Recent developments in AdS₆/CFT₅

Christoph Uhlemann UCLA

Holography, Generalized Geometry and Duality Mainz ITP 2019

Why 5d SCFTs?

Higher-dimensional SCFTs integral part in general understanding of (susy) QFT, many insights into lower-dimensional theories:

- new $d \leq 4$ QFTs (4d class \mathcal{S} , 3d class \mathcal{F} , ...)
- new dualities, natural explanations for known relations (S-duality, AGT, Argyres-Seiberg duality, . . .)

1

Why 5d SCFTs?

Higher-dimensional SCFTs integral part in general understanding of (susy) QFT, many insights into lower-dimensional theories:

- new $d \leq 4$ QFTs (4d class \mathcal{S} , 3d class \mathcal{F} , ...)
- new dualities, natural explanations for known relations (S-duality, AGT, Argyres-Seiberg duality, . . .)

5d SCFTs: higher-dimensional perspective with close relations to Lagrangian gauge theories

1

5d SCFTs from gauge theories

Existence of interacting QFTs in d>4 surprise from perturbative perspective: d>4 gauge theories non-renormalizable (\sim 4d GR).

May flow to non-perturbative UV fixed point \sim asymptotic safety.

5d SCFTs from gauge theories

Existence of interacting QFTs in d > 4 surprise from perturbative perspective: d > 4 gauge theories non-renormalizable (\sim 4d GR).

May flow to non-perturbative UV fixed point \sim asymptotic safety.

- [Seiberg '96]: $\mathcal{N}=1$ supersymmetric SU(2) gauge theory with $N_f \leq 7$ may flow to strongly-coupled UV fixed point

- D4 (i) convex prepotential on Coulomb Branch (ii) construction in Type I' string theory

5d SCFTs from gauge theories

Existence of interacting QFTs in d > 4 surprise from perturbative perspective: d > 4 gauge theories non-renormalizable (\sim 4d GR).

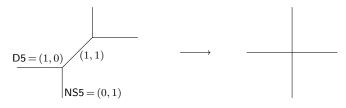
May flow to non-perturbative UV fixed point \sim asymptotic safety.

- [Seiberg '96]: $\mathcal{N}=1$ supersymmetric SU(2) gauge theory with $N_f \leq 7$ may flow to strongly-coupled UV fixed point

- D4 (i) convex prepotential on Coulomb Branch (ii) construction in Type I' string theory

Gauge theories with (i) classified in [Intriligator, Morrison, Seiberg]. Even more theories realized by (p,q) 5-brane webs in Type IIB...

5-brane web: planar arrangement of (p,q) 5-branes at angles fixed by (p,q), junctions w/ conserved charges

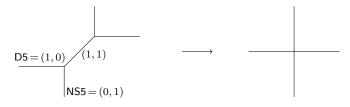


free massive hypermultiplet

free massless hypermultiplet

	0 1 2 3 4 5 6 7 8 9	6 1
D5	$\times \times \times \times \times$	
NS5	×××××\ ×/	5
	'	9

5-brane web: planar arrangement of (p,q) 5-branes at angles fixed by (p,q), junctions w/ conserved charges

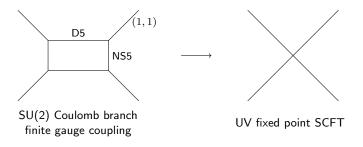


free massive hypermultiplet

free massless hypermultiplet

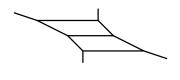
Length scales in brane web \leftrightarrow mass parameters in field theory. UV fixed point: all lengths $\to 0$, intersection at a point.

5-brane web: planar arrangement of (p,q) 5-branes at angles fixed by (p,q), junctions w/ conserved charges

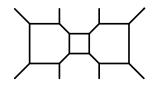


Length scales in brane web \leftrightarrow mass parameters in field theory. UV fixed point: all lengths $\to 0$, intersection at a point.

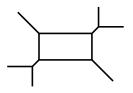
5d SCFTs from 5-brane junctions



SU(3), CS = 0



 $SU(2)\times SU(2)\times SU(2)$ quiver



 $\mathsf{SU}(2) + 2 \mathsf{ flavors}$

 E_0 theory

Landscape of 5d gauge theories, enhanced symmetries, dualities,...

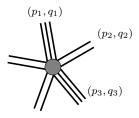
4

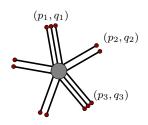
5d SCFTs from 5-brane junctions

General picture: any planar 5-brane junction realizes a 5d SCFT on the intersection point

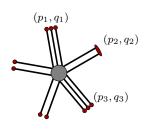
Characterized entirely by external 5-brane charges. No standard Lagrangian. May or may not have gauge theory deformations.

