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Motivation

• By now AdS-CFT generally well established.

• One avatar where CFT side is rather more developed than gravity
side is AdS3-CFT2.

• Must arrange for large compact internal space when embedded
into 10/11d.

ds2 = e2Ads2(AdS3) + ds2(M7/8)

• Systematic way to proceed is to assume extended supersymmetry.
Then M7/8 should realise R-symmetry geometrically.

• Large amount of supersymmetry implies tractability, very detailed
classifications, nice mathematical structure.

• Excludes many physical phenomena!

• However, with solutions known, can then systematically break
some supersymmetry and find many more.
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Supersymmetric AdS3

• A rich variety of superconformal algebras exist for d = 2 exhibiting distinct
R-symmetries.

• They are all direct sums of left and right algebras, preserving N = (n+, n−).

- AdS3 Killing spinors ∇µζ± = ± 1
2
γµζ± ⇒ n±.

• Those that can be embedded into 10 and 11d supergravity with an AdS3

factor are classified [Beck-Gran-Gutowski-Papadopoulos]

• 16 real supercharges, ie N = (8, 0) or N = (4, 4) is maximal for AdS3

[Haupt-Lautz-Papadopoulos].
• F4 and G(3) in IIA studied: [Dibitetto-Lo Monaco-Passias-Petri-Tomasiello], see

Dibitetto’s talk last week.
• Large and small superconfromal symmetries: main focus of this talk.
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Small N = (4, 0) supersymmetry
• Small N = (4, 0) superconformal algebra contains bosonic sub-algebra

sl(2)⊕ su(2).

with SU(2) the R-symmetry, which may be realised geometrically in terms of
an 2/3-sphere.

• Such CFT’s are characterised by an integer level k and a central charge of the
form

c = 6k.

• Canonical example of geometry realising this algebra is AdS3 × S3 ×M4 for
M4 = T 4,K3. Actually preserves small N = (4, 4). The dual CFT’s are
symmetric product orbifolds SymN (M4)

• These solutions lie in the more general small N = (4, 0) class

ds2 =
1
√
h5

(
ds2(AdS3) + ds2(S3)

)
+
√
h5ds

2(CY2), ∇2
CY2

h5 = 0,

F3 = 2cVol(AdS3) + 2cVol(S3)± c ?CY2
dh5, e−Φ = c

√
h5.

• Most known geometries are of this type, or are either orbifolds or
(non-Abelian) T-duals of this
- a notable exception is the classification of such solutions in IIB with 3-form
fluxs set to zero [Couzens-Lawrie-Martelli-Schafer-Nameki-Wong].
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Large N = (4, 0) supersymmetry
• The large N = (4, 0) superconfromal algebra D(2, 1, α), contains bosonic

subgroup
sl(2)⊕ su(2)⊕ su(2).

with SO(4) R-symmetry which can be realised by products of 2 and 3-spheres.

• CFTs with this symmetry are characterised by two integer levels k± in terms
of which the central charge and α take the form

c = 6
k+k−

k+ + k−
, α =

k+

k−
.

• Small superconformal algebra recovered in α→ 0 limit.

• The canonical example of a geometry realising this symmetry is
AdS3 × S3 × S3 × S1, which preserves N = (4, 4).

• Took a long time to nail down the CFT dual, in large part due to an
erroneous calculation of the supergravity BPS spectrum. This now seems to
be resolved [Eberhardt-Gaberdiel-Rajesh Gopakumar-Wei] with the corrected spectrum
matching the symmetric orbifold CFT Sκ [Gukov-Martinec-Moore-Strominger].

