${ m AdS}_3$ solutions with large, small and smaller superconformal symmetries

Niall T. Macpherson

Holography, Generalised Geometry and Duality MITP

May 13, 2019

- NTM, arXiv:1812.10172 [hep-th],
- Y. Lozano, NTM, C. Nunez, A. Ramirez, arXiv:19xx.xxxx [hep-th],
- A. Legramandi, NTM, arXiv:19xx.xxxx[hep-th].

Motivation

- By now AdS-CFT generally well established.
- One a vatar where CFT side is rather more developed than gravity side is ${\rm AdS}_3\text{-}{\rm CFT}_2.$
- Must arrange for large compact internal space when embedded into $10/11 \mathrm{d}.$

$$ds^2 = e^{2A} ds^2 (\text{AdS}_3) + ds^2 (\text{M}_{7/8})$$

- Systematic way to proceed is to assume extended supersymmetry. Then $M_{7/8}$ should realise R-symmetry geometrically.
- Large amount of supersymmetry implies tractability, very detailed classifications, nice mathematical structure.
- Excludes many physical phenomena!
- However, with solutions known, can then systematically break some supersymmetry and find many more.

Supersymmetric AdS_3

- They are all direct sums of left and right algebras, preserving $\mathcal{N} = (n_+, n_-)$.
 - AdS₃ Killing spinors $\nabla_{\mu}\zeta_{\pm} = \pm \frac{1}{2}\gamma_{\mu}\zeta_{\pm} \Rightarrow n_{\pm}.$
- Those that can be embedded into 10 and 11d supergravity with an AdS_3 factor are classified $_{\rm [Beck-Gran-Gutowski-Papadopoulos]}$

$N_{\sigma}/2$	$\mathfrak{g}_L/\mathfrak{c}$	$\mathfrak{t}_0/\mathfrak{c}$
n	$\mathfrak{osp}(n 2)$	$\mathfrak{so}(n)$
2n, n > 1	$\mathfrak{sl}(n 2)$	$\mathfrak{u}(n)$
4n, n > 1	$\mathfrak{osp}^*(4 2n)$	$\mathfrak{sp}^*(n)\oplus\mathfrak{sp}^*(1)$
8	$\mathfrak{f}(4)$	$\mathfrak{spin}(7)$
• 7	$\mathfrak{g}(3)$	\mathfrak{g}_2
• 4	$\mathfrak{D}(2,1,\alpha)$	$\mathfrak{so}(3) \oplus \mathfrak{so}(3)$
• 4	$\mathfrak{sl}(2 2)/1_{4\times 4}$	$\mathfrak{so}(3)$

 AdS_3 KSAs in type II and d = 11

- 16 real supercharges, ie $\mathcal{N} = (8,0)$ or $\mathcal{N} = (4,4)$ is maximal for AdS₃ [Haupt-Lautz-Papadopoulos].
- F_4 and $G_{(3)}$ in IIA studied: [Dibitetto-Lo Monaco-Passias-Petri-Tomasiello], see Dibitetto's talk last week.
- Large and small superconfromal symmetries: main focus of this talk.

≮) Q (≯ 3 / 25

Small $\mathcal{N} = (4,0)$ supersymmetry

• Small $\mathcal{N} = (4,0)$ superconformal algebra contains bosonic sub-algebra

 $\mathfrak{sl}(2) \oplus \mathfrak{su}(2).$

with SU(2) the R-symmetry, which may be realised geometrically in terms of an 2/3-sphere.

- Such CFT's are characterised by an integer level k and a central charge of the form

$$c = 6k$$

- Canonical example of geometry realising this algebra is $AdS_3 \times S^3 \times M_4$ for $M_4 = T^4, K3$. Actually preserves small $\mathcal{N} = (4, 4)$. The dual CFT's are symmetric product orbifolds $Sym^N(M_4)$
- These solutions lie in the more general small $\mathcal{N} = (4,0)$ class

$$ds^{2} = \frac{1}{\sqrt{h_{5}}} \left(ds^{2} (\text{AdS}_{3}) + ds^{2} (S^{3}) \right) + \sqrt{h_{5}} ds^{2} (\text{CY}_{2}), \quad \nabla^{2}_{\text{CY}_{2}} h_{5} = 0,$$

$$F_{3} = 2c \text{Vol}(\text{AdS}_{3}) + 2c \text{Vol}(S^{3}) \pm c \star_{CY_{2}} dh_{5}, \quad e^{-\Phi} = c \sqrt{h_{5}}.$$