5

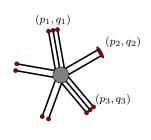




 5-branes can end on 7-branes of appropriate type



- 5-branes can end on 7-branes of appropriate type
- multiple 5-branes ending on same 7-brane \rightarrow s-rule constraints [Benini,Benvenuti,Tachikawa]
- "constrained" junctions related to unconstrained ones by RG flows



- 5-branes can end on 7-branes of appropriate type
- multiple 5-branes ending on same 7-brane \rightarrow s-rule constraints [Benini,Benvenuti,Tachikawa]
- "constrained" junctions related to unconstrained ones by RG flows

Additional data for 5-brane junctions w/ 7-branes: partition of like-charged 5-branes into subgroups ending on same 7-brane

Recent developments in AdS₆/CFT₅

Outline

- AdS₆/CFT₅ dualities in Type IIB
- Matching "stringy" operators
- Sphere partition functions
- Counting black hole microstates

 AdS_6/CFT_5 dualities in Type IIB

Holographic duals for 5d SCFTs

AdS/CFT for quantitative access to superconformal fixed points? Needs AdS_6 solutions in Type IIB:

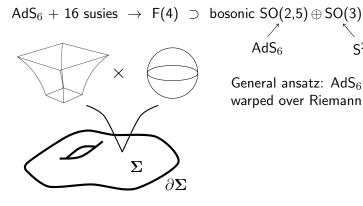
- Unique superconformal algebra F(4), 8_Q supercharges.
- Fully localized brane intersections expect physical singularities from brane sources.

BPS equations studied by [Apruzzi, Fazzi, Passias, Rosa, Tomasiello '14; Kim, Kim, Suh '15; Kim, Kim '16].

Symmetries and ansatz [D'Hoker, Gutperle, Karch, CFU arXiv:1606.01254]

Symmetries and ansatz

[D'Hoker, Gutperle, Karch, CFU arXiv:1606.01254]



psonic
$$SO(2,5) \oplus SO(3)$$

$$\nearrow$$

$$AdS_6 \qquad S^2$$

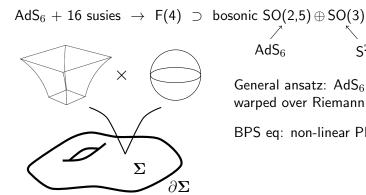
General ansatz: AdS_6 and S^2 warped over Riemann surface Σ

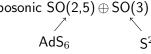
$$ds^{2} = f_{6}(w, \bar{w})^{2} ds_{AdS_{6}}^{2} + f_{2}(w, \bar{w})^{2} ds_{S^{2}}^{2} + 4\rho(w, \bar{w})^{2} |dw|^{2}$$

$$C_{(4)} = 0 \qquad B_{2} + iC_{(2)}^{RR} = \mathcal{C}(w, \bar{w}) \text{vol}_{S^{2}} \qquad \tau = \tau(w, \bar{w})$$

Symmetries and ansatz

[D'Hoker, Gutperle, Karch, CFU arXiv:1606.01254]





General ansatz: AdS_6 and S^2 warped over Riemann surface Σ

BPS eq: non-linear PDEs on Σ

$$ds^{2} = f_{6}(w, \bar{w})^{2} ds_{AdS_{6}}^{2} + f_{2}(w, \bar{w})^{2} ds_{S^{2}}^{2} + 4\rho(w, \bar{w})^{2} |dw|^{2}$$

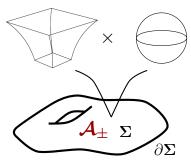
$$C_{(4)} = 0 \qquad B_{2} + iC_{(2)}^{RR} = \mathcal{C}(w, \bar{w}) \text{vol}_{S^{2}} \qquad \tau = \tau(w, \bar{w})$$

Symmetries and ansatz

[D'Hoker, Gutperle, Karch, CFU arXiv:1606.01254]

$$\mathsf{AdS}_6 \, + \, \mathsf{16} \; \mathsf{susies} \; \rightarrow \; \mathsf{F(4)} \; \supset \; \mathsf{bosonic} \; \mathsf{SO(2,5)} \oplus \mathsf{SO(3)}$$

$$\qquad \qquad \qquad \mathsf{AdS}_6 \qquad \mathsf{SS}_6 \qquad \mathsf{SS}_6$$



General ansatz: AdS_6 and S^2 warped over Riemann surface Σ

BPS eq: non-linear PDEs on $\boldsymbol{\Sigma}$

General solution parametrized by locally holomorphic $\mathcal{A}_{\pm}:\Sigma \to \mathbb{C}$

$$\begin{split} ds^2 &= f_6(w, \bar{w})^2 ds_{\text{AdS}_6}^2 + f_2(w, \bar{w})^2 ds_{\text{S}^2}^2 + 4\rho(w, \bar{w})^2 |dw|^2 \\ C_{(4)} &= 0 \qquad B_2 + iC_{(2)}^{\text{RR}} = \mathcal{C}(w, \bar{w}) \text{vol}_{\text{S}^2} \qquad \tau = \tau(w, \bar{w}) \end{split}$$

