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Introduction




Type 1IB gravity duals of N =1 SCFT

e Sasaki-Einstein (S5, TH, Y, 4, ...) (Fs #0)

e Pilch—-Warner, S-deformation, ... (all fluxes, but also isometries)

Are there more generic constructions?



Classic example: N’ = 1 marginal deformations for N' = 4
Superpotential deformation [Leigh & Strassler]

W=eutrZ'ZZ* + fytr 22/ Z*

e fii symmetric giving 10 complex marginal deformations

e but beta-function constrains moment map for SU(3) symmetry
P — L6/ fogm ™ = 0
e exactly marginal deformation as symplectic quotient [Kol; Green et al]

M= {fiic}//SU(3)



Can choose, including gauge coupling,

AW = \tr ZV 2223 + ot [(ZY)2 +(Z22)° +(Z22)°] + A7 tr W W™

e )\, — 0 : “beta-deformation”, U(1)® isometry, exact dual solution
[Lunin & Maldacena)

e generic: no isometries, perturbative tour de force to 3rd order
[Aharony, Kol & Yankielowicz]

can one find the generic dual geometry?



Idea: analogue of Calabi—Yau

Given explicit Kahler SU(3) structure (9, w) with 3iQAQ = 1w?
dQ = 3ia A Q, dw=0

then vary Kahler form within cohomology class
w' = w +i90h, Q' =)\Q

there exists Calabi-Yau solution (., w,)



Symplectic quotient [Donaldson, ..]

Typical of supersymmetry conditions: first solve F-terms (holomorphic)

z

e Z is Kahler (infinite-dimensional) with group action G
e orbits for Ge intersect p = 0 (if “stable” — algebraic condition)

Kahler—Einstein, Sasaski—Einstein, Hermitian Yang-Mills, ...



Structures in Eg(g) generalised geometry

Warped compactification, 8 supercharges, all fluxes

ds? = e*”ds*(AdSs) + ds*(M)

e ‘“exceptional Sasaki—Einstein”

e "H structure” and "V structure” on M generalise notion of complex
and symplectic structures (on cone)

e adapted to field theory Kahler and superpotential

[Ashmore, Petrini & DW]



Ee(6) X R™ generalised geometry




Generalised tangent space

Ex~xTM&2T*"Ma N T Ma2M°T*M

M m i i
VA (V ,/\my/)mnp?o'ml,,.ms)

e transforms as 27 under Eg )

e parametrises diffeomorphism and gauge symmetry



Generalised tensors

For example, adjoint 78 includes potentials
adF ~3R®(TM® T*M) @ 2N\’ T*M @ 2N TM & A*T*M @& A*TM
AMy = (...,BL,, .., Conpq)

Can “twisting” of generalised tensors by gauge potentials

V =eBtCy A=eBtCAc"B-C



Generalised Lie derivative
“Generalised diffeomorphism, GDiff" symmetries

Ly = diffeo + gauge transf
=L, — (AN +dp) -

where forms act via adjoint (n.b. Ly W # —Ly V)

Ee(6) cubic invariant

c(V,V,V)=¢€;(i,N)o! — LivpAp—Leip AN AN € T(NT*M)



V structure
Generalised vector
K eT(E) such that ¢(K, K, K) >0
e stabilised by Fy(4) C Eg(s)

e [, generates U(1)r symmetry

e very special real geometry on space of structures (vector mulitplet)



H structure

Weighted adjoint tensors
Jo(x) € T(ad F ® (det T*M)1/2)
forming highest root su, algebra, with k2 € '(det T*M)
as J5] = 2n¢as, J,

tr JaJB = —HQ(SQB

e stabilised by SU*(6)

e hyper-Kahler geometry on space of structures (hypermultiplet)



Compatible structures
The H and V structures are compatible if
Jy-K=0 c(K,K,K) = K?
(analogues of w A Q =0 and 1w? = 1iQ A Q on cone)
the compatible pair {J,, K} define an USp(6) structure

Jo and K come from Killing spinor bilinears.



Example: Sasaki-Einstein (£, 0, w, Q)

ds*(M) = 0 ® 0 + dsZ, F = 4vols,
do = 2w, dQ = 3ic A Q.

where 0 = dy + a and £ = 9/9vy embeds as CR structure
Jp = 1kdf (2 -iQ%), u = 7'2_2(7', 1), k%= vols
adF ~3RG(TMQT*M)@ N’ T MG N TM SN T*M @ N TM,

and
K=¢(—-0Aw contact structure

ExTM@2T MO N3 T*M&2AT*M,



Differential conditions

Define J, = J; + i/, then

p(V) =0,

LKJ+ = 31J+

What are p,?7

(V)= [ etk V),

LxK = 0.



