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Introduction



Type IIB gravity duals of N = 1 SCFT

• Sasaki–Einstein (S5, T 1,1, Yp,q, ...) (F5 6= 0)

• Pilch–Warner, β-deformation, ... (all fluxes, but also isometries)

Are there more generic constructions?
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Classic example: N = 1 marginal deformations for N = 4

Superpotential deformation [Leigh & Strassler ]

W = εijk trZ iZ jZ k + fijk trZ iZ jZ k

• fijk symmetric giving 10 complex marginal deformations

• but beta-function constrains moment map for SU(3) symmetry

fikl f̄
jkl − 1

3δ
j
i fklm f̄

klm = 0

• exactly marginal deformation as symplectic quotient [Kol; Green et al ]

M̃ = {fijk}//SU(3)
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Can choose, including gauge coupling,

∆W = λ1 trZ 1Z 2Z 3 + λ2 tr
[
(Z 1)3 + (Z 2)3 + (Z 3)3

]
+ ∆τ trWαW

α

• λ2 = 0 : “beta-deformation”, U(1)3 isometry, exact dual solution

[Lunin & Maldacena]

• generic: no isometries, perturbative tour de force to 3rd order

[Aharony, Kol & Yankielowicz]

can one find the generic dual geometry?
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Idea: analogue of Calabi–Yau

Given explicit Kähler SU(3) structure (Ω, ω) with 1
8 iΩ ∧ Ω̄ = 1

6ω
3

dΩ = 3iα ∧ Ω, dω = 0

then vary Kähler form within cohomology class

ω′ = ω + i∂∂̄h, Ω′ = λΩ

there exists Calabi–Yau solution (Ω∗, ω∗)
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Symplectic quotient [Donaldson, ...]

Typical of supersymmetry conditions: first solve F-terms (holomorphic)

• Z is Kähler (infinite-dimensional) with group action G

• orbits for GC intersect µ = 0 (if “stable” – algebraic condition)

Kähler–Einstein, Sasaski–Einstein, Hermitian Yang-Mills, ...
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Structures in E6(6) generalised geometry

Warped compactification, 8 supercharges, all fluxes

ds2 = e2∆ds2(AdS5) + ds2(M)

• “exceptional Sasaki–Einstein”

• “H structure” and “V structure” on M generalise notion of complex

and symplectic structures (on cone)

• adapted to field theory Kähler and superpotential

[Ashmore, Petrini & DW ]
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E6(6) × R+ generalised geometry



Generalised tangent space

E ' TM ⊕ 2T ∗M ⊕ Λ3T ∗M ⊕ 2Λ5T ∗M

VM = (vm, λim, ρmnp, σ
i
m1...m5

)

• transforms as 27 under E6(6)

• parametrises diffeomorphism and gauge symmetry
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Generalised tensors

For example, adjoint 78 includes potentials

ad F̃ ' 3R⊕ (TM ⊗ T ∗M)⊕ 2Λ2T ∗M ⊕ 2Λ2TM ⊕ Λ4T ∗M ⊕ Λ4TM

AM
N = (. . . ,B i

mn, . . . ,Cmnpq)

Can “twisting” of generalised tensors by gauge potentials

V = eB
i+C Ṽ A = eB

i+C Ã e−B
i−C
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Generalised Lie derivative

“Generalised diffeomorphism, GDiff” symmetries

LV = diffeo + gauge transf

= Lv − (dλi + dρ) ·

where forms act via adjoint (n.b. LVW 6= −LWV )

E6(6) cubic invariant

c(V ,V ,V ) = εij(ivλ
i )σj − 1

2 ivρ ∧ ρ−
1
2εijρ ∧ λ

i ∧ λj ∈ Γ(Λ5T ∗M)
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V structure

Generalised vector

K ∈ Γ(E ) such that c(K ,K ,K ) > 0

• stabilised by F4(4) ⊂ E6(6)

• LK generates U(1)R symmetry

• very special real geometry on space of structures (vector mulitplet)
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H structure

Weighted adjoint tensors

Jα(x) ∈ Γ(ad F̃ ⊗ (detT ∗M)1/2)

forming highest root su2 algebra, with κ2 ∈ Γ(detT ∗M)

[Jα, Jβ] = 2κεαβγJγ

tr JαJβ = −κ2δαβ

• stabilised by SU∗(6)

• hyper-Kähler geometry on space of structures (hypermultiplet)
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Compatible structures

The H and V structures are compatible if

Jα · K = 0 c(K ,K ,K ) = κ2

(analogues of ω ∧ Ω = 0 and 1
6ω

3 = 1
8 iΩ ∧ Ω̄ on cone)

the compatible pair {Jα,K} define an USp(6) structure

Jα and K come from Killing spinor bilinears.
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Example: Sasaki–Einstein (ξ, σ, ω,Ω)

ds2(M) = σ ⊗ σ + ds2
4 , F = 4 vol5,

dσ = 2ω, dΩ = 3iσ ∧ Ω.

where σ = dψ + a and ξ = ∂/∂ψ embeds as CR structure

J+ = 1
2κu

i
(
Ω− iΩ]

)
, ui = τ−2

2 (τ, 1)i , κ2 = vol5

ad F̃ ' 3R⊕ (TM ⊗ T∗M)⊕ Λ2T∗M ⊕ Λ2TM ⊕ Λ4T∗M ⊕ Λ4TM,

and
K = ξ − σ ∧ ω contact structure

E ' TM ⊕ 2T∗M ⊕ Λ3T∗M ⊕ 2Λ5T∗M,
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Differential conditions

Define J+ = J1 + iJ2 then

µ+(V ) = 0, µ3(V ) =

∫
M

c(K ,K ,V ),

LKJ+ = 3iJ+, LKK = 0.