General local solution to BPS eq. parametrized by two locally holomorphic functions \mathcal{A}_{\pm} on Σ :

$$f_{6}^{2} = \sqrt{6\mathcal{G}T} \qquad f_{2}^{2} = \frac{1}{9}\sqrt{\frac{6\mathcal{G}}{T^{3}}} \qquad \rho^{2} = \kappa^{2}\sqrt{\frac{T}{6\mathcal{G}}}$$

$$B = \frac{1+i\tau}{1-i\tau} = \frac{\partial_{w}\mathcal{A}_{+}}{R\partial_{\bar{w}}\bar{\mathcal{A}}_{+}\partial_{w}\mathcal{G}} - R\partial_{\bar{w}}\bar{\mathcal{A}}_{-}\partial_{w}\mathcal{G}}$$

$$\mathcal{C} = \frac{2i}{3}\left(\frac{\partial_{\bar{w}}\mathcal{G}\partial_{w}\mathcal{A}_{+} + \partial_{w}\mathcal{G}\partial_{\bar{w}}\bar{\mathcal{A}}_{-}}{3\kappa^{2}T^{2}} - \bar{\mathcal{A}}_{-} - \mathcal{A}_{+}\right)$$

with composite quantities

$$\kappa^2 = -|\partial_w \mathcal{A}_+|^2 + |\partial_w \mathcal{A}_-|^2 \qquad \partial_w \mathcal{B} = \mathcal{A}_+ \partial_w \mathcal{A}_- - \mathcal{A}_- \partial_w \mathcal{A}_+$$

$$\mathcal{G} = |\mathcal{A}_+|^2 - |\mathcal{A}_-|^2 + \mathcal{B} + \bar{\mathcal{B}} \qquad T^2 = \left[\frac{1+R}{1-R}\right]^2 = 1 + \frac{2\kappa^2 \mathcal{G}}{3|\partial_w \mathcal{G}|^2}$$

General local solution to BPS eq. parametrized by two locally holomorphic functions \mathcal{A}_{\pm} on Σ :

$$f_{6}^{2} = \sqrt{6\mathcal{G}T} \qquad f_{2}^{2} = \frac{1}{9}\sqrt{\frac{6\mathcal{G}}{T^{3}}} \qquad \rho^{2} = \kappa^{2}\sqrt{\frac{T}{6\mathcal{G}}}$$

$$B = \frac{1+i\tau}{1-i\tau} = \frac{\partial_{w}\mathcal{A}_{+}}{R\partial_{\bar{w}}\bar{\mathcal{A}}_{+}\partial_{w}\mathcal{G} - R\partial_{\bar{w}}\bar{\mathcal{A}}_{-}\partial_{w}\mathcal{G}}$$

$$\mathcal{C} = \frac{2i}{3}\left(\frac{\partial_{\bar{w}}\mathcal{G}\partial_{w}\mathcal{A}_{+} + \partial_{w}\mathcal{G}\partial_{\bar{w}}\bar{\mathcal{A}}_{-}}{3\kappa^{2}T^{2}} - \bar{\mathcal{A}}_{-} - \mathcal{A}_{+}\right)$$

with composite quantities

$$\kappa^{2} = -|\partial_{w}\mathcal{A}_{+}|^{2} + |\partial_{w}\mathcal{A}_{-}|^{2} \qquad \partial_{w}\mathcal{B} = \mathcal{A}_{+}\partial_{w}\mathcal{A}_{-} - \mathcal{A}_{-}\partial_{w}\mathcal{A}_{+}$$

$$\mathcal{G} = |\mathcal{A}_{+}|^{2} - |\mathcal{A}_{-}|^{2} + \mathcal{B} + \bar{\mathcal{B}} \qquad T^{2} = \left[\frac{1+R}{1-R}\right]^{2} = 1 + \frac{2\kappa^{2}\mathcal{G}}{3|\partial_{w}\mathcal{G}|^{2}}$$

Regularity conditions

[D'Hoker, Gutperle, CFU arXiv:1703.08186]

5-brane junctions?

5-brane junctions? Generic \mathcal{A}_{\pm} do not lead to physically regular solutions. Complete regularity conditions in terms of

$$\kappa^2 = -|\partial \mathcal{A}_+|^2 + |\mathcal{A}_-^2| \qquad \qquad \mathcal{G} = |\mathcal{A}_+|^2 - |\mathcal{A}_-|^2 + \mathcal{B} + \bar{\mathcal{B}}$$

5-brane junctions? Generic \mathcal{A}_\pm do not lead to physically regular solutions. Complete regularity conditions in terms of

$$\kappa^2 = -|\partial \mathcal{A}_+|^2 + |\mathcal{A}_-^2|$$
 $\mathcal{G} = |\mathcal{A}_+|^2 - |\mathcal{A}_-|^2 + \mathcal{B} + \bar{\mathcal{B}}$

