↵))
⌘1/2 N/2Y

j=1

dzj
2⇡izj

. (3.20)

In (3.20), the products run over the positive roots. In the second product, the power
1
2 takes care of the fact that each pair of roots is counted twice. The integration over
fSU(N)I,II for N even is then obtained by taking an average,

Z

fSU(N)I,II

dµ(X)f(X) =
1

2

 Z

SU(N)
dµ

+(z)f(z) +

Z

SU(N)⇥I,II

dµ
�
I,II(z)f(⇥I,II(z))

!
,

(3.21)

where f is a function defined on fSU(N)I,II which is invariant under conjugation and dµ
+

is the standard Haar measure of SU(N).

3.4 Real and pseudo-real representations

Having constructd a group measure allows us to construct an indicator –the so-called

Frobenius-Schur indicator– sensible to the reality properties of the representations. This is
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(see Arias-Tamargo, Bourget, Pini & D.R-G. for details)



       based on
• One may imagine gauge theories based on 

Principal Extensions 

• Since, at the end of the day, Principal Extensions 
are simply Lie groups, one can construct gauge 
theories following the textbook procedure 

• This can be done in arbitrary dimensions. Today 
concentrate on N=2 in 4d as proof of concept 

• To that matter we will use the fundamental and 
adjoint as above

4d N = 2 �SU(N)



• The W will come from the superpotential-like invariant. 
Note that

The meson is Symm (adjoint of 
Sp)/Antisymm (adjoint of SO) 
depending on the type or rep.

This quantity is Antisymm/Symm depending on the type of rep. We 
can form an invariant (the W!) contracting with the symplectic 
matrix/identity matrix

it would be perhaps more appropriate to call this 2N dimensional representation a half-

hypermultiplet (note that in fact this is the same number of dof. as a full hypermultiplet

of SU(N)).

All in all, we can write the theory for F half-hypermultiplets. The W is just the

obvious particularization of (4.3), i.e.

W = QJ �QI G
IJ (4.4)

and using the symmetry property (3.13) fixes the matrix G to be either symmetric or

antisymmetric. This allows us to immediately read the global symmetry of the theory:

• fSU(N)I: G is antisymmetric. The global symmetry is Sp(F2 ).

• fSU(N)II: G is symmetric. The global symmetry is SO(F ).

This is in perfect agreement with the result derived using the Frobenius-Schur indicator

in section 3.4, and it will be confirmed by the explicit computation of the Higgs branch

Hilbert series. Moreover, it is also suggested by table 2 – the fSU(N)I,II behaves in this

respect as its subgroup K would. If K is of orthogonal type, then the global symmetry

will be symplectic, and vice versa.

Note that for the type I extensions the case of odd F is not well-defined. The issue

is manifest in the simplest case of F = 1, where it is simply impossible to write a non-

vanishing W . Since for any odd F one can write F = 2f + 1, this very same argument

suggests that type I theories with odd number of flavors do not exist as a N = 2 theories.

In the following we will restrict our attention to even F for type I theories.

4.3 Dynamics

In the following we will be interested in SCDQ theories with gSU(N)I,II gauge group and F

fundamental half-hypers. As discussed above, the vector multiplet only contains a gauge

field for the connected part of the gauge symmetry, while the disconnected part only enters

as a superselection rule. As a consequence, the Lagrangian of the theory is just identical

to that of its SU(N) SQCD cousin. Hence, the Feynman rules will just be the same,

and consequently, all local Physics will be identical to that of SQCD with the only extra

addition that one has to impose the constraints arising from gauge invariance under the

disconnected part of the gauge group (see e.g. [6, 30, 12]).

An important consequence of these observations is that all (local) anomalies are just

identical to those in SQCD. Since the latter has no local anomaly (to begin with, it is

a non-chiral theory), it then follows that our new SQCD theories are also free of local

anomalies.

Another very important consequence is that the � function will just be the same as in

SQCD. Thus, in particular we can tune N and F and restrict to well-behaved 4d QFT’s.
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field for the connected part of the gauge symmetry, while the disconnected part only enters

as a superselection rule. As a consequence, the Lagrangian of the theory is just identical

to that of its SU(N) SQCD cousin. Hence, the Feynman rules will just be the same,

and consequently, all local Physics will be identical to that of SQCD with the only extra

addition that one has to impose the constraints arising from gauge invariance under the

disconnected part of the gauge group (see e.g. [6, 30, 12]).