- Most known geometries are of this type, or are either orbifolds or (non-Abelian) T-duals of this
 - a notable exception is the classification of such solutions in IIB with 3-form fluxs set to zero [Couzens-Lawrie-Martelli-Schafer-Nameki-Wong]. $\langle \Box \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle \langle \overline{\Xi} \langle \overline$

Large $\mathcal{N} = (4, 0)$ supersymmetry

• The large $\mathcal{N} = (4,0)$ superconformal algebra $\mathfrak{D}(2,1,\alpha)$, contains bosonic subgroup

 $\mathfrak{sl}(2) \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(2).$

with SO(4) R-symmetry which can be realised by products of 2 and 3-spheres.

• CFTs with this symmetry are characterised by two integer levels k_{+} in terms of which the central charge and α take the form

$$c = 6 \frac{k_+ k_-}{k_+ + k_-}, \qquad \alpha = \frac{k_+}{k_-}.$$

- Small superconformal algebra recovered in $\alpha \to 0$ limit.
- The canonical example of a geometry realising this symmetry is $AdS_3 \times S^3 \times S^3 \times S^1$, which preserves $\mathcal{N} = (4, 4)$.
- Took a long time to nail down the CFT dual, in large part due to an erroneous calculation of the supergravity BPS spectrum. This now seems to be resolved [Eberhardt-Gaberdiel-Rajesh Gopakumar-Wei] with the corrected spectrum matching the symmetric orbifold CFT \mathcal{S}_{κ} [Gukov-Martinec-Moore-Strominger].
- Large $\mathcal{N} = (4, 4)$ classified in M-theory [Bachas-D'Hoker-Estes-Gutperle -Feldman-Krym], compact cases all locally the IIA lift of $AdS_3 \times S^3 \times S^3 \times \mathbb{R}^2$ (or are they? See later)
- All type II solutions with large $\mathcal{N} = (4,0)$ I was aware of are related to this by orbifoldings or duality - this is no longer the case.

Talk outline

- Constructing solutions from R-symmetry
 - Brief review of methods employed to construct solutions
- Type II solutions with large (and small) $\mathcal{N} = (4,0)$ on $\mathbf{AdS}_3 \times S^3 \times S^3$
 - Compact examples with D-branes and O-planes back reacted on $AdS_3 \times S^3 \times S^3 \times S^1$ and $AdS_3 \times S^3 \times \mathbb{R}^4$
- Massive IIA solutions with small $\mathcal{N} = (4,0)$ on $\mathbf{AdS}_3 \times S^2 \times \mathbf{M}_5$
 - Compact examples with branes back reacted on $AdS_3 \times S^2 \times T^4$
- Solutions with smaller superconformal symmetries
 - Breaking to $\mathcal{N}=(3,0)$ and $\mathcal{N}=(1,0)$ by fibering S^3 over S^3
- Concluding remarks

•	Introduction	$\operatorname{R-symmetry} \to \operatorname{Sol}^n$	Large	Small	Smaller	Conclusions

Constructing solutions from R-symmetry

Realising an R-symmetry with spinors

• In type II supergravity a warped $AdS_3 \times M_7$ solution preserving $\mathcal{N} = (n, 0)$ supersymmetry admits MW Killing spinor of the form

$$\epsilon_1 = \sum_{I=1}^n v_+ \otimes \zeta^I \otimes \chi_1^I, \quad \epsilon_2 = \sum_{I=1}^n v_\pm \otimes \zeta^I \otimes \chi_2^I,$$

with ζ^{I} (AdS₃), $\chi^{I}_{1,2}$ (M₇), v_{\pm} (Auxiliary) all Majorana.

• Extended superconformal symmetry comes with an R-symmetry G_R (and associated Lie algebra T_{G_R} and Killing vectors $K^I_{G_R}$) under which $\chi^I_{1,2}$ should be charged

$$\mathcal{L}_{K^{i}_{G_{R}}}\chi^{I}_{1,2}=(T^{i}_{G_{R}})^{I}{}_{J}\chi^{J}_{1,2}$$

Providing a map between each of the components of $\chi_{1,2}^{I}$.

