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Why 5d SCFTs?

Higher-dimensional SCFTs integral part in general understanding
of (susy) QFT, many insights into lower-dimensional theories:

– new d ≤ 4 QFTs (4d class S, 3d class F , . . . )

– new dualities, natural explanations for known relations
(S-duality, AGT, Argyres-Seiberg duality, . . . )

5d SCFTs: higher-dimensional perspective with close relations to
Lagrangian gauge theories
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5d SCFTs from gauge theories

Existence of interacting QFTs in d > 4 surprise from perturbative
perspective: d> 4 gauge theories non-renormalizable (∼ 4d GR).

May flow to non-perturbative UV fixed point ∼ asymptotic safety.

– [Seiberg ’96]: N=1 supersymmetric SU(2) gauge theory with
Nf ≤ 7 may flow to strongly-coupled UV fixed point

O8 + Nf D8

D4D4
(i) convex prepotential on Coulomb Branch

(ii) construction in Type I’ string theory

Gauge theories with (i) classified in [Intriligator,Morrison,Seiberg].
Even more theories realized by (p, q) 5-brane webs in Type IIB. . .
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5-brane webs in Type IIB [Aharony,Hanany,Kol ’97]

5-brane web: planar arrangement of (p, q) 5-branes at angles
fixed by (p, q), junctions w/ conserved charges

free massive hypermultiplet free massless hypermultiplet

D5= (1, 0)

NS5= (0, 1)

(1, 1)

D5

NS5

(1, 1)

SU(2) Coulomb branch

finite gauge coupling
UV fixed point SCFT

0 1 2 3 4 5 6 7 8 9

D5 ××××××
NS5 ××××× × 5

6

Length scales in brane web ↔ mass parameters in field theory.
UV fixed point: all lengths → 0, intersection at a point.
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5d SCFTs from 5-brane junctions

SU(3), CS= 0

SU(2)×SU(2)×SU(2) quiver

SU(2) + 2 flavors

E0 theory

Landscape of 5d gauge theories, enhanced symmetries, dualities,. . .
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5d SCFTs from 5-brane junctions

General picture: any planar 5-brane junction realizes a 5d SCFT
on the intersection point

(p1, q1)

(p2, q2)

(p3, q3)

∑
pi =

∑
qi = 0

pi, qi ∈ Z

Characterized entirely by external 5-brane charges. No standard
Lagrangian. May or may not have gauge theory deformations.
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5-brane junctions with 7-branes [DeWolfe,Hanany,Iqbal,Katz ’99]

More general theories realized by 5-junctions with 7-branes:

(p1, q1)

(p2, q2)

(p3, q3)

– 5-branes can end on 7-branes
of appropriate type

– multiple 5-branes ending on same

7-brane → s-rule constraints
[Benini,Benvenuti,Tachikawa]

– “constrained” junctions related to
unconstrained ones by RG flows

Additional data for 5-brane junctions w/ 7-branes: partition of
like-charged 5-branes into subgroups ending on same 7-brane
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Recent developments in AdS6/CFT5

Outline

– AdS6/CFT5 dualities in Type IIB

– Matching “stringy” operators

– Sphere partition functions

– Counting black hole microstates
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AdS6/CFT5 dualities in Type IIB



Holographic duals for 5d SCFTs

AdS/CFT for quantitative access to superconformal fixed points?
Needs AdS6 solutions in Type IIB:

– Unique superconformal algebra F (4), 8Q supercharges.

– Fully localized brane intersections – expect physical
singularities from brane sources.

BPS equations studied by [Apruzzi, Fazzi, Passias, Rosa, Tomasiello ’14;

Kim, Kim, Suh ’15; Kim, Kim ’16].
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Symmetries and ansatz [D’Hoker,Gutperle,Karch,CFU arXiv:1606.01254]

AdS6 + 16 susies → F(4)AdS6 + 16 susies → F(4) ⊃ bosonic SO(2,5)⊕SO(3)

AdS6 S2

General ansatz: AdS6 and S2

warped over Riemann surface Σ

×

Σ
∂Σ

ds2 = f6(w, w̄)2ds2
AdS6

+ f2(w, w̄)2ds2
S2 + 4ρ(w, w̄)2|dw|2

C(4) = 0 B2 + iCRR
(2) = C(w, w̄)volS2 τ = τ(w, w̄)

BPS eq: non-linear PDEs on Σ

General solution parametrized by

locally holomorphic A± : Σ→ C
A±
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General local solution [D’Hoker,Gutperle,Karch,CFU arXiv:1606.01254]

