A geometric dual of c-extremization

Christopher Couzens

Utrecht University

Based on work with J. Gauntlett, D. Martelli and J. Sparks

arXiv:1810.11026

Holography, Generalized Geometry and Duality 13/05/19

Universiteit Utrecht

Motivation

◆□▶ ◆□▶ ◆注▶ ◆注▶ - 注

2d $\mathcal{N} = (0, 2)$ SCFTs admit a conserved $U(1)_R$ R-symmetry.

Theories (to some extent) characterized by a central charge obeying the c-theorem.

Question? How do you determine the R-symmetry and central charge in the IR from UV data?

Answer: c-extremization [Benini, Bobev].

An extremization principle determines the IR R-symmetry and central charge using UV data.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Close analogy to a-maximization [Intriligator, Wecht] in 4d.

a-max solves a similar problem in 4d.

4d $\mathcal{N} = 1$ SCFTs admit a conserved $U(1)_R$ R-symmetry and have a monotonically decreasing central charge, *a*.

a-max: maximizing the a-central charge in the space of all R-symmetries gives the exact IR R-symmetry and central charge.

Excellent matching with explicit AdS_5 solutions. Finding explicit metrics is difficult though!

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Given topological data (no metric) shown that one can compute the a-central charge holographically [Martelli, Sparks, Yau].

Is there a similar story for c-extremization?

't Hooft anomalies completely determine the *a* and *c* central charges, [Anselmi, Freedman, Grisaru, Johansen],

$$a = rac{3}{32}(3 \mathrm{Tr} R^3 - \mathrm{Tr} R) \;, \quad c = rac{3}{32}(9 \mathrm{Tr} R^3 - 5 \mathrm{Tr} R)$$

Given an R-symmetry R_0 , then $R_t = R_0 + s_l F_l$ is an equally good R-symmetry.

[Intriligator, Wecht] showed that the exact Superconformal R-symmetry maximises a w.r.t. the s_l .

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

The exact central charge is then *a* evaluated at the fixed point.

a-maximization: the geometric story

Assume holographic theory \Rightarrow by AdS/CFT there exists a dual AdS₅ solution. Central charge '*a*' \sim 1/volume of internal manifold, e.g. *S*⁵.

But what if you don't know the metric?

[Martelli, Sparks, Yau]: given topological data (*no metric necessary*) about the internal manifold there is an extremization problem which agrees with a-max.

Restrict to special theories: toric Sasaki-Einstein. Theories specified by a set of vectors $\{v_a\}$. a-max equivalent to maximizing

$$Z(b) = \frac{1}{24} \sum_{a} \frac{(v_{a-1}, v_a, v_{a+1})}{(b, v_{a-1}, v_a)(b, v_a, v_{a+1})} ,$$

with respect to the Reeb vector b.

Volume ~ central charge is vol $(Y) = 8\pi^3 Z(b^*)$.

Field theory: wrapped D3 and M2 branes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Wrapped D3 branes

Classic story: stack of N D3-branes probed by a Calabi–Yau three-fold cone. Near-horizon, $AdS_5 \times Y_5$.

Theory on branes is a 4d quiver theory (when cone resolvable), i.e. $\mathcal{N}=4$ SYM.

Place theory on a Riemann surface.

Topological twist \rightarrow 2d $\mathcal{N} = (0, 2)$ SCFTs.

Typically no Lagrangian description, at best a UV Lagrangian: believe flows to a superconformal fixed point.

Certain protected BPS quantities at the fixed point can be computed using the UV description.

Central charge and R-symmetry two such quantities: use c-extremization.

Under the RG-flow the R-symmetry can mix with Flavour *and* Baryonic symmetries.

One should construct the most general trial R-symmetry, and extremize

$$c_{trial} = 3 \mathrm{Tr} \gamma^3 R_{trial}^2$$
 .

・ロト ・母ト ・ヨト ・ヨー うへで

[Benini, Bobev, (Crichigno)] exact IR R-symmetry is obtained by extremizing the *quadratic c*trial.