- If one then imposes that all physical fields respect G_R , it is sufficient to solve for any $\mathcal{N} = 1$ sub-sector to know $\mathcal{N} = (n, 0)$ is preserved.
- We assume that M_7 decomposes as a manifold realising the R-symmetry and some base

$$ds^{2}(\mathbf{M}_{7}) = e^{2C} ds^{2}(\mathbf{M}_{G_{R}}) + ds^{2}(B) \quad \Rightarrow \quad \chi_{1,2}^{I} = \xi_{G_{R}}^{I} \otimes \eta_{1,2}^{B}$$

- Supersymmetry then implied by reduced conditions on $\eta_{1,2}^B$ only.
- In many cases (and all considered here) M_{G_R} will just involve 2 and 3-spheres, and $\xi^I_{G_R}$ combinations of their Killing spinors.

9/25

Solving the $\mathcal{N} = 1$ sub-sector

• $\mathcal{N} = 1 \text{ AdS}_3$ solutions in type II recently classified

[Dibitetto-Lo Monaco-Passias-Petri-Tomasiello]

$$ds^2 = e^{2A} ds^2 (\mathrm{AdS}_3) + ds^2 (\mathrm{M}_7), \quad H = c_0 \mathrm{Vol}(\mathrm{AdS}_3) + H_3,$$

 $F = f + e^{3A} \mathrm{Vol}(\mathrm{AdS}_3) \wedge \star_7 \lambda(f)$

• SUSY imposes either $|\chi_1|^2 \pm |\chi_2|^2 \propto e^{\pm A}$. Assume $|\chi_1|^2 = |\chi_2|^2$, then $c_0 = 0$

• Two 7d spinors give rise to a $G_2 \times G_2$ -structure with bi spinor

$$e^{-A}\chi_1\otimes\chi_2^{\dagger}=\Psi_++i\Psi_-,$$

Supersymmetry equivalent to familiar geometric conditions

$$d_H(e^{2A-\Phi}\Psi_{\mp}) = 0, \quad d_H(e^{3A-\Phi}\Psi_{\pm}) - 2\mu e^{2A-\Phi}\Psi_{\mp} = \frac{1}{8}e^{3A} \star_7 \lambda(f)$$

(cf. (Mink/AdS)₄ classification [Grana-Minasian-Petrini-Tomasiello]) and an additional 7d Mukaui pairing constraint $e^A(f, \Psi_{\pm}) = \frac{\mu}{2} e^{-\Phi} \text{Vol}(M_7)$.

- Solving these is sufficient for $\mathcal{N} = (1, 0)$, if we want $\mathcal{N} = (n, 0)$ we need to impose by hand that the fluxes and other fields depend on invariant forms of G_R only!
- Ψ_{\pm} will be wedge products of bi-spinors on M_{G_R} and B, former can be factored out to give conditions on B only.
- At this point one has a class of solutions defined by conditions on B that preserves $\mathcal{N} = (n, 0)$ and given R-symmetry.

Large (and small) $\mathcal{N} = (4,0)$ on AdS₃ × S³ × S³ in Type II

NTM

10/25

イロト イヨト イヨト イヨト 二日

 $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^3 \times S^3$: SO(4) Spinors

- Seek solutions with large $\mathcal{N} = (4,0)$ so $G_R = SO(4)_R \simeq SO(3) \times SO(3)$. Can be realised with products of 2/3 spheres
- The Killing spinors on S² realise SU(2) doublets [NTM-Tomasiello]

$$\nabla_{\mu}\xi = \frac{i}{2}\gamma_{\mu}\xi \quad \Rightarrow \quad \mathcal{L}_{K^{i}}\xi^{a} = \frac{i}{2}(\sigma_{i})^{a}_{\ b}\xi^{a}, \quad \xi^{a} = \left(\begin{array}{c}\xi\\\xi^{c}\end{array}\right) \text{ and } \left(\begin{array}{c}\hat{\gamma}\xi\\\hat{\gamma}\xi^{c}\end{array}\right)$$

• S^3 has two types of spinor charged under just one factor of $SU(2)_+ \times SU(2)_-$ [NTM-Montero-Prins]

$$\nabla_{\mu}\xi_{\pm} = \pm \frac{i}{2}\gamma_{\mu}\xi_{\pm} \quad \Rightarrow \quad \mathcal{L}_{K^{i}_{\pm}}\xi^{a}_{\pm} = \pm \frac{i}{2}(\sigma_{i})^{a}_{\ b}\xi^{a}_{\pm}, \quad \mathcal{L}_{K^{i}_{\pm}}\xi^{a}_{\mp} = 0$$