General local solution to BPS eq. parametrized by two locally
holomorphic functions A± on Σ:

f2
6 =
√

6GT f2
2 =

1

9

√
6G
T 3

ρ2 = κ2

√
T

6G

B =
1 + iτ

1− iτ
=
∂wA+ ∂w̄G −R∂w̄Ā−∂wG
R∂w̄Ā+∂wG − ∂wA−∂w̄G

C =
2i

3

(
∂w̄G∂wA+ + ∂wG∂w̄Ā−

3κ2T 2
− Ā− −A+

)
with composite quantities

κ2 = −|∂wA+|2 + |∂wA−|2 ∂wB = A+∂wA− −A−∂wA+

G = |A+|2 − |A−|2 + B + B̄ T 2 =

[
1 +R

1−R

]2

= 1 +
2κ2 G

3|∂wG|2
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R∂w̄Ā+∂wG − ∂wA−∂w̄G

C =
2i

3

(
∂w̄G∂wA+ + ∂wG∂w̄Ā−
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Regularity conditions [D’Hoker,Gutperle,CFU arXiv:1703.08186]

5-brane junctions?

Generic A± do not lead to physically regular
solutions. Complete regularity conditions in terms of

κ2 = −|∂A+|2 + |A2
−| G = |A+|2 − |A−|2 + B + B̄

Real geometry with consistent spacetime signature, Im(τ) > 0 at
interior points of Σ, smoothly collapse S2 on boundary points:

κ2 > 0 G > 0 on int(Σ)

κ2 = 0 G = 0 on ∂Σ

→ Σ needs a boundary (∂w∂w̄G = −κ2). To be realized by locally
holomorphic A±. . .
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Solution strategy [D’Hoker,Gutperle,CFU arXiv:1703.08186]

Solution strategy: regular κ2 from auxiliary electrostatics potential

Φ ≡ − ln

∣∣∣∣∂wA+

∂wA−

∣∣∣∣2 Φ
∣∣
int(Σ)

> 0 Φ
∣∣
∂Σ

= 0

Σ

•
•

•
•

s+1
s+2 . . .

s−1
s−2

. . .
r3r1 r2 . . .

Arbitrary distribution of positive

charges in Σ, negative mirror

charges in doubled surface

A± from holomorphic splitting: charges become zeros of ∂A±.
Meromorphic differentials need poles r` on ∂Σ

Regularity of G imposes further constraints on the resulting A±.
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Regular solutions on the disc [D’Hoker,Gutperle,CFU arXiv:1703.08186]

Worked out for Σ =disc/upper half plane. A± from potential Φ:

• s+
1

• s+
2

• s+
3
. . . • s+

L−2

Σ

r1

r2

r3

rL

..
.

A± = A0
± +

L∑
`=1

Z`
± ln(w − r`)

Z`
± = σ±

L−2∏
n=1

(r` − s±n )

L∏
k 6=`

1

r` − rk

L ≥ 3 poles. Remaining regularity conditions leave 2L− 2 free real
parameter ∼ choice of Z`

+ with
∑
Z`

+ = 0.

Solutions regular except at poles. Near pole, solution matches near
horizon limit of (p, q) 5-brane solution [Lu,Roy ’98] w/ q+ ip ∼ Zm

+ .
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5-brane picture and AdS/CFT

Supergravity solutions for fully localized (p, q) 5-brane junctions:

(p1, q1)

(p2, q2)

(p3, q3)

..
.

Z1
+ ∼

Z2
+ ∼

Z3
+ ∼

• s1

• s2
• s3

. . .

r3

r2

r1

Σ

– 5-branes ↔ poles in ∂A±
charges ↔ residues Z`

+

– both parametrized by choice
of residues mod charge cons.

– AdS6 + 16 susies = F (4)

– need L ≥ 3, p and q charge

AdS6/CFT5: Type IIB string theory on warped AdS6 solution ∼= 5d
SCFT on associated (p, q) 5-brane junction.

“Large-N” classical supergravity limit: all pi, qi � 1. Generically,
junctions of large groups of like-charged 5-branes (unconstrained).
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junctions of large groups of like-charged 5-branes (unconstrained).
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Extension to constrained junctions [D’Hoker,Gutperle,CFU 1706.00433]

Supergravity solutions for “constrained” junctions with 7-branes:

(p1, q1)

(p2, q2)

(p3, q3)

– How to see 7-branes at
intersection point?