Play a similar game with wrapped M2-branes.

Stack of N M2-branes probed by a Calabi–Yau four-fold cone. Near horizon, $AdS_4 \times Y_7$.

Theory on branes is a 3d SCFT, i.e. ABJM.

Place theory on a Riemann surface.

Topological twist \rightarrow 1d \mathcal{N} = 2 Superconformal Quantum Mechanics.

View as horizon of AAdS₄ magnetically charged BPS Black holes.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

What is the entropy?

How do we compute the entropy?

 \mathcal{I} -extremization [Benini, Hristov, Zaffaroni] gives an extremization principle for finding the entropy of magnetically charged BHs.

Extremize the logarithm of the topologically twisted index;

$$\mathcal{I} = -\log Z_{S^1 imes \Sigma_g}$$

partition function of 3d theory with twist.

Tested successfully in multiple cases: e.g. [Hosseini, Zaffaroni], [Azzurli, Bobev, Crichigno, Min, Zaffaroni], [Cabo-Bizet, Giraldo-Rivera, Pando Zayas].

Holography: wrapped D3 and M2 branes

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Via AdS/CFT there should be a class of AdS solutions dual to these field theories.

Solutions classified:

• D3-branes: AdS₃ classification of [Kim]

$$ds_{10}^2 = L^2 e^{-\frac{B}{2}} (ds_{AdS_3}^2 + ds_7^2)$$

$$F_5 = -L^4 (dvol_{AdS_3} \wedge F + *_7 F)$$

M2-branes: AdS₂ classification of [Kim, Park]

$$\mathrm{d}s_{11}^2 = L^2 \mathrm{e}^{-rac{2B}{3}} (\mathrm{d}s_{\mathrm{AdS}_2}^2 + \mathrm{d}s_9^2)$$

 $G_4 = L^3 \mathrm{d}\mathrm{vol}_{\mathrm{AdS}_2} \wedge F$

Substituting ansäzte into type IIB, respectively 11d EOMs gives EOMs for Y_{2n+1} metric and fields.

Equations of motion can be derived from an action [Gauntlett, Kim]

$$\int_{Y_{2n+1}} e^{(1-n)B} \left[R_{2n+1} - \frac{2n}{(n-2)^2} + \frac{n(2n-3)}{2} (dB)^2 + \frac{1}{4} e^{2B} F^2 \right] d\text{vol}_{2n+1}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

n = 3 for IIB, n = 4 for 11d sugra.

No supersymmetry imposed yet though!

Imposing supersymmetry

Imposing supersymmetry further constrains Y_{2n+1} geometric structure.

 Y_{2n+1} is equipped with a unit norm Killing vector $\xi = \frac{1}{c}\partial_z$; *R-symmetry vector*. Dual one-form $\eta = c(dz + P)$.

Metric takes the form

$$\mathrm{d}s_{2n+1}^2 = c^2(\mathrm{d}z + P)^2 + \mathrm{e}^B\mathrm{d}s_{2n}^2 \,,$$

with ds_{2n}^2 a Kähler metric

$$\mathrm{e}^{B}=\frac{c^{2}}{2}R_{2n}\;,$$

and $dP = \rho$, the Ricci-form of the transverse Kähler metric.

$$F = -\frac{1}{c}J + c d \left[e^{-B} (dz + P) \right]$$

Restricting the action

Restrict the action to solutions preserving supersymmetry. The action reduces to

$$S_{\mathsf{SUSY}} = \int_{Y_{2n+1}} \eta \wedge \rho \wedge rac{J^{n-1}}{(n-1)!}$$

Refer to as off-shell.

 S_{SUSY} depends only on the Kähler class $[J] \in H^{1,1}_B(\mathcal{F}_{\xi})$ and ξ .