What are µα??
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Triplet of moment maps

Infinitesimally GDiff parametrised by V ∈ Γ(E ) ' gdiff and acts by

δJα = LV Jα

preserves HK structure on space of Jα giving triplet of moment maps

µα(V ) = − 1
2εαβγ

∫
M

tr Jβ(LV Jγ)
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Universal contact structure

In all cases [c.f. Gabella, Gauntlett, Sparks, DW ]

K = ξ − σ ∧ ω

with iξσ = 1, iξω = 0 and dσ = 2ω and

1

central charge
∝
∫
M

c(K ,K ,K )

c.f. a-max ...
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Exceptional Sasaki geometry



“Exceptional Sasaki” geometry

We would like to relax one condition (analogue of Kähler on cone)

µ+(V ) = 0,
�����������

µ3(V ) =

∫
M

c(K ,K ,V ) ,

LKJ+ = 3iJ+, LKK = 0.

and κ2 6= c(K ,K ,K ).

(Note that if only fiveform flux, then Exceptional Sasaki = Sasaki)
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Final condition: GDiff moment map

• ∞-dim. space of exceptional Sasaki structures (J+,K ) is Kähler

• condition is single moment map for GDiff

• complex GDiffC orbit X = κJ+ (holomorphic object)

δX = LVX V ∈ Γ(EC) ' gdiffC

• intersects moment map condition on susy background (X∗,K∗)
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Physical interpretation

From supersymmetric multiplet structure

• fixing orbit, [X ] = GDiffC · X fixes superpotential W
• the condition LKX = 3iX fixes ∆ = 3

• motion in orbit is renormalisation flow of Kähler potential

Field theory implies version of “Calabi–Yau theorem” [Kol,Green et al.]

• if W is exactly marginal then orbit will intersect

• only obstruction is extra global symmetry from fixed point of GDiff

[Ashmore, Gabella, Graña, Petrini, DW ]
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Aside: c.f. GMPT

Translating into pure spinors on the cone [GMPT,Tomasiello]

dΦ− = 0,

dJ−(e−3A Im Φ+) = FRR

������
d(e−A Re Φ+) = 0 moment map

(Already hard to solve first two equations... )
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Marginal deformations of Sasaki–

Einstein duals



[X ] for Sasaki–Einstein

We have, up to GDiffC,

X = 1
2 vol5 u

i
(
Ω− iΩ]

)
= e

1
4 id(σ∧ω) · ( 1

2u
iσ ∧ Ω) ∼ 1

2u
iσ ∧ Ω

∈ Γ(T ∗M ⊕ Λ3T ∗M ⊕ . . . )

Marginal deformation data

• mesonic operators ⇔ holomorphic function f on cone

• marginal ⇔ Lξf = 3if

• for example on S5: f = 1
6 fijkz

iz jzk
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Solution for deformed background

We find new family of Exceptional Sasaki solutions

K = ξ − σ ∧ ω

X = eb
i (τ,f )

(
df + v i (τ, f )σ ∧ Ω

)
with bi ∈ Γ(Λ2T ∗CM) linear in df and v i quadratic

• complicated deformed metric g , axion-dilaton and fluxes

• for S5 matches leading parts of Aharony et al. and GDiffC action

gives {fijk}//SU(3)

• can also check f = z1z2z3, β-deformation is GDiffC of LM solution
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What can we calculate?

[X ] fixes superpotential so should encode holomorphic information

e.g. space of mesonic operators O = tr φ · · ·φ

Normally, involved calculation in supergravity

• harmonic expansion of fields on background

• count chiral multipets of fixed R-charge ⇒ Hilbert series

S5, T 1,1 by isometries; generic Sasaki–Einstein [Eager, Schmude, Tachikawa]
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Here counted by cohomology

Space of integrable structures Z so δX ∈ TZ

EC
L·X−−−−→ TZ δµ+−−−−→ E∗C

cohomology counts operators

space of mesonic ops =
{δX : δµ+ = 0}
{δX = LVX}
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If df nowhere vanishing (generic) then can write

X = eb̃
i (f ,τ)+c̃(f ,τ) df

and cohomology reduces to

space of mesonic ops =
{dα = 0}

{α = df ∧ dλ}

where α := df ∧ δb ∈ Γ(Λ3T ∗CM)
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S5 example

Generic deformation

f (z) = λ1z
1z2z3 + λ2

[
(z1)3 + (z2)3 + (z3)3

]
Graded by R-charge LKδX = iq δX cohmology gives Hilbert series

H(t) = 1 + 3t + 3t2 + 2t3 + 3t4 + 3t5 + 2t6 + · · · =
(1 + t)3

1− t3

agrees with field theory! (cyclic cohomology [Van den Burgh])
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Summary

We have solved for the “holomorphic” structure

Questions/Extensions

• generic calculation of Hilbert series

• full solution?

• same formalism for M-theory AdS5

• similar formalism for M-theory AdS4 – again solve for deformations

of d = 7 Sasaki–Einstein

• cohomology gives index ...

• generic a-max dual ...
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