• Large N = (4, 4) classified in M-theory [Bachas-D’Hoker-Estes-Gutperle
-Feldman-Krym], compact cases all locally the IIA lift of AdS3 × S3 × S3 × R2

(or are they? See later)

• All type II solutions with large N = (4, 0) I was aware of are related to this
by orbifoldings or duality - this is no longer the case.
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Talk outline

• Constructing solutions from R-symmetry

- Brief review of methods employed to construct solutions

• Type II solutions with large (and small) N = (4, 0) on
AdS3 × S3 × S3

- Compact examples with D-branes and O-planes back reacted on
AdS3 × S3 × S3 × S1 and AdS3 × S3 × R4

• Massive IIA solutions with small N = (4, 0) on
AdS3 × S2 ×M5

- Compact examples with branes back reacted on AdS3 × S2 × T 4

• Solutions with smaller superconformal symmetries

- Breaking to N = (3, 0) and N = (1, 0) by fibering S3 over S3

• Concluding remarks
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Constructing solutions from R-symmetry
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Realising an R-symmetry with spinors
• In type II supergravity a warped AdS3×M7 solution preserving N = (n, 0)

supersymmetry admits MW Killing spinor of the form

ε1 =
n∑
I=1

v+ ⊗ ζI ⊗ χI1, ε2 =
n∑
I=1

v± ⊗ ζI ⊗ χI2,

with ζI (AdS3), χI1,2 (M7), v± (Auxiliary) all Majorana.

• Extended superconformal symmetry comes with an R-symmetry GR (and
associated Lie algebra TGR

and Killing vectors KI
GR

) under which χI1,2
should be charged

LKi
GR

χI1,2 = (T iGR
)IJχ

J
1,2

Providing a map between each of the components of χI1,2.

• If one then imposes that all physical fields respect GR, it is sufficient to solve
for any N = 1 sub-sector to know N = (n, 0) is preserved.

• We assume that M7 decomposes as a manifold realising the R-symmetry and
some base

ds2(M7) = e2Cds2(MGR
) + ds2(B) ⇒ χI1,2 = ξIGR

⊗ ηB1,2
• Supersymmetry then implied by reduced conditions on ηB1,2 only.

• In many cases (and all considered here) MGR
will just involve 2 and

3-spheres, and ξIGR
combinations of their Killing spinors.
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Solving the N = 1 sub-sector
• N = 1 AdS3 solutions in type II recently classified
[Dibitetto-Lo Monaco-Passias-Petri-Tomasiello]

ds2 = e2Ads2(AdS3) + ds2(M7), H = c0Vol(AdS3) +H3,

F = f + e3AVol(AdS3) ∧ ?7λ(f)

• SUSY imposes either |χ1|2 ± |χ2|2 ∝ e±A. Assume |χ1|2 = |χ2|2, then c0 = 0

• Two 7d spinors give rise to a G2 ×G2-structure with bi spinor

e−Aχ1 ⊗ χ†2 = Ψ+ + iΨ−,

Supersymmetry equivalent to familiar geometric conditions

dH(e2A−ΦΨ∓) = 0, dH(e3A−ΦΨ±)− 2µe2A−ΦΨ∓ =
1

8
e3A ?7 λ(f)

(cf. (Mink/AdS)4 classification [Grana-Minasian-Petrini-Tomasiello]) and an
additional 7d Mukaui pairing constraint eA(f,Ψ±) = µ

2
e−ΦVol(M7).

• Solving these is sufficient for N = (1, 0), if we want N = (n, 0) we need to
impose by hand that the fluxes and other fields depend on invariant forms of
GR only!

• Ψ± will be wedge products of bi-spinors on MGR
and B, former can be

factored out to give conditions on B only.

• At this point one has a class of solutions defined by conditions on B that
preserves N = (n, 0) and given R-symmetry.
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Large (and small) N = (4, 0) on
AdS3 × S3 × S3 in Type II

NTM
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N = (4, 0) on AdS3 × S3 × S3: SO(4) Spinors
• Seek solutions with large N = (4, 0) so GR = SO(4)R ' SO(3)×SO(3). Can

be realised with products of 2/3 spheres

• The Killing spinors on S2 realise SU(2) doublets [NTM-Tomasiello]

∇µξ =
i

2
γµξ ⇒ LKiξa =

i

2
(σi)

a
bξ
a, ξa =

(
ξ
ξc

)
and

(
γ̂ξ
γ̂ξc

)
• S3 has two types of spinor charged under just one factor of SU(2)+×SU(2)−
[NTM-Montero-Prins]