• From this, and $\sigma_i \sigma_j = \delta_{ij} + i\epsilon_{ijk}$ it follows that

$$\eta^{I}_{\mathrm{SO}(4)} = \mathcal{M}^{I}_{ab}\xi^{a}_{1} \otimes \xi^{b}_{2}, \qquad \mathcal{M}^{I} = (\sigma_{2}\sigma_{i}, -i\sigma_{2}),$$

transforms under the $SO(3)_D$ and $SO(3)_{AD}$ subgroups of $SU(2)_1 \times SU(2)_2$ as

$$\begin{split} \mathcal{L}_{K_{D}^{i}} \eta_{\text{SO}(4)}^{I} &= (T_{D}^{i})^{I}{}_{J} \eta_{\text{SO}(4)}^{J}, \qquad \mathcal{L}_{K_{AD}^{i}} \eta_{\text{SO}(4)}^{I} &= (T_{AD})^{I}{}_{J} \eta_{\text{SO}(4)}^{J} \\ \text{where } K_{D}^{i} &= K_{1}^{i} + K_{2}^{i}, \, K_{AD}^{i} &= K_{1}^{i} - K_{2}^{i} \text{ and} \\ (T_{D}^{i})_{IJ} &= \left(\frac{\epsilon_{ijk}}{\underline{0}^{T}} \mid \underline{0}\right), \qquad (T_{AD}^{i})_{IJ} &= \left(\frac{0_{3\times3}}{-\underline{c_{i}}^{T}} \mid \underline{0}\right), \qquad (c_{i})_{j} = \delta_{ij} \end{split}$$

- Block from makes breaking to subgroups easy later.

• We consider $S^3 \times S^3$, which can also realise $\mathcal{N} = (4, 4)$ when a solution supports two SO(4) spinors.

12/25

 $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^3 \times S^3$: Solving an $\mathcal{N} = 1$ sub-sector

• We consider solutions in type II of the form

$$ds^2 = e^{2A} ds^2 (\text{AdS}_3) + e^{2C_1} ds^2 (S_1^3) + e^{2C_2} ds^2 (S_2^3) + e^{2k} dr^2,$$

with flux built from dr, $Vol(S^3_{1,2})$ and functions of r only - $SO(4)_R \times SO(4)_F$ isometry.

• Most general Majorana SO(4) spinors are of the form

$$\chi_1^I = e^{\frac{A}{2}} \eta_{\mathrm{SO}(4)}^I \otimes \begin{pmatrix} \sin(\beta_1 + \beta_2) \\ i\cos(\beta_1 + \beta_2) \end{pmatrix}, \quad \chi_2^I = e^{\frac{A}{2}} \eta_{\mathrm{SO}(4)}^I \otimes \begin{pmatrix} \sin(\beta_1 - \beta_2) \\ i\cos(\beta_1 - \beta_2) \end{pmatrix},$$

there are two independent copies constructed from the ξ^a_+ and ξ^a_- SU(2) doublets respectively.

• Computing $\chi^1 \otimes \chi^{2\dagger}$ for $\mathcal{N} = 1$ sub-sector leads to SU(3)-structure

$$\Psi_{+} = \frac{e^{A}}{8} \operatorname{Re} \left[e^{i\beta_{2}} e^{-iJ} - e^{k} dr \wedge e^{i\beta_{1}} \Omega \right], \quad \Psi_{-} = \frac{e^{A}}{8} \operatorname{Im} \left[-e^{i\beta_{2}} e^{k} dr \wedge e^{-iJ} + e^{i\beta_{1}} \Omega \right],$$

where SU(3)-structure forms are canonical in terms of complex vielbein

$$E^{i} = \frac{1}{2} \left(e^{C_{1}} K_{i}^{1} + i e^{C_{2}} K_{i}^{2} \right), \quad dK_{i}^{a} = \pm \frac{1}{2} \epsilon_{ijk} K_{j}^{a} \wedge K_{k}^{a}$$

• Plugging Ψ_{\pm} into the supersymmetry conditions yields a system of ODE's that can be solved uniquely.

 $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^3 \times S^3$: Local Solutions

- There are 4 distinct local solutions, 2 in each of IIA and IIB:
 - D8/O8 system back reacted on AdS₃ × S³ × S³ × S¹, large N = (4,0).
 -Non trivial F₀, F₄. Generically non compact
 - 2. D5s back reacted $AdS_3 \times S^3 \times S^3 \times S^1$, large $\mathcal{N} = (4, 0)$.
 - Non trivial F_3 . Generically non compact
 - 3. Solution with large $\mathcal{N} = (4, 4)$ and O2 source
 - Non trivial F_4 , H, can be lifted to M-theory. Non compact
 - 4. D5s and/or O5 back reacted on $AdS_3 \times S^3 \times \mathbb{R}^4$, small $\mathcal{N} = (4, 0)$
 - Non Trivial F_3 . Compact with tuning.
 - SO(4) is realising $SU(2)_R$ and SU(2) outer-automorphism of dual CFT_2
- New large $\mathcal{N} = (4, 0)$ solutions are all non compact?
 - Recall a local solution is not a global solution.
- Globally compact solutions with large $\mathcal{N} = (4,0)$ are possible.

