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What do we do?

Precision test of the AdS4/CFT3 correspondence between

a mass deformed ABJM theory & a consistent trunction of M theory

» This test is made possible by:

Exact field theory results obtained via supersymmetric localization
[Jafferis ’10] [Jafferis-Klebanov-Pufu-Safdi ’11]

» It is inspired by and largely follows a similar calculation in
e ABJM [Freedman-Pufu, 1302.7310]
see, also
e N =2* sYM [Bobev-Elvang-Freedman-Pufu, 1311.1508]
e N =1* sYM [Bobev-Elvang-Kol-Olson-Pufu, 1605.00656]

as well as other (nonconformal) holographic tests of localization
[Martelli-Passias-Sparks ’11], . ..



The Plan

I. Field theory

(i) Deformations of ABJM

(ii) Free energies on S°

II. (Super)Gravity

(i) N =2 truncation of N' =8 D = 4 gauged supergravity (M theory)
(ii) BPS equation on $*
(iii) Supersymmetric solutions
(iv) The holographic free energy on S*

ITI. Comments and Conclusions *

* It works



Deformations of ABJM
The N = 2 picture
ABIM = U(N)g x U(N)_g CS theory with £ =1
[ABJM ’08]
» N =8 scFT with SO(8)r symmetry.

» Dual to M-theory on AdS; x S7 that corresponds to the SO(8) vacuum
of N =8 D = 4 SUGRA.

» Asa N =2 scFT, it has 2 vector s-multiplets and 4 chiral s-multiplets,
Ai,A; € (N,N) & By, B, € (N, N) with the superpotential
o 1 ab _cd
Wasim = ZLTI €”e" Ay B.AyBy

SO(8)r — U(1)r x SU(4)r and the s-conformal R-charges are
1
2

» Mixing between U(1)r with U(1)3 provides for a more general U(1)g,

Ap, =Ap, =Ap, =Ap, =

Apy, +Auy, +Ap, +Ap, =2



Deformations of ABJM

Coupling to 5% and real masses [Jafferis '10] [Jafferis-Klebanov-Pufu-Safdi '11]

Different U(1)gr’s yield inequivalent A/ = 2 susy theories on $*
. 1
{Q)QT}:GLJ1+ZQO_+ER, aERsa

with 1 1 1 2
L = Lscrr + E[él —20203]0 + ...+ 5510};‘ +...

where O% are boson bilinears and O3 are fermion bilinears and
1 1
AA1:§+51+52+53» AA2:§+51752763’ ete.

In the large N limit, the free energy can be computed via localization

4
FéAaBJM - \[ﬂNs/z /7AA1AA2A5’1ABZ

» The SCFT is recovered by F-maximization, 81 = 82 = 03 = 0.
» The §; can be viewed as (i) deformed R-charges, (ii) real masses,
(iii) constant scalar fields of the background vector mutiplets.

» In the holographic dual d; correspond to b-ry values of complex scalars
in the STU-model inside N’ =8 D = 4 SUGRA. [FP '13]



Deformations of ABJM

Complex masses

Explicit mass deformation of the superpotential

Wasium — Wassm + mTr [(%fh)z]

The IR limit of the RG flow is a N' = 2 scFT, which we call mABJM.

>

>

>

[Benna-Klebanov-Klose-Smedback ’08] [Klebanov-Klose-Murugan ’08]
It is dual to the AdSs x,, M7 solution corresponding to the SU(3) x U(1)
critical point of ' =8 D = 4 SUGRA. [Warner '83] [CPW ’01]
The A; s-multiplet is integrated out, which yields a sextic superpotential
of the N/ = 2 scFT with a new U(1)r.
Turn on arbitrary R-charges (real masses) on S* together with the mass
deformation in the superpotential,

m 44/21
e By 5 x

[Jafferis-Klebanov-Pufu-Safdi '11]
The SCFT free energy is recovered by F-maximization

1
AA2+ABI+AB2:1 e AA2:ABIZABZZ§

giving the correct result consistent with holography

4\/2m 4 L3 Pso(s 4
F;ABJM _ N3/2 — FABIM NW (8)

9v/3 -

S3 4 2
3\/§ LSO(S) Praw 3\/§



ABJM and mABJM

The holographic problem

4f7r
FEPM = Lo NY 2 /AN AuyAp, As,, Ay +Dsy + Ap, + A, =2
1
\U/ AA1—>1, 61+62+53:5
m 4+/27t
FhBIM — \f VIO N®2\ /A, A Ay,  Aa, +Ap +Ap, =1

» No explicit dependence on the superpotential mass, m.

OUR TASK

» Derive FmABJM(él, 82, 03) by computing the on-shell action on suitable
solutions of M theory.

» Understand how the constraint on the §;’s arises.