We have not imposed E.O.M. for F yet

$$d\left[e^{(3-n)B}*_{2n+1}F\right] = 0 \quad \Leftrightarrow \quad \Box R = \frac{1}{2}R^2 - R_{ij}R^{ij}$$

This implies

$$\int_{\mathsf{Y}_{2n+1}} \eta \wedge \rho^2 \wedge \frac{J^{n-2}}{(n-2)!} = 0$$

Extremal problem

For n = 3 central charge given by [Brown, Henneaux].

$$c = rac{3L}{2G_3} = rac{3L^8}{(2\pi)^6 g_s^2 \ell_s^8} S_{
m SUSY} \; .$$

For n = 4 one compares to Bekenstein-Hawking entropy

$$S_{\mathsf{BH}} = rac{A}{4} = rac{1}{4G_2} = rac{4\pi L^9}{(2\pi)^8 \ell_p^9} S_{\mathsf{SUSY}}$$

Extremizing S_{SUSY} (i.e. imposing EOM) is equivalent to extremizing the central charge/entropy respectively!

Example: $Y_7 = T^2 \times Y_5$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Look at the n = 3 case in more detail.

Specialize further to $Y_7 = T^2 \times Y_5$.

For other cases see [Gauntlett, Martelli, Sparks], [Hosseini, Zaffaroni], [Kim, Kim].

Field theory interpretation: reducing D3-brane on $\mathcal{T}^2 \to 2d$ $\mathcal{N}=(0,2)$ SCFT.

Y₇ geometry

R-symmetry vector ξ tangent to Y_5 and transverse Kähler form is $J = A \text{vol}_2 + \omega$.

Flux quantisation: two types of five cycles, Y_5 and $T^2 \times \sigma_a$. Gives flux integers *N* and M_a .

The central charge is

$$\textit{c}_{\mathsf{sugra}} = rac{\mathsf{12}(\mathsf{2}\pi)^2\textit{NM}_1}{\int_{\sigma_1}\eta\wedge
ho}$$

with

$$\frac{\int_{\sigma_i} \eta \wedge \rho}{\int_{\sigma_1} \eta \wedge \rho} = \frac{M_i}{M_1} , \ i = 2, .., b_3(Y_5) .$$

Using equivariant localization one can evaluate the above formulae.

In the toric case everything simplifies nicely.

$$\int_{S_a} \eta \wedge \rho = 2(2\pi)^2 \frac{(v_{a-1}, v_a, v_{a+1})}{(\vec{b}, v_{a-1}, v_a)(\vec{b}, v_a, v_{a+1})}$$

and

$$\int_{Y_5} \eta \wedge \rho \wedge \rho = \frac{32\pi^3}{b_1} \sum_{a=1}^d \frac{(v_{a-1}, v_a, v_{a+1})}{(\vec{b}, v_{a-1}, v_a)(\vec{b}, v_a, v_{a+1})}$$

Example: $Y^{p,q}$ field theory

Field theory reduction of $Y^{p,q}$ on T^2 considered in [Benini, Bobev, Crichigno].

Field theory specified by integers p > q > 0.

C-extremization gives

$$c_{\text{c-ext}} = -\frac{6BN^2p^2(p^2-q^2)}{q^2}$$

with R-charges

$$R[Y] = R[Z] = rac{q^2 - p^2}{q^2}N$$
, $R[U_1] = R[U_2] = rac{p^2}{q^2}N$.

R[Y], R[Z] are negative. Contradiction for a chiral operator.

Conclude superconformal fixed point does not exist.

Example: $\mathcal{Y}^{\mathfrak{p},\mathfrak{q}}$ gravity

Putative dual geometry found in [Donos, Gauntlett, Kim].

Geometry reminiscent of Sasaki-Einstein Y^{p,q} solutions.

Toric data of the solution computed in [Couzens, Martelli, Schäfer-Nameki].

Gravity specified by integers q > p > 0.