Real geometry with consistent spacetime signature, ${\rm Im}(\tau)>0$ at interior points of Σ , smoothly collapse S^2 on boundary points:

$$\kappa^2 > 0$$
 on $\inf(\Sigma)$ $\kappa^2 = 0$ on $\partial \Sigma$

 $\to \Sigma$ needs a boundary $(\partial_w \partial_{\bar{w}} \mathcal{G} = -\kappa^2)$. To be realized by locally holomorphic \mathcal{A}_{\pm} ...

$$\Phi \equiv -\ln \left| \frac{\partial_w \mathcal{A}_+}{\partial_w \mathcal{A}_-} \right|^2 \qquad \Phi \Big|_{\mathsf{int}(\Sigma)} > 0 \qquad \Phi \Big|_{\partial \Sigma} = 0$$

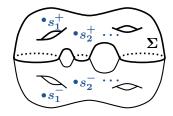
$$\Phi \equiv -\ln \left| \frac{\partial_w \mathcal{A}_+}{\partial_w \mathcal{A}_-} \right|^2 \qquad \Phi \Big|_{\mathsf{int}(\Sigma)} > 0 \qquad \Phi \Big|_{\partial \Sigma} = 0$$

$$\Phi\big|_{\mathsf{int}(\Sigma)} > 0$$

$$\Phi\big|_{\partial\Sigma}=0$$

$$\Phi \equiv -\ln \left| \frac{\partial_w \mathcal{A}_+}{\partial_w \mathcal{A}_-} \right|^2$$

$$\Phi\big|_{\mathsf{int}(\Sigma)} > 0$$
 $\Phi\big|_{\partial\Sigma} = 0$

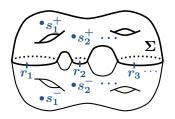


Arbitrary distribution of positive charges in Σ , negative mirror charges in doubled surface

$$\Phi \equiv -\ln \left| \frac{\partial_w \mathcal{A}_+}{\partial_w \mathcal{A}_-} \right|^2$$

$$\Phi\big|_{\mathsf{int}(\Sigma)}>0$$

$$\Phi\big|_{\partial\Sigma}=0$$



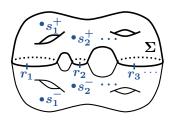
Arbitrary distribution of positive charges in Σ , negative mirror charges in doubled surface

 \mathcal{A}_{\pm} from holomorphic splitting: charges become zeros of $\partial \mathcal{A}_{\pm}$. Meromorphic differentials need **poles** r_{ℓ} on $\partial \Sigma$

$$\Phi \equiv -\ln \left| \frac{\partial_w \mathcal{A}_+}{\partial_w \mathcal{A}_-} \right|^2$$

$$\Phi\big|_{\mathsf{int}(\Sigma)} > 0$$

$$\Phi\big|_{\partial\Sigma} = 0$$

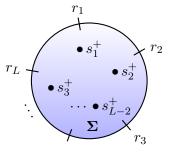


Arbitrary distribution of positive charges in Σ , negative mirror charges in doubled surface

 \mathcal{A}_{\pm} from holomorphic splitting: charges become zeros of $\partial \mathcal{A}_{\pm}$. Meromorphic differentials need **poles** r_{ℓ} on $\partial \Sigma$

Regularity of ${\cal G}$ imposes further constraints on the resulting ${\cal A}_\pm.$

Worked out for $\Sigma = \text{disc/upper half plane}$. \mathcal{A}_{\pm} from potential Φ :

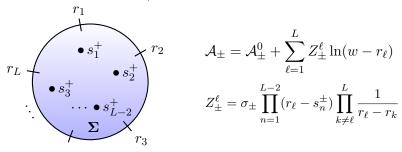


$$A_{\pm} = A_{\pm}^{0} + \sum_{\ell=1}^{L} Z_{\pm}^{\ell} \ln(w - r_{\ell})$$

$$S_{\pm}^{+} = S_{\pm}^{+} + \sum_{\ell=1}^{L} Z_{\pm}^{\ell} \ln(w - r_{\ell})$$

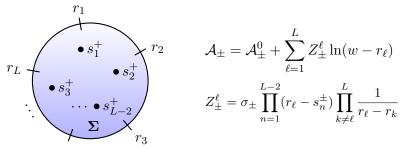
$$Z_{\pm}^{\ell} = \sigma_{\pm} \prod_{n=1}^{L-2} (r_{\ell} - s_{n}^{\pm}) \prod_{k \neq \ell}^{L} \frac{1}{r_{\ell} - r_{k}}$$

Worked out for $\Sigma = \operatorname{disc/upper}$ half plane. \mathcal{A}_{\pm} from potential Φ :



 $L\geq 3$ poles. Remaining regularity conditions leave 2L-2 free real parameter \sim choice of Z_+^ℓ with $\sum Z_+^\ell=0$.

Worked out for $\Sigma = \operatorname{disc/upper}$ half plane. \mathcal{A}_{\pm} from potential Φ :

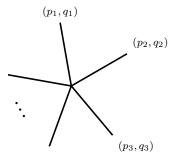


 $L \geq 3$ poles. Remaining regularity conditions leave 2L-2 free real parameter \sim choice of Z_+^ℓ with $\sum Z_+^\ell = 0$.