 $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^3 \times S^3$: Compact solutions with D8/O8

• The local solution with D8/O8 back reacted on $AdS_3 \times S^3 \times S^3 \times S^1$ depends on a single O(1) polynomial H_8 :

$$ds^{2} = \frac{1}{\sqrt{H_{8}}} \left(L^{2} ds^{2} (\text{AdS}_{3}) + \frac{L^{2}}{\cos^{2} \beta_{1}} ds^{2} (S_{1}^{3}) + \frac{L^{2}}{\sin^{2} \beta_{1}} ds^{2} (S_{2}^{3}) \right) + \sqrt{H_{8}} q^{2} dr^{2},$$

$$F_4 = 2q^2 H_8 \left(L^2 \text{Vol}(\text{AdS}_3) + \frac{L^2}{\cos^2 \beta_1} \text{Vol}(S_1^3) + \frac{L^2}{\sin^2 \beta_1} \text{Vol}(S_2^3) \right) \wedge dr,$$

$$e^{-\Phi} = q H_8^{\frac{5}{4}}, \quad H_8 = a + F_0 r, \quad \beta_1, a, q, L - \text{Constants}$$

- When $a, F_0 > 0$, the interval is bounded from below at $\rho = -\frac{a}{F_0}$ where the solution becomes a D8/O8 stack wrapped on $AdS_3 \times S^3 \times S^3$. But the interval is not bounded from above!
- $\bullet\,$ The local ${\rm AdS}_7$ solutions in massive IIA exhibit analogous non compact behaviour

[Apruzzi-Fazzi-Rosa-Tomasiello]

- There local patches glued together with D8 brane defects
- At the intersection of patches F_0 has a discontinuity
- But g, e^{Φ}, B continuous
- Must ensure $d_H F = \delta$ and κ -symmetry solved at defect.

 $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^3 \times S^3$: Compact solutions with D8/O8

• Easiest way to build a compact solution is to make F_0 change sign at r = 0

$$r < 0$$
: $H_8 = 1 + |F_0|r$, $r > 0$: $H_8 = 1 - |F_0|r$

- Solution bounded between two D8/O8 at $r = \pm \frac{1}{|F_0|}$
 - D8 defect at r=0 is calibrated and obeys BI provided $N_8=4\pi|F_0|$
 - Solution is under parametric control (tune with D2 charge $\mathrm{N}_2)$
 - Possible interpretation: (O8_, k D8's) and (O8_, (16-k) D8s)
- Holographic central charge consistent with large $\mathcal{N} = (4, 0)$

$$c = \frac{3}{2^4 \pi^6} \int_{M_7} e^{A - 2\Phi} \operatorname{Vol}(M_7) = 6N_2 \frac{N_4^1 N_4^2}{N_4^1 + N_4^2} + O(1)$$

- Can insert arbitrary number of defects between the two D8/O8 stacks and construct infinitely many compact solutions with large $\mathcal{N} = (4, 0)!$
 - Just need to impose that H_8 is piece-wise linear.
- May be possible to play the same game with other large $\mathcal{N} = (4,0)$ local solutions: Most interesting is the $\mathcal{N} = (4,4)$ solution

- Can be lifted to M-theory, so would conflict with claim $_{\rm [Bachas-D'Hoker-Estes-Krym]}$ that all compact solutions locally ${\rm AdS}_3\times S^3\times S^3\times \mathbb{R}^2$

- However, the possibility of defects apparently not considered

15/25

문 · · 문 · · 문

 $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^3 \times S^3$: Compact solutions with D5s and O5