∇µξ± = ±
i

2
γµξ± ⇒ LKi

±
ξa± = ±

i

2
(σi)

a
bξ
a
±, LKi

±
ξa∓ = 0

• From this, and σiσj = δij + iεijk it follows that

ηISO(4) =MI
abξ

a
1 ⊗ ξb2, MI = (σ2σi,−iσ2),

transforms under the SO(3)D and SO(3)AD subgroups of SU(2)1×SU(2)2 as

LKi
D
ηISO(4) = (T iD)IJη

J
SO(4), LKi

AD
ηISO(4) = (TAD)IJη

J
SO(4)

where Ki
D = Ki

1 +Ki
2, Ki

AD = Ki
1 −Ki

2 and

(T iD)IJ =

(
εijk 0

0T 0

)
, (T iAD)IJ =

(
03×3 ci
−ciT 0

)
, (ci)j = δij

- Block from makes breaking to subgroups easy later.

• We consider S3 × S3, which can also realise N = (4, 4) when a solution
supports two SO(4) spinors. 11 / 25
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N = (4, 0) on AdS3 × S3 × S3: Solving an N = 1 sub-sector
• We consider solutions in type II of the form

ds2 = e2Ads2(AdS3) + e2C1ds2(S3
1) + e2C2ds2(S3

2) + e2kdr2,

with flux built from dr, Vol(S3
1,2) and functions of r only - SO(4)R×SO(4)F

isometry.

• Most general Majorana SO(4) spinors are of the form

χI1 = e
A
2 ηISO(4) ⊗

(
sin(β1 + β2)
i cos(β1 + β2)

)
, χI2 = e

A
2 ηISO(4) ⊗

(
sin(β1 − β2)
i cos(β1 − β2)

)
,

there are two independent copies constructed from the ξa+ and ξa− SU(2)
doublets respectively.

• Computing χ1 ⊗ χ2† for N = 1 sub-sector leads to SU(3)-structure

Ψ+ =
eA

8
Re
[
eiβ2e−iJ − ekdr ∧ eiβ1Ω

]
, Ψ− =

eA

8
Im
[
− eiβ2ekdr ∧ e−iJ + eiβ1Ω

]
,

where SU(3)-structure forms are canonical in terms of complex vielbein

Ei =
1

2

(
eC1K1

i + ieC2K2
i

)
, dKa

i = ±
1

2
εijkK

a
j ∧Ka

k

• Plugging Ψ± into the supersymmetry conditions yields a system of ODE’s
that can be solved uniquely.
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N = (4, 0) on AdS3 × S3 × S3: Local Solutions

• There are 4 distinct local solutions, 2 in each of IIA and IIB:

1. D8/O8 system back reacted on AdS3 × S3 × S3 × S1, large N = (4, 0).

-Non trivial F0, F4. Generically non compact

2. D5s back reacted AdS3 × S3 × S3 × S1, large N = (4, 0).

- Non trivial F3. Generically non compact

3. Solution with large N = (4, 4) and O2 source

- Non trivial F4, H, can be lifted to M-theory. Non compact

4. D5s and/or O5 back reacted on AdS3 × S3 × R4, small N = (4, 0)

- Non Trivial F3. Compact with tuning.

- SO(4) is realising SU(2)R and SU(2) outer-automorphism of dual CFT2

• New large N = (4, 0) solutions are all non compact?

- Recall a local solution is not a global solution.

• Globally compact solutions with large N = (4, 0) are possible.
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N = (4, 0) on AdS3 × S3 × S3: Compact solutions with D8/O8
• The local solution with D8/O8 back reacted on AdS3 × S3 × S3 × S1 depends

on a single O(1) polynomial H8:

ds2 =
1
√
H8

(
L2ds2(AdS3) +

L2

cos2 β1
ds2(S3

1) +
L2

sin2 β1
ds2(S3

2)

)
+
√
H8q

2dr2,

F4 = 2q2H8

(
L2Vol(AdS3) +

L2

cos2 β1
Vol(S3

1) +
L2

sin2 β1
Vol(S3

2)

)
∧ dr,

e−Φ = qH
5
4
8 , H8 = a+ F0r, β1, a, q, L − Constants

• When a, F0 > 0, the interval is bounded from below at ρ = − a
F0

where the

solution becomes a D8/O8 stack wrapped on AdS3 × S3 × S3. But the
interval is not bounded from above!