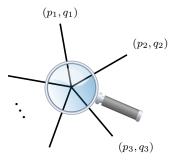
Solutions regular except at poles. Near pole, solution matches near horizon limit of (p,q) 5-brane solution [Lu,Roy '98] w/ $q+ip\sim Z_+^m$.

5-brane picture and AdS/CFT

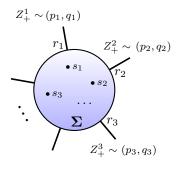
Supergravity solutions for fully localized (p,q) 5-brane junctions:



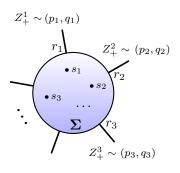
Supergravity solutions for fully localized (p,q) 5-brane junctions:



Supergravity solutions for fully localized (p,q) 5-brane junctions:

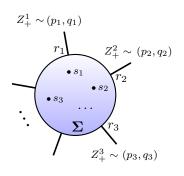


Supergravity solutions for fully localized (p,q) 5-brane junctions:



- $\begin{array}{l} \text{--5-branes} \leftrightarrow \text{poles in } \partial \mathcal{A}_{\pm} \\ \text{--charges} \leftrightarrow \text{--residues} \ Z_{\pm}^{\ell} \end{array}$
- both parametrized by choice of residues mod charge cons.
- $\operatorname{AdS}_6 + 16 \text{ susies} = F(4)$
- need $L \geq 3$, p and q charge

Supergravity solutions for fully localized (p,q) 5-brane junctions:



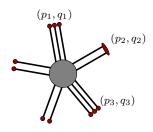
- 5-branes \leftrightarrow poles in $\partial \mathcal{A}_{\pm}$ charges \leftrightarrow residues Z_{\pm}^{ℓ}
- both parametrized by choice of residues mod charge cons.
- $-\mathsf{AdS}_6+16 \mathsf{ susies}=F(4)$
- need $L \geq 3$, p and q charge

 AdS_6/CFT_5 : Type IIB string theory on warped AdS_6 solution \cong 5d SCFT on associated (p,q) 5-brane junction.

"Large-N" classical supergravity limit: all $p_i,q_i\gg 1$. Generically, junctions of large groups of like-charged 5-branes (unconstrained).

Extension to constrained junctions [D'Hoker, Gutperle, CFU 1706.00433]

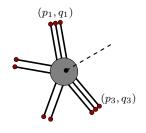
Supergravity solutions for "constrained" junctions with 7-branes:



– How to see 7-branes at intersection point?

Extension to constrained junctions [D'Hoker, Gutperle, CFU 1706.00433]

Supergravity solutions for "constrained" junctions with 7-branes:

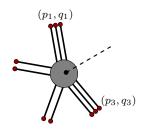


– How to see 7-branes at intersection point?

Mass-deform to open up brane web, Hanany-Witten transitions to move 7-branes $\rm w/$ multiple 5-branes into the web, take UV limit.

Extension to constrained junctions [D'Hoker, Gutperle, CFU 1706.00433]

Supergravity solutions for "constrained" junctions with 7-branes:



– How to see 7-branes at intersection point?

Mass-deform to open up brane web, Hanany-Witten transitions to move 7-branes w/ multiple 5-branes into the web, take UV limit.

 $\to \Sigma =$ disc with punctures & $SL(2,\mathbb{R})$ monodromy = 7-branes. Works for punctures with commuting monodromies, so far.

Holographic duals for 5d SCFTs

General warped $AdS_6 \times S^2 \times \Sigma$ sol. with 16 susies in Type IIB.

Physically regular solutions for Σ =disc with single-valued \mathcal{A}_{\pm} . Identified with unconstrained (p,q) 5-brane junctions.

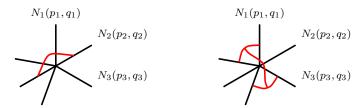
Physically regular solutions for punctured disc with commuting $SL(2,\mathbb{R})$ monodromies, describe constrained 5-brane junctions.

T-duals of AdS_6 in massive IIA realized with relaxed regularity conditions [Hong,Liu,Mayerson '18, Lozano,Macpherson,Montero '18]

– Matching stringy operators –

Matching stringy operators [Bergman, Rodriguez-Gomez, CFU 1806.07898]

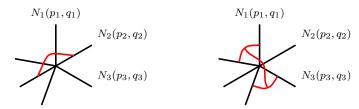
5-brane picture: gauge invariant operators from strings and string junctions connecting external 5-branes



Supergravity: probe string (junctions) $\leftrightarrow \Delta = \mathcal{O}(N)$ operators

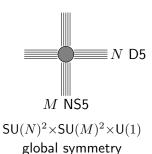
Matching stringy operators [Bergman, Rodriguez-Gomez, CFU 1806.07898]

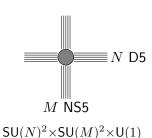
5-brane picture: gauge invariant operators from strings and string junctions connecting external 5-branes