IMPORTANT HINTS

» It is sufficient to work within N/ =8 D = 4 SUGRA.

e ABJM is captured by the STU model; U(1)* truncation. [FP ’13]
e mABJM has an additional pseudoscalar; SU(3) x U(1) truncation. [W ’83]



The holographic set-up
» A consistent truncation N'=8 D = 4 SUGRA [BMP '18]

U(1)*: N =2sugra + 3 vector multiplets + 1 hypermultiplet

0 SU(1,1 SU(3
Guv, Ay AL, 2 € S5 )) 1, G2 € 573 )(xL)J( 1
U(1)3: Juv z (1=0,2=0
O m

U(1)?> = Cartan of SU(3) C SU(4)p  U(1) = U(1)BABM
» Continue susy variations to the Euclidean domain,
(z,2z) —  (z,%), (z,2) —  (2,2)
> S3-sliced (Euclidean) metric Ansatz
ds® = ds® = L7 e**(" ds2s + 2P dr?
2B(r)

Radial gauges: (cr) e =L > 24, (rc) €2P0P) =2

» Obtain BPS equations for A(r), zi(r), Z(r), z(r) and Z(r).



The BPS equations

The BPS equations can be recast into flow equations

B 1/2 B 051/2

e N R . e .. 6
z],:_ﬂ (1—23'1])@&', Zjl:_ﬁ (1_ZJZJ)WSJ

z' e? 1/2 =1/2 z’ e” 1/2 =1/2

21 = e

B x1/2 B 1/2
r_ e —4_16 ]_:[ —4_16 ~]
AfL[ie sen =T 7 55T

where

= eKv/zﬁ [2(z1202 — 1)+ 22 (1 — 20)(1 — 22)(1 — 25) ]

e L [2 (z - %> T YR T QPTG —zﬁ}
1—22 2 1—2z
& =e""?[2(nz2 — 1)+ (1 — 21)(1 — 22)(1 — 23) ]

3
Ky/2 _ 1
‘ iz

=1



Solutions
Euclidean AdS,

R* H*
RSS —0
r
rr =0 ruv
» H* solutions
SO(8) : z=%2=0, z2=2=0, P, =—6
W 21:51:\/5—2, 22:1, P*__M
3 2
ds® :L(drz—l—r2 dsZs) re :—i
(1—r2/r2,)? s2h WP,
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Solutions

Asymptotics )
R* H§0(8)
Rgs — 0
rig = 0 r rov
» UV asymptotics
FG gauge: L:1725*P+26*2P+”_'
TuUvV
z(p) =ame P+be ..., Zlp)=&e " +be P +...,
zlp)=ae P +be ..., p)=de *+be P ...,

The BPS equations determine b’s in terms of a’s (susy), which must
satisfy
G+ a+az—a—Gx—az =4
The map onto the field theory gives the identification
1
Aizi(az—&l], A +A2+As5=1

This leaves 7 independent UV-parameters.

11



Solutions
Asymptotics R* Hgo(s)

Rgs — 0

rig = 0 rov
» IR asymptotics
The S smoothly shrinking to a point at » = 0, the metric becomes flat
A(r) = Ao +logr + O(r?)
This imposes the following constraints on the scalar fields
z(0) =¢, Z(0) = ¢, z(0) = ¢, z(0)=¢
given by
288 —m(l- &)1 &)
T 2wl —&)
and a cubic constraint due to the hyperscalar
2(C1C2Cs— 1)+ (1—-2&)(1—-2)(1—-2)=0
Exercise: Find the map IR — UV

9 = cC, (1k)-cyclic

(&i;20) — (ai, @i; a, @)
12



Solutions
IR to UV

For the vanishing hyperscalar, one can solve the BPS equations analytically

[FP '13]
In the IR .
Ci1C2C3 ~
C = — s c=¢=0
Ci
Along the flow, e.g.,
024 _ 4y (1—&&esrt/rhy)
(1—7r2/r2,)%(1 — 18283 12 /72,)?
In the UV -
4C1 - 4Cz
A = = = Q= —F 5
1761C2C3 17C16263
In particular
(1+2)(1+2) (14 &) (1+ &) (1+2)(1+2)
Alzf) A2:f) A3:f
(1—02)(1—03) (1—03)(1—61) (1—01)(1—82)

in terms of which the cubic constraint becomes simply

A+ Az +A3=1

13



Solutions

Symmetric sector

AN
0.1 6
5
0.0
.
-0.1 g 3
o2 — 2
— X(n 1
0.0 0.2 0.4 0.6 0.8 1.0 F 0.2 0.4 06 08 r
alr)=ar),  #(E) =),  z(r)i(r)=X(r);  X(0) =g