• The local AdS7 solutions in massive IIA exhibit analogous non compact
behaviour
[Apruzzi-Fazzi-Rosa-Tomasiello]

- There local patches glued together with D8 brane defects

- At the intersection of patches F0 has a discontinuity

- But g, eΦ, B continuous

- Must ensure dHF = δ and κ-symmetry solved at defect.
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N = (4, 0) on AdS3 × S3 × S3: Compact solutions with D8/O8
• Easiest way to build a compact solution is to make F0 change sign at r = 0

r < 0 : H8 = 1 + |F0|r, r > 0 : H8 = 1− |F0|r
• Solution bounded between two D8/O8 at r = ± 1

|F0|

- D8 defect at r = 0 is calibrated and obeys BI provided N8 = 4π|F0|

- Solution is under parametric control (tune with D2 charge N2)

- Possible interpretation: (O8−, k D8’s) and (O8−, (16-k) D8s)

• Holographic central charge consistent with large N = (4, 0)

c =
3

24π6

∫
M7

eA−2ΦVol(M7) = 6N2
N1

4N
2
4

N1
4 +N2

4

+O(1)

• Can insert arbitrary number of defects between the two D8/O8 stacks and
construct infinitely many compact solutions with large N = (4, 0)!

- Just need to impose that H8 is piece-wise linear.

• May be possible to play the same game with other large N = (4, 0) local
solutions: Most interesting is the N = (4, 4) solution

- Can be lifted to M-theory, so would conflict with claim
[Bachas-D’Hoker-Estes-Krym] that all compact solutions locally
AdS3 × S3 × S3 × R2

- However, the possibility of defects apparently not considered
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N = (4, 0) on AdS3 × S3 × S3: Compact solutions with D5s and O5
• The solution with small N = (4, 0) is a deformation of AdS3 × S3 × R4

depending on a single function h5 of the form

ds2 = L2

[
1
√
h5

(
ds2(AdS3) + ds2(S3

2)

)
+
√
h5

(
dr2 + r2ds2(S3

1)

)]
,

F3 = c1

(
Vol(AdS3) + Vol(S3

2)

)
+ c2Vol(S3

1) e−Φ =
c1

2L

√
h5,

h5 = a+
c2

c1r2
, c1, c2, a, L − constants

• A possible way to interpret this is simply D5s (or an O5 Hole if c2/c1 < 0)
backreated on AdS3 × S3 × R4. Then the solution can be realised as a near
horizon limit of the brane set up

0 1 2 3 4 5 6 7 8 9
D1 × × � � � �
D51 × × × × × ×
D52 × × × × × ×

One goes near D1 and D51 only - of course this solution is non compact.

• It may be possible to glue local copies of this solution together with defect
branes, but there is actually an easier way.

-If one merely assumes (a < 0, c2/c1 > 0) the interval becomes bounded!
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N = (4, 0) on AdS3 × S3 × S3: Compact solution with D5s and O5

• The metric is then diffeomorphic to

ds2 = L2

[
cos r

sin r

(
ds2(AdS3)+ds2(S3

2)

)
+
c2 sin r

c1 cos r

(
sin2 rdr2+cos2 rds2(S3

1)

)]
,

• Now r ∈ [0, π
2

]

- at r = 0 there is an O5 wrapped on AdS3 × S3
2

- at r = π
2

the metric becomes that of D5s wrapped on AdS3 and either S3

• The central charge is indeed consistent with small N = (4, 0), and
independent of the O5 charge

c = 6N1N5 +O(1)

• Solution is under parametric control - Large L (and so D1 charge) ensures
small curvature arbitrarily close to singularities.