An important consequence of these observations is that all (local) anomalies are just
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a non-chiral theory), it then follows that our new SQCD theories are also free of local

anomalies.

Another very important consequence is that the � function will just be the same as in
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2. Baryon-like invariants: introduce the ✏-like tensor ⌥e↵1···e↵N
such that

⌥e↵1···e↵N
=

8
>>><

>>>:

✏e↵1···e↵N
if e↵i 2 1, · · ·N 8i

✏e↵1···e↵N
if e↵i 2 N + 1, · · · 2N 8i

0 otherwise

; (3.10)

where ✏e↵1···e↵N
is the standard ✏-tensor in SU(N). Then we have the baryon-like

invariants BI1···IF given by

BI1···IF = (QI1)
e↵1 · · · (QIF )

e↵F ⌥e↵1···e↵N
. (3.11)

Note that BI1···IF is completely antisymmetric on its F indices.

3. Superpotential-like invariants: consider

QI �QJ . (3.12)

It is clear that such quantity is an invariant. Note that we may replace � by �
n,

since the n-power of an adjoint still transforms in the same way. Moreover, as a

F ⇥ F matrix, we have

QI �QJ = cQJ �QI . (3.13)

4. Coulomb branch-like invariants: consider

Tr�2n
. (3.14)

It is clear that these quantities are invariant under the group transformations above.

Note that these are “holomorphic” invariants in that they do not make use of complex

conjugation. On top of them, and explicitly using complex conjugation, we can construct

the “non-holomorphic” quantity (which we will dub Kähler-like)

Q
†
I QJ , (3.15)

which is also invariant under the above transformations.

3.3 The integration measures

In this section, we consider only the case N even (for N odd, we refer to [15]). In order to

be able to compute index-like quantities for gauge theories based on fSU(N)I,II, we need

the integration measures on said groups. Recall that the standard way of defining the

Haar measure of a connected Lie group, grounded on the fact that conjugation of elements

of the maximal torus of the group is surjective onto the full group, doesn’t apply to our

situation. Instead, to be able to integrate over the disconnected component of fSU(N) we

use Lemma 2.1 of [17], namely the fact that the map

' : SU(N)/S0(⇥)⇥ S0(⇥) ! SU(N)⇥ (3.16)

(yS0(⇥), z) 7! yz⇥y
�1
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3.1.2 The adjoint representation

Another very important representation for our purposes is the adjoint representation.

Given the matrix representation in section 2.1, an element � in the adjoint representation

is the 2N ⇥ 2N block-diagonal matrix (recall that � 2 su(N), so �† = � and the Lie

algebra automorphism –complex conjugation for hermitean generators– is � 7! ��?)

� =

 
� 0

0 ��?

!
. (3.5)

Under eG it transforms as

� ! eU� eU†
. (3.6)

For future purposes, it is interesting to note that

�0�
T
�0 = c� . (3.7)

Note that since one block is complex-conjugated of the other, the number of degrees of

freedom is really N
2
�1 as it should be for the adjoint. On the other hand, expressing the

adjoint in this way turns out to be most convenient for our latter purposes of constructing

gauge theories based on fSU(N)I,II due to the transformation properties expressed as (3.6).

3.2 Invariants

Having explicitly constructed the fundamental and the adjoint representations, we now

study the invariants which can be constructed out of them. To that matter, let us consider

F copies of the fundamental representation in addition to an adjoint representation. To

set notation, we will denote eG indices by e↵ with e↵ = 1, · · · , 2N ; and “global symmetry

indices” by I with I = 1, · · · , F . To be explicit with the notation, the fundamentals will

be (QI)e↵. Note that it follows that the indices of the conjugate are (QI)e↵.

With the transformation rules described above for these representations, we may con-

struct all possible group invariants made out of them. Let us stress that the list of such

group invariants is infinite and we will not attempt for an exhaustive classification. In-

stead, we will focus on the ones which will be of uttermost relevance for our purposes.