» As expected, since A; = Ax = A3z =

a=2- 3 4flw), G=-1-gZitflm), f0)=0

» An analytic solution

1 . Gy —r°
(=R-2VITREcosa, =1 [Arg(R+d)+m, R= VT
3 v+ T
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Solutions

General numerics

0.2
— z;
0.0 22

7”- —z

0.0 0.2 0.4 0.6 0.8 1.0

r
» For |z < 1/3, the formal series solution is convergent for 0 < r < ryvy
and thus can be determined with arbitrary precision.
THEOREM.
1. The UV parameters, A;, do not depend on z; and thus are given by their
To = 0 values.
2. The parameters a; and @; are shifted from their zo = 0 values by the
same function f(&, o).
Proor.
(i) Extensive numerical checks. [BMPR 18]
(ii) Perturbative expansion around the analytic solution. [Kim-Kim ’19]

15



Towards the free energy
Making it finite

3 SUBTLE POINTS

1. Holographic renormalization [Skenderis et al ’02]

The on-shell action must be regularized consistent with susy.

Sreg = Sbulk + SagH + Sr + Ssusy

where

Ssusy = J

40, [LPe* ()|
S

r=rg

[FP ’13] [Freedman-Pufu-KP-Warner '16]

Son-shell = lim Sreg
TO—=TUV

Using the BPS equations, the on-shell action can be simplified
UV e24 ruv 1

[ (5
o r (r —ruv)? 2

» The result depends on the IR value, zp, of the hyperscalar.

2
Son-shell = —2 V0133 L

16



Towards the free energy

Alternate quantization

2. It’s the Legendre transform s...d, use the alternate quantization.
[Breitenlohner-Freedman ’82] [Klebanov-Witten '99]
Scalars: z; + 2

Pseudoscalars: z — Z;, z and 2

Scalars require alternate quantization,

) — n = — lim 85reg[P] =— lim e *°T4(po)
po—oo O po—00
In particular,
Ja ai1a2a3 ad\ Bps L?
i= 2 (B B2E 22 P 2
=g ( T 2 o
~ I? ~
a; = e a; , a=a=0
The holographic dual of the free energy is the Legendre transform of the
on-shell action! [FP 13]
1 3
Jon—shell(au &u a, &) — Son»shell + = J' dQB Z(Un + az)(az + ai)
2 J)gs =

17



Towards the free energy
Ward identity

3. A holographic Ward identity

Consider a variation of Jon-shei(as, &, a, @) w/t UV-parameters,

3
dSreg da; . 04 da .0a
=—| da 2% g, da |, 590
du L3 3{Z<a ou ¢ ap>+°‘au+“au]

1=1

[Bobev et al '16]
from which it follows that

2 3

dJon-s e L ~ a ~
Th“ = VOIS3Z ;(az + ai)al(al — i)
But
a; — ai =4 Ai
By the THEOREM, A; do not depend on the hyperscalars, in particular on
zo. Thus
d-Jon—shell -0
dzo

But, for o = 0, we have an analytic solution!

18



The holographic free energy

Final result

Use
14 222
Son—shell(azy To = 0) = 2V0153 L2 %
1— Ci1C2C3
Then ) , s
2 (1—2)(1—2&)(1—¢c5)
Jon-shell = 2 volgs L? —
hell 53 (1— 216223)2
Identifying

Ag,

HI
H
>
2
|
>
N
>
N
I
>
w

and using the standard AdS/CFT relation

s
volgs L = —N¥?2

3V2

we get

Jon-shent = 4ﬂﬂN3/2m _ FsrréABJM

[FP ’13]
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Comments

1.

UV vs IR

«+ The mass m is “discrete,” the free energy depends on either m = 0 or

m # 0.

« Similarly, the hyperscalar z is “discrete,” and amounts to imposing an

algebraic constraint on the vector scalars, z;, in the IR.

« The same holds for the topologically twisted index in mABJM vs AdS

black hole entropy. [BMP 18]

« More generally, similar mechanism is present for general AdS black holes

in =2 D = 4 suGRA with hypermultiplets.
[Halmagyi-Petrini-Zaffaroni ’13] [Halmagyi et al ’13-'15]

However, there seems to be no simple way to predict how the constraints

in the IR (or at the horizon) translate into relations in the UV without
solving the BPS equations. This is a striking difference with the F'T' side.
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Comments

2. Complex vs real R-charges

+ The map
& - A; = 12912 ) & cyclic

provides linearization of the cubic constraint, A; + Az + Az = 1.
* We assumed |&;| < 1 (SUGRA) and & € R. Then 0 < A; < 1.

x For complex ¢; satisfying in additon ¢;¢2¢3 < 1 so that the metric is real,
0 < ReA; < 1, but the map is not onto.

+ Are there additional saddle points for complex A;?

3. 1/N corrections?

21



Thank you
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