• Surprisingly there is no conflict with small charge of the O5!

- Indeed it is not usually possible to simply flip the sign in a D brane warp
factor to get a compact solution

- usually can’t make curvature and O-plane charge simultaneously small.

17 / 25



• Introduction R-symmetry → Soln Large Small Smaller Conclusions

Small N = (4, 0) on AdS3 × S2 ×M5 in IIA
Y. Lozano, NTM, C. Nunez, A. Ramirez
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Small N = (4, 0) on AdS3 × S2 ×M5: Realising SU(2)R
• S2 realises an SU(2)R in terms ξa, but only 2 independent spinors...

• To realise N = (4, 0) need to introduce ηa = (η, ηc)T then

χI = (MI)abξ
a ⊗ ηb ⇒ LKiχI =

i

2
(Σi)

I
Jχ

J

where (MI) = (σ2σi,−iσ2) and Σi 4d rep of SU(2). χI Majorana.

• General case contain 4 such SU(2) spinors, rather unwieldy, will focus on

ds2 = e2Ads2(AdS3)+e2Cds2(S2)+ds2(MSU(2))+V
2, H = H3+e2CH1∧Vol(S2)

SUSY then follows from the system (RR fluxes also defined)

2µeC + sinαeA = e2CH1 +
1

2
eAV −

1

4
d(e2A sinα cosα) = 0

d(e3A−Φ sinα sinβ)− 2e2A−Φ cosα sinβV = d(eA−Φ sinα cosβ) ∧ V = 0,

d(e3A−Φ sinαΩ)− 2e2A−Φ cosαV ∧ Ω = 0,

d(e3A−Φ sinα cosβJ)− 2e2A−Φ cosα cosβV ∧ J − e3A−Φ sinα sinβH3 = 0,

(sinβe2Ad(e−2AJ) + cosβH3) ∧ V = Ω ∧H3 = (sinβdJ + cosβH3) ∧ J = 0,

• β 6= 0 related to [Couzens-Lawrie-Martelli-Schafer Nameki-Wong]

- Case is restrictive. Instead focus of β = 0.
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Small N = (4, 0) on AdS3 × S2 ×M5: Conformal CY Class

• System at β = 0 contains the class with NS sector (u′ = ∂ru)

ds2 =
u

√
h4h8

(
ds2(AdS3) +

1

4∆
ds2(S2)

)
+

√
h4

h8
ds2(CY2) +

√
h4h8

u
dr2,

e−Φ = h
5
4
8 h

1
4
4 u
− 1

2

√
∆, B =

1

2

(
− r +

uu′

4h4h8∆

)
Vol(S2), ∆ = 1 +

(u′)2

4h4h8

• Can also turn on H3 such that H3 ∧ dr = H3 ∧ J = H3 ∧ Ω = 0, but I don’t.

• H and magnetic components of F0, F2, F4, F6 non trivial, BI impose

h′8 = F0, u′′ = 0,
h8

u
∇2
CY2

h4 + h′′4 = 0

away from localised sources

• When u = ∆ = 1, have a D8-D4 system wrapped on AdS3 × S2 ( cf. [Youm])

- when ∂r an isometry, T-dual of D5’s on AdS3 × S3 × CY2

• Generic system is deformation of the D8-D4 one.

- Contains NATD.

• General class that NATD of AdS3 × S3 × T 4 suggested [Sfetsos-Thompson]
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Small N = (4, 0) on AdS3 × S2 ×M5: Branes and planes on T 4

• Potentially MANY compact solutions contained here, simplest to assume
CY2 = T 4 (or indeed K3)

- Functions depend on interval only, (h4, h8, u) all O(1) polynomials

- 6 parameters to tune, leading to rich variety of local solutions

• Two simple compact cases have interval bounded between

- D8/O8 and smeared D4’s or D6s and O6

• Possible to achieve the following physical boundary behaviours

Regular zero Local Singularity Smeared on T 4

NATD D6, D8, O6, O8 D2, D4

• Can’t all exist in same local patch, in most cases interval is semi infinite.