Indeed, we use a gauge-theoretic inspired naming with an eye on applications to gauge

theories. Such most relevant invariants are

1. Meson-like invariants: consider

MIJ = (QI)e↵ (QJ)
e↵
⌘ QI QJ . (3.8)

It is clear that such quantity is an invariant of the group action, using (3.4). More-

over, a short computation10 shows that, as a F ⇥ F matrix

MIJ = �cMJI . (3.9)
10MIJ = QI QJ = (QI QJ)

T = QT
J�0

TQI = �cQT
J�0QI = �cMJI .
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Higgs/Coulomb branches
• One particularly powerful tool to study theories is to 

compute their index: information about the 
protected operators 

• In particular, we have the integration formula over 
Principal Extensions, and so we can hope to 
extract protected useful information 

I =

�
d��SU(N) PE[f ] “Single particle” contribution



Higgs branches
• We are considering SQCD-like theories, with one vector 

mu l t i p l e t and F ma t t e r fie lds ( rea l /pseudo 
representations) 

• In the SU theory the flavor symmetry would be U(F). 
What about the Principal Extension? 

• We can use the index as a probe. This time we will 
compute the Hall-Littlewood limit of the index, a.k.a. 
Higgs branch Hilbert series Gadde, Rastelli, Razamat& Yan’13

HS(N, Nf ) =

�

G�
d�G�(X)

det
�
1 � t2�Adj(X)

�

det (1 � t�FF̄(X))Nf
,



• For instance 

• In particular, just as expected

N = 4, F = 8, 10 with action ⇥II

HSII(4,8)(t) =
1

(1� t2)34(1 + t2)17

⇣
1 + 11t2 + 749t4 + 8520t6 + 123173t8 + 975504t10+

7079801t12 + 37130520t14 + 168290287t16 + 606231681t18 + 1880386783t20 + 4837617956t22+

10783278743t24 + 20384258878t26 + 33595129641t28 + 47516178744t30 + 58828027690t32+

62834962052t34 + ... + palindrome + ...+ t
68
⌘

,

HSII(4,10)(t) =
1

(1� t2)50(1 + t2)25

⇣
1 + 20t2 + 1880t4 + 40559t6 + 932570t8 + 13749498t10+

172341355t12 + 1684998864t14 + 13851616125t16 + 94630953820t18 + 552972551103t20+

2770203725095t22 + 12073883443120t24 + 45987359734926t26 + 154444878746850t28+

459222671967535t30 + 1216126216507310t32 + 2877699662424911t34 + 6109680294283385t36+

11666292937742595t38 + 20092424985476080t40 + 31261869088087670t42 + 44025712808863775t44+

56169284503495746t46 + 64994327796765700t48 + 68224551337259378t50 + ... + palindrome + ... t
100

⌘

N = 4, F = 8, 10 with action ⇥I

HSI(4,8)(t) =
1

(1� t2)34(1 + t2)17

⇣
1 + 19t2 + 621t4 + 9672t6 + 115781t8 + 1012392t10 + 6929353t12+

37647616t14 + 166763191t16 + 610159441t18 + 1871499527t20 + 4855440684t22 + 10751422823t24+

20435224870t26 + 33521903017t28 + 47610887368t30 + 58717583354t32 + 62951199956t34+

... + palindrome + ...+ t
68
⌘

,

HSI(4,10)(t) =
1

(1� t2)50(1 + t2)25

⇣
1 + 30t2 + 1640t4 + 43719t6 + 903050t8 + 13965248t10+

171040855t12 + 1691679084t14 + 13821738043t16 + 94749067680t18 + 552555331397t20+

2771531440035t22 + 12070052718828t24 + 45997431130604t26 + 154420650803330t28+

459276181907479t30 + 1216017405986190t32 + 2877903862084869t34 + 6109325929218841t36+

11666862552680995t38 + 20091575715527008t40 + 31263044887405650t42 + 44024199831283511t44+

56171095173235402t46 + 64992311468943920t48 + 68226641217885546t50+

+ ...+ palindrome + ...t
100

⌘

36

N = 4, F = 8, 10 with action ⇥II

HSII(4,8)(t) =
1

(1� t2)34(1 + t2)17

⇣
1 + 11t2 + 749t4 + 8520t6 + 123173t8 + 975504t10+

7079801t12 + 37130520t14 + 168290287t16 + 606231681t18 + 1880386783t20 + 4837617956t22+

10783278743t24 + 20384258878t26 + 33595129641t28 + 47516178744t30 + 58828027690t32+

62834962052t34 + ... + palindrome + ...+ t
68
⌘

,

HSII(4,10)(t) =
1

(1� t2)50(1 + t2)25

⇣
1 + 20t2 + 1880t4 + 40559t6 + 932570t8 + 13749498t10+

172341355t12 + 1684998864t14 + 13851616125t16 + 94630953820t18 + 552972551103t20+