• The solution with small $\mathcal{N} = (4, 0)$ is a deformation of $\mathrm{AdS}_3 \times S^3 \times \mathbb{R}^4$ depending on a single function h_5 of the form

$$ds^{2} = L^{2} \left[\frac{1}{\sqrt{h_{5}}} \left(ds^{2} (AdS_{3}) + ds^{2} (S_{2}^{3}) \right) + \sqrt{h_{5}} \left(dr^{2} + r^{2} ds^{2} (S_{1}^{3}) \right) \right],$$

$$F_{3} = c_{1} \left(Vol(AdS_{3}) + Vol(S_{2}^{3}) \right) + c_{2} Vol(S_{1}^{3}) \quad e^{-\Phi} = \frac{c_{1}}{2L} \sqrt{h_{5}},$$

$$h_{5} = a + \frac{c_{2}}{c_{1}r^{2}}, \quad c_{1}, c_{2}, a, L - \text{constants}$$

 A possible way to interpret this is simply D5s (or an O5 Hole if c₂/c₁ < 0) backreated on AdS₃ × S³ × ℝ⁴. Then the solution can be realised as a near horizon limit of the brane set up

	0	1	2	3	4	5	6	7	8	9
D1	Х	×	/	/	/	/				
$D5_1$	×	×	×	×	×	×				
$D5_2$	×	×					×	×	×	×

One goes near D1 and D5₁ only - of course this solution is non compact.

• It may be possible to glue local copies of this solution together with defect branes, but there is actually an easier way.

-If one merely assumes $(a < 0, c_2/c_1 > 0)$ the interval becomes bounded!

Conclusions

 $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^3 \times S^3$: Compact solution with D5s and O5

• The metric is then diffeomorphic to

$$ds^{2} = L^{2} \bigg[\frac{\cos r}{\sin r} \bigg(ds^{2} (\text{AdS}_{3}) + ds^{2} (S_{2}^{3}) \bigg) + \frac{c_{2} \sin r}{c_{1} \cos r} \bigg(\sin^{2} r dr^{2} + \cos^{2} r ds^{2} (S_{1}^{3}) \bigg) \bigg],$$

- Now $r \in [0, \frac{\pi}{2}]$
 - at r = 0 there is an O5 wrapped on $AdS_3 \times S_2^3$
 - at $r = \frac{\pi}{2}$ the metric becomes that of D5s wrapped on AdS₃ and either S^3
- The central charge is indeed consistent with small $\mathcal{N} = (4, 0)$, and independent of the O5 charge

$$c = 6N_1N_5 + O(1)$$

- Solution is under parametric control Large L (and so D1 charge) ensures small curvature arbitrarily close to singularities.
- Surprisingly there is no conflict with small charge of the O5!
 - Indeed it is not usually possible to simply flip the sign in a D brane warp factor to get a compact solution
 - usually can't make curvature and O-plane charge simultaneously small.

•	Introduction	$\operatorname{R-symmetry} \to \operatorname{Sol}^n$	Large	Small	Smaller	Conclusions

Small $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^2 \times \mathbf{M}_5$ in IIA

Y. Lozano, NTM, C. Nunez, A. Ramirez

.

Small $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^2 \times \mathrm{M}_5$: Realising $\mathrm{SU}(2)_R$

- S^2 realises an $\mathrm{SU}(2)_R$ in terms ξ^a , but only 2 independent spinors...
- To realise $\mathcal{N} = (4,0)$ need to introduce $\eta^a = (\eta,\eta^c)^T$ then

$$\chi^{I} = (\mathcal{M}^{I})_{ab} \xi^{a} \otimes \eta^{b} \quad \Rightarrow \quad \mathcal{L}_{K^{i}} \chi^{I} = \frac{i}{2} (\Sigma_{i})^{I}{}_{J} \chi^{J}$$

where $(\mathcal{M}^I) = (\sigma_2 \sigma_i, -i\sigma_2)$ and Σ_i 4d rep of SU(2). χ^I Majorana.

• General case contain 4 such SU(2) spinors, rather unwieldy, will focus on

$$ds^{2} = e^{2A} ds^{2} (\mathrm{AdS}_{3}) + e^{2C} ds^{2} (S^{2}) + ds^{2} (\mathrm{M}_{SU(2)}) + V^{2}, \quad H = H_{3} + e^{2C} H_{1} \wedge \mathrm{Vol}(S^{2})$$