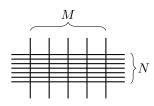
Supergravity: probe string (junctions) $\leftrightarrow \Delta = \mathcal{O}(N)$ operators

Strategy: identify stringy BPS operators in gauge theory deformations, extrapolate charges and scaling dim to SCFT



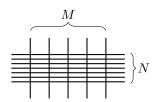


global symmetry



gauge theory deformation:

$$[N] \stackrel{x_1}{-} \operatorname{SU}(N) \stackrel{x_2}{-} \cdots \stackrel{x_{M-1}}{-} \operatorname{SU}(N) \stackrel{x_M}{-} [N]$$



M NS5

 $SU(N)^2 \times SU(M)^2 \times U(1)$ global symmetry

gauge theory deformation:

$$[N] \overset{x_1}{-} \operatorname{SU}(N) \overset{x_2}{-} \cdots \overset{x_{M-1}}{-} \operatorname{SU}(N) \overset{x_M}{-} [N]$$

$$M_j^i = (x^{(1)} \cdots x^{(M)})_j^i$$

$$(\mathbf{N},\mathbf{\bar{N}},\mathbf{1},\mathbf{1})$$

$$\Delta = \frac{3}{2}M$$

$$(\mathbf{N}, \bar{\mathbf{N}}, \mathbf{1}, \mathbf{1})$$
 $\Delta = \frac{3}{2}M$ $Q = \frac{1}{2}M$

$$B^{(k)} = \det(x^{(k)})$$

$$\subset (\mathbf{1}, \mathbf{1}, \mathbf{M}, \overline{\mathbf{M}})$$
 $\Delta = \frac{3}{2}N$ $Q = \frac{1}{2}N$

$$=\frac{3}{2}N$$

$$Q = \frac{1}{2}N$$

 $SU(N)^2 \times SU(M)^2 \times U(1)$ global symmetry

M NS5

$$M = M$$

$$M_j^{(k)}$$

$$N$$

gauge theory deformation:

$$[N] \overset{x_1}{-} \operatorname{SU}(N) \overset{x_2}{-} \cdots \overset{x_{M-1}}{-} \operatorname{SU}(N) \overset{x_M}{-} [N]$$

$$M_j^i = (x^{(1)} \cdots x^{(M)})_j^i$$
 $(\mathbf{N}, \bar{\mathbf{N}}, \mathbf{1}, \mathbf{1})_j^i$

$$(\mathbf{N}, \bar{\mathbf{N}}, \mathbf{1}, \mathbf{1})$$
 $\Delta = \frac{3}{2}M$ $Q = \frac{1}{2}M$

$$B^{(k)} = \det(x^{(k)})$$

$$\subset (\mathbf{1}, \mathbf{1}, \mathbf{M}, \bar{\mathbf{M}}) \qquad \Delta = \frac{3}{2}N \qquad Q = \frac{1}{2}N$$

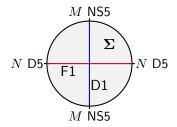
$$\Delta = \frac{3}{2}N$$

$$Q = \frac{1}{2}N$$

 $M_i^i \sim \text{F1}$ between D5, $B^{(k)} \subset \text{D1}$ between NS5



Supergravity: 4-pole solution



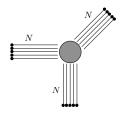
Supergravity: 4-pole solution

F1 between D5 poles, D1 between NS5 poles:

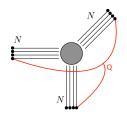
$$\Delta_{\rm F1} = \frac{3}{2}M \qquad \qquad \Delta_{\rm D1} = \frac{3}{2}N$$

$$\Delta_{\rm D1} = \frac{3}{2}N$$

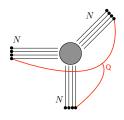
Solve EOM and are BPS, scaling dim. match field theory



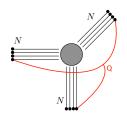
5d T_N : reduce on S^1 to 4d T_N , global symmetry (at least) $SU(N)^3$



5d T_N : reduce on S^1 to 4d T_N , global symmetry (at least) $SU(N)^3$ string junction in $(\mathbf{N},\mathbf{N},\mathbf{N})\supset$ meson in $N-SU(N-1)-\ldots-SU(2)-2$



5d T_N : reduce on S^1 to 4d T_N , global symmetry (at least) $SU(N)^3$ string junction in $(\mathbf{N},\mathbf{N},\mathbf{N})\supset$ meson in $N-SU(N-1)-\ldots-SU(2)-2$ $\Longrightarrow \Delta=\frac{3}{2}(N-1)$ $Q=\frac{1}{2}(N-1)$



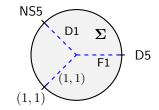
5d T_N : reduce on S^1 to 4d T_N , global symmetry (at least) $SU(N)^3$ string junction in $(\mathbf{N},\mathbf{N},\mathbf{N})\supset$ meson in $N-SU(N-1)-\ldots-SU(2)-2$

$$\implies \Delta = \frac{3}{2}(N-1) \qquad Q = \frac{1}{2}(N-1)$$

Triple junction in supergravity:

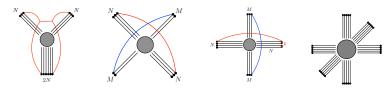
$$\Delta = \frac{3}{2}N \hspace{1cm} Q = \frac{1}{2}N$$

Agrees with T_N operator at large N. $\checkmark\checkmark$

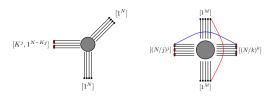


Matching stringy operators [Bergman, Rodriguez-Gomez, CFU 1806.07898]

Similar quantitative matches of field theory and supergravity for



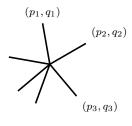
and solutions w/punctures and only two poles [Chaney, CFU 1810.10592]



Predictions for operators not easily seen in gauge theory and more exotic junctions, e.g. $\Delta=\frac{9}{2}N$ in large-N E_0 theory.

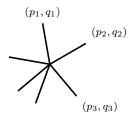
Sphere partition functions –

Holographically: on-shell action $(F_5=0)$ or finite part of $S_{\rm EE, disc}$



- poles unproblematic for both
- generically non-trivial dependence of ${\cal F}_{S^5}$ on all (p,q) charges

Holographically: on-shell action $(F_5=0)$ or finite part of $S_{\rm EE, disc}$



- poles unproblematic for both
 - generically non-trivial dependence of ${\cal F}_{S^5}$ on all (p,q) charges

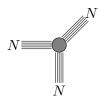
Homogeneous rescaling of all (p, q) charges:

$$(p_i, q_i) \to N(p_i, q_i) \ \forall i \Longrightarrow \ \mathcal{F}(S^5) \to N^4 \mathcal{F}(S^5)$$

Unlike $N^{5/2}$ for USp(N) theory from D4/D8/O8 [Jafferis,Pufu]

$+_{N,M}$ and T_N theories

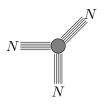
Supergravity results for T_N and $+_{N,M}$ theories:



5d
$$T_N$$
 theory w/ gauge theory deformation
$$N-SU(N-1)-\cdots-SU(2)-2$$

$$\mathcal{F}_{\rm sugra}(S^5)=-\frac{27}{8\pi^2}\,\zeta(3)N^4$$

Supergravity results for T_N and $+_{N,M}$ theories:



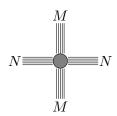
5d T_N theory w/ gauge theory deformation

$$N - SU(N-1) - \dots - SU(2) - 2$$

$$\mathcal{F}_{\text{sugra}}(S^5) = -\frac{27}{8\pi^2} \, \zeta(3) N^4$$

D5/NS5 intersection: $N - SU(N)^{M-1} - N$

$$\mathcal{F}_{\text{sugra}}(S^5) = -\frac{189}{16\pi^2} \zeta(3) N^2 M^2$$



$+_{N,M}$ and T_N in field theory

Supersymmetric localization in large-N gauge theory: instantons exponentially suppressed, saddle point approximation exact.

Extrapolate to SCFT assuming higher-dim operators Q-exact.

$+_{N,M}$ and T_N in field theory

Supersymmetric localization in large-N gauge theory: instantons exponentially suppressed, saddle point approximation exact.

Extrapolate to SCFT assuming higher-dim operators Q-exact.

Zero-instanton partition function on squashed S^5 [Imamura '12]

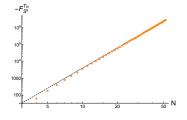
$$\mathcal{Z}_0 = \int \prod_{i,j} d\lambda_i^{(j)} \exp(-\mathcal{F})$$

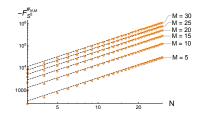
Long quivers with many gauge nodes, in general independent eigenvalue distributions.

$+_{N,M}$ and T_N in field theory

Numerical evaluation [Herzog,Klebanov,Pufu,Tesileanu]: Replace saddle point eq. by set of particles w/ coordinates $\lambda_i^{(j)}$ in potential $\mathcal F$

 $\Rightarrow \mathcal{F}_{S^5}$ numerically, $N \leq 50$ for T_N , $N, M \leq 30$ for $+_{N,M}$





Confirms N^4 and N^2M^2 scaling predicted from supergravity, coefficients of leading terms agree to $1\%_{00}$

Counting AdS₆ black hole microstates –

Consistent KK reduction to 6d F(4) sugra based on these general AdS₆ solutions: [Hong,Liu,Mayerson; Malek,Samtleben,Vall Camell '18]

ightarrow any (bosonic) solution to 6d F(4) supergravity combined with any choice of $(\Sigma, \mathcal{A}_{\pm})$ uplifts to 10d solution of Type IIB