(p1, q1)

(p3, q3)

Mass-deform to open up brane web, Hanany-Witten transitions to
move 7-branes w/ multiple 5-branes into the web, take UV limit.

→ Σ = disc with punctures & SL(2,R) monodromy = 7-branes.
Works for punctures with commuting monodromies, so far.
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Holographic duals for 5d SCFTs

General warped AdS6×S2×Σ sol. with 16 susies in Type IIB.

Physically regular solutions for Σ =disc with single-valued A±.
Identified with unconstrained (p, q) 5-brane junctions.

Physically regular solutions for punctured disc with commuting
SL(2,R) monodromies, describe constrained 5-brane junctions.

T-duals of AdS6 in massive IIA realized with relaxed regularity
conditions [Hong,Liu,Mayerson ’18, Lozano,Macpherson,Montero ’18]
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– Matching stringy operators –



Matching stringy operators [Bergman,Rodriguez-Gomez,CFU 1806.07898]

5-brane picture: gauge invariant operators from strings and string
junctions connecting external 5-branes

N1(p1, q1)

N2(p2, q2)

N3(p3, q3)

N1(p1, q1)

N2(p2, q2)

N3(p3, q3)

Supergravity: probe string (junctions) ↔ ∆ = O(N) operators

Strategy: identify stringy BPS operators in gauge theory
deformations, extrapolate charges and scaling dim to SCFT
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Matching stringy operators: +N,M theory

M NS5

N D5

SU(N)2×SU(M)2×U(1)

global symmetry

M

N

B(k)

Mi
j

gauge theory deformation:

[N ]
x1

− SU(N)
x2

− · · ·
xM−1

− SU(N)
xM

− [N ]

M i
j = (x(1) · · ·x(M))ij (N, N̄,1,1) ∆ =

3

2
M Q =

1

2
M

B(k) = det(x(k)) ⊂ (1,1,M, M̄) ∆ =
3

2
N Q =

1

2
N

M i
j ∼ F1 between D5, B(k) ⊂ D1 between NS5
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Matching stringy operators: +N,M theory

Σ

N D5N D5

M NS5

M NS5

F1
D1

Supergravity: 4-pole solution

F1 between D5 poles, D1 between NS5 poles:

∆F1 =
3

2
M ∆D1 =

3

2
N

Solve EOM and are BPS, scaling dim. match field theory 33
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Matching stringy operators: TN theory

N

N

N

(a)

N

N

N

(a)

Q

5d TN : reduce on S1 to 4d TN , global

symmetry (at least) SU(N)3

string junction in (N,N,N) ⊃ meson in

N −SU(N − 1)− . . . −SU(2)− 2

=⇒ ∆ =
3

2
(N − 1) Q =

1

2
(N − 1)

Triple junction in supergravity:

∆ =
3

2
N Q =

1

2
N

Agrees with TN operator at large N . 33

Σ

D5

NS5

(1, 1)

F1

D1

(1, 1)
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Matching stringy operators [Bergman,Rodriguez-Gomez,CFU 1806.07898]

Similar quantitative matches of field theory and supergravity for
N N

(a)
2N

(a)

N

N

M

M

(a)

N

M

M

k

N

(a)

and solutions w/punctures and only two poles [Chaney, CFU 1810.10592]

[Kj , 1N−Kj ]

[1N ]

[1N ]

[(N/k)k][(N/j)j ]

[1M ]

[1M ]

Predictions for operators not easily seen in gauge theory and more
exotic junctions, e.g. ∆ = 9

2N in large-N E0 theory.
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– Sphere partition functions –



S5 partition functions [Gutperle,Marasinou,Trivella,CFU 1705.01561]

Holographically: on-shell action (F5 = 0) or finite part of SEE,disc

(p1, q1)

(p2, q2)

(p3, q3)

– poles unproblematic for both

– generically non-trivial dependence

of FS5 on all (p, q) charges

Homogeneous rescaling of all (p, q) charges:

(pi, qi)→ N(pi, qi) ∀i =⇒ F(S5)→ N4F(S5)

Unlike N5/2 for USp(N) theory from D4/D8/O8 [Jafferis,Pufu]
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+N,M and TN theories [Gutperle,Marasinou,Trivella,CFU 1705.01561]

Supergravity results for TN and +N,M theories:

N

N

N 5d TN theory w/ gauge theory deformation

N − SU(N − 1)− · · · − SU(2)− 2

Fsugra(S5) = − 27

8π2
ζ(3)N4

D5/NS5 intersection: N − SU(N)M−1 −N

Fsugra(S5) = − 189

16π2
ζ(3)N2M2

N

M

N

M
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+N,M and TN in field theory [Fluder, CFU 1806.08374]

Supersymmetric localization in large-N gauge theory: instantons
exponentially suppressed, saddle point approximation exact.