SUSY then follows from the system (RR fluxes also defined)

$$2\mu e^{C} + \sin \alpha e^{A} = e^{2C}H_{1} + \frac{1}{2}e^{A}V - \frac{1}{4}d(e^{2A}\sin\alpha\cos\alpha) = 0$$

$$d(e^{3A-\Phi}\sin\alpha\sin\beta) - 2e^{2A-\Phi}\cos\alpha\sin\beta V = d(e^{A-\Phi}\sin\alpha\cos\beta) \wedge V = 0,$$

$$d(e^{3A-\Phi}\sin\alpha\Omega) - 2e^{2A-\Phi}\cos\alpha V \wedge \Omega = 0,$$

$$d(e^{3A-\Phi}\sin\alpha\cos\beta J) - 2e^{2A-\Phi}\cos\alpha\cos\beta V \wedge J - e^{3A-\Phi}\sin\alpha\sin\beta H_{3} = 0,$$

$$(\sin\beta e^{2A}d(e^{-2A}J) + \cos\beta H_{3}) \wedge V = \Omega \wedge H_{3} = (\sin\beta dJ + \cos\beta H_{3}) \wedge J = 0,$$

$$\beta \neq 0 \text{ related to [Couzens-Lawrie-Martelli-Schafer Nameki-Wong]}$$

- Case is restrictive. Instead focus of $\beta = 0$.

Small $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^2 \times \mathrm{M}_5$: Conformal CY Class

• System at $\beta = 0$ contains the class with NS sector $(u' = \partial_r u)$

$$ds^{2} = \frac{u}{\sqrt{h_{4}h_{8}}} \left(ds^{2}(\text{AdS}_{3}) + \frac{1}{4\Delta} ds^{2}(S^{2}) \right) + \sqrt{\frac{h_{4}}{h_{8}}} ds^{2}(\text{CY}_{2}) + \frac{\sqrt{h_{4}h_{8}}}{u} dr^{2},$$
$$e^{-\Phi} = h_{8}^{\frac{5}{4}} h_{4}^{\frac{1}{4}} u^{-\frac{1}{2}} \sqrt{\Delta}, \quad B = \frac{1}{2} \left(-r + \frac{uu'}{4h_{4}h_{8}\Delta} \right) \text{Vol}(S^{2}), \quad \Delta = 1 + \frac{(u')^{2}}{4h_{4}h_{8}}$$

- Can also turn on H_3 such that $H_3 \wedge dr = H_3 \wedge J = H_3 \wedge \Omega = 0$, but I don't.
- H and magnetic components of F_0, F_2, F_4, F_6 non trivial, BI impose

$$h'_8 = F_0, \quad u'' = 0, \quad \frac{h_8}{u} \nabla^2_{\text{CY}_2} h_4 + h''_4 = 0$$

away from localised sources

- When $u = \Delta = 1$, have a D8-D4 system wrapped on AdS₃ × S² (cf. [Youm])
 - when ∂_r an isometry, T-dual of D5's on $AdS_3 \times S^3 \times CY_2$
- Generic system is deformation of the D8-D4 one.
 - Contains NATD.
- General class that NATD of $AdS_3 \times S^3 \times T^4$ suggested [Sfetsos-Thompson]

20 / 25

イロト イヨト イヨト イヨト ヨー うへつ

Small $\mathcal{N} = (4,0)$ on $\mathrm{AdS}_3 \times S^2 \times \mathrm{M}_5$: Branes and planes on T^4

- Potentially MANY compact solutions contained here, simplest to assume ${\rm CY}_2=T^4$ (or indeed K3)
 - Functions depend on interval only, (h_4, h_8, u) all O(1) polynomials
 - 6 parameters to tune, leading to rich variety of local solutions
- Two simple compact cases have interval bounded between
 - $\mathrm{D8}/\mathrm{O8}$ and smeared D4's or D6s and O6
- Possible to achieve the following physical boundary behaviours

Regular zero	Local Singularity	Smeared on T^4
NATD	D6, D8, O6, O8	D2, D4

- Can't all exist in same local patch, in most cases interval is semi infinite.
- As before one can glue solutions together with defects
 - This time D8-D6 and smeared D4-D2 bound states
- Can use defect branes to make NATD of $AdS_3 \times S^3 \times T^4$ compact!

- NATD gives rise to solutions depending on a semi infinite interval. Can often be interpreted as quiver of infinite length.

- Can try to complete the quiver by inserting a flavour node (eg NATD $AdS_5 \times S^5$ $_{\rm [Lozano-Nunez]}$). - Constructions typically pretty complicated.

- Glueing another local solution onto NATD, comparatively simple.