Consistent KK reduction to 6d F(4) sugra based on these general AdS₆ solutions: [Hong,Liu,Mayerson; Malek,Samtleben,Vall Camell '18]

 \to any (bosonic) solution to 6d F(4) supergravity combined with any choice of $(\Sigma, \mathcal{A}_\pm)$ uplifts to 10d solution of Type IIB

Magnetically charged AdS $_6$ black holes in 6d F(4) supergravity with AdS $_2 \times \Sigma_{\mathfrak{g}_1} \times \Sigma_{\mathfrak{g}_2}$ near-horizon limit [Suh '18] ([Naka '02])

$$ds^2 = ds_{AdS_2}^2 + ds_{\Sigma_{\mathfrak{g}_1}}^2 + ds_{\Sigma_{\mathfrak{g}_2}}^2 \qquad \phi = \text{const}$$

$$F^3 \sim \text{vol}_{\Sigma_{\mathfrak{g}_1}} + \text{vol}_{\Sigma_{\mathfrak{g}_2}} \qquad B_2 \sim \text{vol}_{AdS_2}$$

 $\Sigma_{\mathfrak{g}_i}$ constant curvature Riemann surfaces of genus $\mathfrak{g}_i > 1$.

Uplift to family of Type IIB AdS₆ black hole solutions, one for each choice $(\Sigma, \mathcal{A}_{\pm})$, labeled by $(\mathfrak{g}_1, \mathfrak{g}_2)$. Bekenstein-Hawking entropy:

$$S_{\rm BH} = -\frac{8}{9}(1 - \mathfrak{g}_1)(1 - \mathfrak{g}_2)\mathcal{F}_{S^5}$$

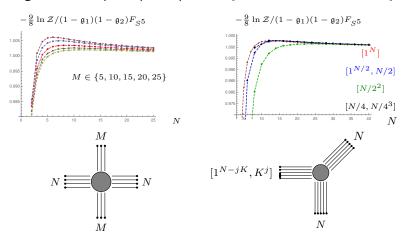
Uplift to family of Type IIB AdS₆ black hole solutions, one for each choice $(\Sigma, \mathcal{A}_{\pm})$, labeled by $(\mathfrak{g}_1, \mathfrak{g}_2)$. Bekenstein-Hawking entropy:

$$S_{\rm BH} = -\frac{8}{9}(1 - \mathfrak{g}_1)(1 - \mathfrak{g}_2)\mathcal{F}_{S^5}$$

Near-horizon solution describes 5d SCFT characterized by $(\Sigma, \mathcal{A}_{\pm})$ compactified on $\Sigma_{\mathfrak{g}_1} \times \Sigma_{\mathfrak{g}_2} \times S^1$ with topological twist.

Partition function $\mathcal{Z}_{S^1 \times \Sigma_{\mathfrak{g}_1} \times \Sigma_{\mathfrak{g}_2}}$ from localization [Hosseini, Yaakov, Zaffaroni; Crichigno, Jain, Willett '18] \sim 5d topologically twisted index.

Large-N saddle point prescription of [Hosseini, Yaakov, Zaffaroni '18]:



Supports index computation, KK reductions, AdS_6/CFT_5 dualities.

– Summary & Outlook–

Summary

Supergravity solutions for fully localized 5-brane junctions in Type IIB. Holographic duals for the corresponding 5d SCFTs.

Quantitative tests of proposed AdS_6/CFT_5 dualities: spectrum of stringy operators, S^5 partition functions, top. twisted indices.

Supports existence of 5d SCFTs and SCFT interpretation of 5-brane junctions.

 N^4 scaling of # d.o.f. from sphere partition functions, results consistent with conjectured 5d F-theorem

Outlook

More quantitative studies of 5d SCFTs: spectrum, correlators, non-local operators, finite T,\ldots

Lessons for $d \leq 4$: boundaries and defects, compactification, e.g. new "class \mathcal{F} " examples from $\mathrm{AdS}_4 \times \Sigma_{\mathfrak{g}}$ in 6d $F(4), \ldots$

Further solutions: RG flows, non-minimal truncations, mutually non-local 7-branes, . . .

Similar story for closely related AdS $_2 \times$ S $^6 \times \Sigma$ solutions? [Corbino,D'Hoker,CFU 1712.04463], [Corbino,D'Hoker,Kaidi,CFU 1812.10206]

Outlook

More quantitative studies of 5d SCFTs: spectrum, correlators, non-local operators, finite T, \ldots

Lessons for $d \leq 4$: boundaries and defects, compactification, e.g. new "class \mathcal{F} " examples from $\mathrm{AdS}_4 \times \Sigma_{\mathfrak{q}}$ in 6d $F(4), \ldots$

Further solutions: RG flows, non-minimal truncations, mutually non-local 7-branes, . . .

Similar story for closely related AdS $_2 \times$ S $^6 \times \Sigma$ solutions? [Corbino,D'Hoker,CFU 1712.04463], [Corbino,D'Hoker,Kaidi,CFU 1812.10206]

Thank you!