2770203725095t22 + 12073883443120t24 + 45987359734926t26 + 154444878746850t28+

459222671967535t30 + 1216126216507310t32 + 2877699662424911t34 + 6109680294283385t36+

11666292937742595t38 + 20092424985476080t40 + 31261869088087670t42 + 44025712808863775t44+

56169284503495746t46 + 64994327796765700t48 + 68224551337259378t50 + ... + palindrome + ... t
100

⌘

N = 4, F = 8, 10 with action ⇥I

HSI(4,8)(t) =
1

(1� t2)34(1 + t2)17

⇣
1 + 19t2 + 621t4 + 9672t6 + 115781t8 + 1012392t10 + 6929353t12+

37647616t14 + 166763191t16 + 610159441t18 + 1871499527t20 + 4855440684t22 + 10751422823t24+

20435224870t26 + 33521903017t28 + 47610887368t30 + 58717583354t32 + 62951199956t34+

... + palindrome + ...+ t
68
⌘

,

HSI(4,10)(t) =
1

(1� t2)50(1 + t2)25

⇣
1 + 30t2 + 1640t4 + 43719t6 + 903050t8 + 13965248t10+

171040855t12 + 1691679084t14 + 13821738043t16 + 94749067680t18 + 552555331397t20+

2771531440035t22 + 12070052718828t24 + 45997431130604t26 + 154420650803330t28+

459276181907479t30 + 1216017405986190t32 + 2877903862084869t34 + 6109325929218841t36+

11666862552680995t38 + 20091575715527008t40 + 31263044887405650t42 + 44024199831283511t44+

56171095173235402t46 + 64992311468943920t48 + 68226641217885546t50+

+ ...+ palindrome + ...t
100

⌘

36

For more examples, refined & unrefined, 
check Bourget, Pini & D.R-G’18 and 
Arias-Tamargo, Bourget, Pini & D.R-G’19

�
��

��

�SU(N)I : Sp(F
2 ) global symmetry (even F )

�SU(N)II : SO(F ) global symmetry (even N)



Coulomb branches

• Let us now turn to the Coulomb branch 

• We now explicitly need to be inside the conformal 
window (otherwise very complicated!) 

• …so assume N, F are tuned so that we have a CFT.



• Use the index…one limit is sensitive only to the 
Coulomb branch! 

• The Coulomb branch index becomes 

• This can be re-written as

f
1
2 H = 0 fV = t

Gadde, Rastelli, Razamat& Yan’13

ICoulomb
�SU(N)

(t) =
1

2

�
N�

i=2

1

1 � ti
+

N�

i=2

1

1 � (�t)i

�
.

ICoulomb
�SU(N)

(t) =

�
k1<···<kr odd

tk1+···+kr

�
i even

(1 � ti)
�

i odd
(1 � t2i)

,
Non-freely generated 
Coulomb branch in 
general!!!!

A.Bourget, A.Pini & D.R-G’18
Argyres & Martone’18
Bourton, Pini & Pomoni’18



• Being more explicit 

• Thus, from N=5 on we have a non-frely generated 
Coulomb branch. Note that N=4 is secretly O(6) 
(which should have a freely generated CB) and N=2 
is trivial (and so should have a freely generated CB)

N PL of ICoulomb
�SU(N)

(t)

2 t2

3 t2 + t6

4 t2 + t4 + t6

5 t2 + t4 + t6 + t8 + t10 � t16

6 t2 + t4 + 2t6 + t8 + t10 � t16

7 t2 + t4 + 2t6 + t8 + 2t10 + t12 + t14 � t16 � t18 + . . . (infinite)



Summary
• We have introduced a “new” family of gauge 

groups on which gauge theories can be based 

• Actually one particular case is SO vs. O. Also the 
SU case made a modest appeareance 

• The rules etc. to construct them are therefore just 
the usual ones. We could construct them in 
arbitrary dimensions. Today focused on 4d N=2.



• The Coulomb brach is generically non-freely 
generated (first example of such a thing!) 

• The Higgs branch exhibits an “exotic” pattern 
of global symmetries

• A powerful tool to explore the theories is the index (in 
particular because we have an integration formula). 
Using it we have seen that



Open questions
• This only touches upon the tip of the iceberg…

there are loads of things to explore. For instance, in 
random order

• String embedding??? 

• Global properties of the theories, spectrum of line operators… 

• Construction of quivers??? 

• Versions in other dimensions (where perhaps other phenomena manifest)?? 

• …

Harvey & Royston’07



Thanks!