Solutions with smaller superconformal symmetries

Legramandi-NTM

Smaller

Realising $\mathcal{N} = (3,0)$ and $\mathcal{N} = (1,0)$ on $\mathrm{AdS}_3 \times S^3 \times S^3$

- To construct less supersymmetric examples we return to $AdS_3 \times S^3 \times S^3$
 - Simplest to take orbifolds of the 3-spheres. Indeed $\mathcal{N} = (3,3)$ and $\mathcal{N} = (1,1)$ orbifolds exist for $\mathrm{AdS}_3 \times S^3 \times S^3 \times S^1$ [Eberhardt-Zadeh]
 - Possible to do the same in presence of $\mathrm{D8s}/\mathrm{O8}$ also.
- Using the SO(4) spinors we can be a little more ambitious though, recall $\eta^{I}_{\mathrm{SO}(4)} = \begin{pmatrix} \eta^{i} \\ \eta^{4} \end{pmatrix}, \quad \mathrm{SO}(3)_{D}: \quad \mathcal{L}_{K_{D}^{i}} \eta^{j} = \epsilon^{ij}_{k} \eta^{k}, \quad \mathcal{L}_{K_{D}^{i}} \eta^{4} = 0$
- It's $SO(3)_{AD}$ that provides a map between η^i, η^4 , so we break it!
- The breaking can be done at the level of fluxes by allowing them to depend on the invariant forms of $\mathrm{SO}(3)_D$

$$(\operatorname{Vol}(S_1^3), \ \operatorname{Vol}(S_2^3)) \longrightarrow (\operatorname{Vol}(S_1^3), \ \operatorname{Vol}(S_2^3), \ K_i^1 \wedge K_i^2, \ K_i^1 \wedge dK_i^2, \ dK_i^1 \wedge K_i^2)$$

• But we can also break $SO(3)_{AD}$ with the metric by fibering S_1^3 over S_2^3

$$ds^{2}(S_{1}^{3}) = \frac{1}{4}\sum_{i=1}^{3} \left(K_{i}^{1}\right)^{2} \rightarrow \frac{1}{4}\left(K_{i}^{1} + \lambda K_{i}^{2}\right)^{2}$$

This is similar to how $\mathcal{N} = 3$ is realised in the AdS₄ solution of Pang and Rong [De Luca-Lo Monaco-NTM-Tomasiello-Varela]

Realising $\mathcal{N} = (3,0)$ and $\mathcal{N} = (1,0)$ on $\mathrm{AdS}_3 \times S^3 \times S^3$

- We do both forms of breaking, but in either case, the result is that
 - η^i gives $\mathcal{N}=(3,0)$ and so $\mathfrak{osp}(3|2)$ and $\mathrm{SO}(3)_R{\times}\mathrm{SO}(4)_F$
 - η^4 gives $\mathcal{N}=(1,0)$ system with $SO(3)\times SO(4)$ flavour symmetry
- We thus seek solutions of the from

$$ds^{2} = e^{2A} ds^{2} (\text{AdS}_{3}) + \frac{e^{2C_{1}}}{4} \left(K_{i}^{1} + \lambda K_{i}^{2}\right)^{2} + \frac{e^{2C_{2}}}{4} \left(K_{i}^{2}\right)^{2} + e^{2k} dr^{2}$$

- For the $\mathcal{N}=(3,0)$ must impose that flux depends on invariant forms, for $\mathcal{N}=(1,0)$ this is automatic
 - IIB: F_1, F_3, F_5, H , IIA: F_0, F_2, F_4, H
- Solutions certainly exist, but at this time I only know them some semi analytically
- IIB can realise, D5s, NS5s, O5, (regular?) IIA is richer

ĺ	Regular zero	Local Singularity	Smeared Singularity
	?	D2, D8, O2, O6, O8, NS5	?

- Of course, similar to the $\mathcal{N} = (4,0)$ case, there is the possibility of supersymmetry enhancements
 - A careful analysis will reveal if this is possible, but we are not that far yet.

Conclusions

- Have found new classes of AdS_3 solutions with large and small $\mathcal{N} = (4,0)$ supersymmetry and compact internal space.
 - Clearly the next step is to try and ascertain what the CFT duals are.
- Have only studied a small portion of possibilities
 - Expect classes of $AdS_3 \times S^2 \times S^3$ and $AdS_3 \times S^2 \times S^2$ solutions with large $\mathcal{N} = (4,0)$ and many more with small.
 - Did not consider M-theory at all, or IIB for small $\mathcal{N} = (4, 0)$.
- Would be interesting to study the less supersymmetric cases in more detail.
- Have recently classified AdS_2 solutions in M-theory with magnetic flux and SU(4)-structure [Hong-NTM-Pando Zayas].
 - would be interesting to employ R-symmetry techniques there
 - New black hole near horizons?

Thank you

イロト イヨト イヨト イヨト ヨー わらの