Extrapolate to SCFT assuming higher-dim operators Q-exact.

Zero-instanton partition function on squashed S5 [Imamura ’12]

Z0 =

∫ ∏
i,j

dλ
(j)
i exp (−F)

Long quivers with many gauge nodes, in general independent
eigenvalue distributions.
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+N,M and TN in field theory [Fluder, CFU 1806.08374]

Numerical evaluation [Herzog,Klebanov,Pufu,Tesileanu]: Replace saddle

point eq. by set of particles w/ coordinates λ
(j)
i in potential F

⇒ FS5 numerically, N ≤ 50 for TN , N,M ≤ 30 for +N,M
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Confirms N4 and N2M2 scaling predicted from supergravity,
coefficients of leading terms agree to 1o/oo 33
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– Counting AdS6 black hole microstates –



Counting black hole microstates [Fluder,Hosseini,CFU 1902.05074]

Consistent KK reduction to 6d F(4) sugra based on these general
AdS6 solutions: [Hong,Liu,Mayerson; Malek,Samtleben,Vall Camell ’18]

→ any (bosonic) solution to 6d F(4) supergravity combined with
any choice of (Σ,A±) uplifts to 10d solution of Type IIB

Magnetically charged AdS6 black holes in 6d F(4) supergravity
with AdS2×Σg1 ×Σg2 near-horizon limit [Suh ’18] ([Naka ’02])

ds2 = ds2
AdS2

+ ds2
Σg1

+ ds2
Σg2

φ = const

F 3 ∼ volΣg1
+ volΣg2

B2 ∼ volAdS2

Σgi constant curvature Riemann surfaces of genus gi > 1.
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Counting black hole microstates [Fluder,Hosseini,CFU 1902.05074]

Uplift to family of Type IIB AdS6 black hole solutions, one for each
choice (Σ,A±), labeled by (g1, g2). Bekenstein-Hawking entropy:

SBH = −8

9
(1− g1)(1− g2)FS5

Near-horizon solution describes 5d SCFT characterized by (Σ,A±)
compactified on Σg1 × Σg2 × S1 with topological twist.

Partition function ZS1×Σg1×Σg2
from localization [Hosseini,Yaakov,

Zaffaroni; Crichigno,Jain,Willett ’18] ∼ 5d topologically twisted index.
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Counting black hole microstates [Fluder,Hosseini,CFU 1902.05074]

Large-N saddle point prescription of [Hosseini,Yaakov, Zaffaroni ’18]:

5 10 15 20 25 30 35 40

0.975

0.980

0.985

0.990

0.995

1.000

1.005

− 9
8
lnZ/(1− g1)(1− g2)FS5

N

[1N ]

[1N/2, N/2]

[N/22]

[N/4, N/43]

0 5 10 15 20 25

0.985

0.990

0.995

1.000

1.005

− 9
8
lnZ/(1− g1)(1− g2)FS5

N

M ∈ {5, 10, 15, 20, 25}

[1N−jK ,Kj ]

N

N

NN

M

M

Supports index computation, KK reductions, AdS6/CFT5 dualities.
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– Summary & Outlook–



Summary

Supergravity solutions for fully localized 5-brane junctions in
Type IIB. Holographic duals for the corresponding 5d SCFTs.

Quantitative tests of proposed AdS6/CFT5 dualities: spectrum
of stringy operators, S5 partition functions, top. twisted indices.

Supports existence of 5d SCFTs and SCFT interpretation of
5-brane junctions.

N4 scaling of # d.o.f. from sphere partition functions, results
consistent with conjectured 5d F-theorem
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Outlook

More quantitative studies of 5d SCFTs: spectrum, correlators,
non-local operators, finite T , . . .

Lessons for d ≤ 4: boundaries and defects, compactification,
e.g. new “class F” examples from AdS4 × Σg in 6d F (4), . . .

Further solutions: RG flows, non-minimal truncations, mutually
non-local 7-branes, . . .

Similar story for closely related AdS2×S6 × Σ solutions?
[Corbino,D’Hoker,CFU 1712.04463], [Corbino,D’Hoker,Kaidi,CFU 1812.10206]

Thank you!
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