• As before one can glue solutions together with defects

- This time D8-D6 and smeared D4-D2 bound states

• Can use defect branes to make NATD of AdS3 × S3 × T 4 compact!

- NATD gives rise to solutions depending on a semi infinite interval. Can
often be interpreted as quiver of infinite length.

- Can try to complete the quiver by inserting a flavour node (eg NATD
AdS5 × S5 [Lozano-Nunez]). - Constructions typically pretty complicated.

- Glueing another local solution onto NATD, comparatively simple. 21 / 25
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Solutions with smaller superconformal
symmetries

Legramandi-NTM
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Realising N = (3, 0) and N = (1, 0) on AdS3 × S3 × S3

• To construct less supersymmetric examples we return to AdS3 × S3 × S3

- Simplest to take orbifolds of the 3-spheres. Indeed N = (3, 3) and
N = (1, 1) orbifolds exist for AdS3 × S3 × S3 × S1 [Eberhardt-Zadeh]

- Possible to do the same in presence of D8s/O8 also.

• Using the SO(4) spinors we can be a little more ambitious though, recall

ηISO(4) =

(
ηi

η4

)
, SO(3)D : LKi

D
ηj = εijkη

k, LKi
D
η4 = 0

• It’s SO(3)AD that provides a map between ηi, η4, so we break it!

• The breaking can be done at the level of fluxes by allowing them to depend
on the invariant forms of SO(3)D

(Vol(S3
1), Vol(S3

2)) −→ (Vol(S3
1), Vol(S3

2), K1
i ∧K2

i , K
1
i ∧ dK2

i , dK
1
i ∧K2

i )

• But we can also break SO(3)AD with the metric by fibering S3
1 over S3

2

ds2(S3
1) =

1

4

3∑
i=1

(
K1
i

)2 → 1

4

(
K1
i + λK2

i

)2
This is similar to how N = 3 is realised in the AdS4 solution of Pang and
Rong [De Luca-Lo Monaco-NTM-Tomasiello-Varela]
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Realising N = (3, 0) and N = (1, 0) on AdS3 × S3 × S3

• We do both forms of breaking, but in either case, the result is that

- ηi gives N = (3, 0) and so osp(3|2) and SO(3)R×SO(4)F

- η4 gives N = (1, 0) system with SO(3)× SO(4) flavour symmetry

• We thus seek solutions of the from

ds2 = e2Ads2(AdS3) +
e2C1

4

(
K1
i + λK2

i

)2
+
e2C2

4

(
K2
i

)2
+ e2kdr2

• For the N = (3, 0) must impose that flux depends on invariant forms, for
N = (1, 0) this is automatic

- IIB: F1, F3, F5, H, IIA: F0, F2, F4, H

• Solutions certainly exist, but at this time I only know them some semi
analytically

• IIB can realise, D5s, NS5s, O5, (regular?) IIA is richer

Regular zero Local Singularity Smeared Singularity
? D2 , D8, O2, O6, O8, NS5 ?

• Of course, similar to the N = (4, 0) case, there is the possibility of
supersymmetry enhancements

- A careful analysis will reveal if this is possible, but we are not that far yet.

24 / 25



• Introduction R-symmetry → Soln Large Small Smaller Conclusions

Conclusions
• Have found new classes of AdS3 solutions with large and

small N = (4, 0) supersymmetry and compact internal
space.

- Clearly the next step is to try and ascertain what the CFT duals are.

• Have only studied a small portion of possibilities

- Expect classes of AdS3 × S2 × S3 and AdS3 × S2 × S2 solutions with large
N = (4, 0) and many more with small.

- Did not consider M-theory at all, or IIB for small N = (4, 0).

• Would be interesting to study the less supersymmetric
cases in more detail.

• Have recently classified AdS2 solutions in M-theory with
magnetic flux and SU(4)-structure [Hong-NTM-Pando Zayas].

- would be interesting to employ R-symmetry techniques there

- New black hole near horizons?

Thank you
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