Triplet of moment maps
Infinitesimally GDiff parametrised by V' € ['(E) ~ gdiff and acts by
5-/(1 =LyJ,

preserves HK structure on space of J, giving triplet of moment maps

,”(Y(V) = _%‘m%/ trJ.%(LVJy)
M



Universal contact structure
In all cases [c.f. Gabella, Gauntlett, Sparks, DW]
K=¢(—0oAw

with jco =1, jew = 0 and do = 2w and

1
central charge

oc/Mc(K,K,K)

c.f. a-max ...



Exceptional Sasaki geometry




“Exceptional Sasaki” geometry
We would like to relax one condition (analogue of Kahler on cone)
us (V) =0, us(V) = LK, V),
LKJ( :31J\, LKK 0

and k2 # ¢(K, K, K).

(Note that if only fiveform flux, then Exceptional Sasaki = Sasaki)
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Final condition: GDiff moment map

e oo-dim. space of exceptional Sasaki structures (Jy, K) is Kahler
e condition is single moment map for GDiff

e complex GDiffe orbit X = kJy (holomorphic object)
X =LyX V e T(Ex) ~ goiffe

e intersects moment map condition on susy background (X, K.)

22



Physical interpretation

From supersymmetric multiplet structure
e fixing orbit, [X] = GDiffc - X fixes superpotential VW
e the condition LxX = 3iX fixes A = 3

e motion in orbit is renormalisation flow of Kzhler potential

Field theory implies version of “Calabi—Yau theorem” [Kol,Green et al)]
e if W is exactly marginal then orbit will intersect

e only obstruction is extra global symmetry from fixed point of GDiff
[Ashmore, Gabella, Grafa, Petrini, DW]
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Aside: c.f. GMPT

Translating into pure spinors on the cone [GMPT, Tomasiello]

do_ =0,
a7 ((,‘73A Im &, ) = Frr

d(e=2 +)=0 moment map

(Already hard to solve first two equations... )
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Marginal deformations of Sasaki—
Einstein duals




[X] for Sasaki-Einstein
We have, up to GDiffc,
X = %vo|5 u' (Q — iQﬁ) — e#id(oAw) | (%uio A Q) ~ %ui(r AQ

eEN(T*MeNTMS...)

Marginal deformation data

e mesonic operators < holomorphic function f on cone
e marginal & L.f = 3if

e for example on S°: f = %f',-jkz"zfzk
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Solution for deformed background

We find new family of Exceptional Sasaki solutions

K=¢(—-0oAw
X = e?'(nf) (df + vi(r, f)o A Q)

with b' € [(A*T M) linear in df and v/ quadratic

e complicated deformed metric g, axion-dilaton and fluxes

e for S5 matches leading parts of Aharony et al. and GDiffc action
gives {fju}/SU(3)

e can also check f = 212?23, p-deformation is GDiff~ of LM solution
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What can we calculate?
[X] fixes superpotential so should encode holomorphic information
e.g. space of mesonic operators O =trg---¢

Normally, involved calculation in supergravity
e harmonic expansion of fields on background
e count chiral multipets of fixed R-charge = Hilbert series

S5, T by isometries; generic Sasaki—Einstein [Eager, Schmude, Tachikawa]
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Here counted by cohomology
Space of integrable structures Z so 6X € TZ
Ec =% 172 %+, £

cohomology counts operators

{6X : 6py =0}

space of mesonic ops = 00X = LyX}
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If df nowhere vanishing (generic) then can write

X = eE’.(f,T)—FE(f,T) df

and cohomology reduces to

space of mesonic ops =

{da = 0}

{a=df ANdA}

where o := df A 0b € T(A3TEM)
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S° example
Generic deformation

f(z) =MzZ'222 + X [(2') + (2%)% + ()]
Graded by R-charge LxdX =iqdX cohmology gives Hilbert series

1+1¢)
H(t):1+3t+3t2+2t3+3t4+3t5+2t6+.,,:( +t)

agrees with field theory! (cyclic cohomology [Van den Burgh])

1-—18
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Summary

We have solved for the “holomorphic” structure

Questions/Extensions

e generic calculation of Hilbert series
e full solution?
e same formalism for M-theory AdSs

e similar formalism for M-theory AdS, — again solve for deformations
of d = 7 Sasaki—Einstein

e cohomology gives index ...

e generic a-max dual ...
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