Implication that the toric diagram is not convex.

$$\begin{split} c_{\text{grav}} &= -\frac{6MN\mathfrak{p}^2(\mathfrak{p}^2 - \mathfrak{q}^2)}{\mathfrak{q}^2} \\ R[S_2] &= R[S_4] = \frac{\mathfrak{q}^2 - \mathfrak{p}^2}{\mathfrak{q}^2}N \;, \quad R[S_1] = R[S_3] = \frac{\mathfrak{p}^2}{\mathfrak{q}^2}N \;. \end{split}$$

Everything nice and positive. Formally matches the field theory result.

Toric diagram: $Y^{p,q}$

The usual Sasaki-Einstein manifold has a convex toric diagram.

Toric diagram: $\mathfrak{Y}^{\mathfrak{p},\mathfrak{q}}$

Instead the $\mathfrak{Y}^{\mathfrak{p},\mathfrak{q}}$ geometry has a concave toric diagram.

$$Y_5 = \mathscr{L}^{a,b,c}$$

We construct a new family of supergravity solutions which are specified by 3 integers; a, b, c.

Analogues of $L^{a,b,c}$ solutions and contain $Y^{p,q}$ solutions as a subcase.

Cohomogeneity two ansatz determined by two polynomial functions.

Perfectly regular solutions labeled by integers satisfying

$$-a + b = c + d$$
, $b > a > 0$, $b > c \ge d > 0$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Toric data

$$v_1 = (1,1,0), \quad v_2 = (1,-ak,b), \quad v_3 = (1,al,c), \quad v_4 = (1,0,0)$$

Central charge from metric and geometric dual given by

$$c = 6 \frac{\text{abcd}}{\text{ab} + \text{cd}} NM$$

and R-charges

$$R[S_1] = R[S_3] = \frac{\operatorname{cd}}{\operatorname{ab} + \operatorname{cd}} N, \ R[S_2] = R[S_4] = \frac{\operatorname{ab}}{\operatorname{ab} + \operatorname{cd}} N$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$L^{a,b,c}$ on T^2

Metrics look like the Sasaki-Einstein *L^{a,b,c}* metrics.

Is the field theory the $L^{a,b,c}$ quiver theory reduced on T^2 with Baryonic flux?

Topological twist with

$$T_{\rm top} = BT_B$$

C-extremization gives

$$c_{ ext{c-ext}}(L^{a,b,c}) = 6rac{abcd}{ab-cd}BN^2$$

and R-charges

$$R_{\text{c-ext}}[Y] = R_{\text{c-ext}}[Z] = \frac{ab}{ab - cd}, \quad R_{\text{c-ext}}[U_1] = R_{\text{c-ext}}[U_2] = -\frac{cd}{ab - cd}N$$

L^{a,b,c} continued

This doesn't look quite right though.....

There is no choice of *B* such that the central charges and R-charges are simultaneously positive.

Notice that the results agree if

a = -a

though this is formal! Both should be positive.

There are infinitely many new solutions without a correct field theory dual.

What is the fate of the reduction on T^2 ? Reduction on S^2 behaves similarly as well.

There is an obstruction.

Let Y_5 , have a cone of Calabi-Yau type. It admits a Kähler cone metric and global holomorphic volume form, then there is no supersymmetric $AdS_3 \times T^2 \times Y_5$ solution with this complex structure.

In the 'toric' case there must be one edge vector such that $(b, u_a) < 0$.

The polytope is now no longer convex.

This is the mathematical statement of the issues encountered above.

Conclusions

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We have found a geometric dual to c-extremization and \mathcal{I} -extremization. See also [Gauntlett, Martelli, Sparks], [Hosseini, Zaffaroni], [Kim, Kim].

No metric necessary!

New solution that also exhibits the non-convex property as noted in [CMS] with respect to $Y^{p,q}$.

In fact we have obstruction results, which preclude the existence of Kähler cones over Y_5

What are the dual field theories, and what is the fate of the compactified quiver theories?

Results preclude the existence of flow solutions from AdS_5 to AdS_3 , what exactly goes wrong?

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Work in progress on new examples.

Thank you For your attention.