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• Geometric Engineering of QFTs has become a powerful tool for exploring strongly coupled systems 

• The space of 4D SCFTs can be studied and characterized by 6D SCFTs on punctured Riemann 
Surfaces — The class “S” program [Witten ’97; Gaiotto ’09; Gaiotto, Moore, Neitzke ’09]     

• Boundary conditions at punctures lead to a large class of possible choices for flavor Symmetry in 4D  

• Varying amount of supersymmetry can be preserved in 4D by choices of topological twist  

• Program generalizable to systems with less supersymmetry and across different dimensions 

• Pair-of-Pants decomposition  of Riemann surfaces provide natural building blocks for 4D SCFTs   

• In this talk, we will restrict to 6D (2,0) AN-1 SCFT — Worldvolume theory of a stack of N M5-branes in 
M-theory

Geometrizing QFT

 

Important Question: How does the geometric set-up encode the ’t Hooft Anomalies of SCFTs?



• ’t Hooft Anomalies: Gauge anomalies for global symmetries  
• Exist for quantum systems in even dimensions    
• For 4D QFTs, they can be obtained from the triangle diagram

’t Hooft Anomalies

• Anomalies are one loop exact.  They are preserved under RG flow 
• Measures of degrees of freedom of quantum systems  
• Anomalies provide strong constraints for the IR phases of quantum systems 
• In superconformal field theories, the conformal anomaly coefficients (a, c, …) and 

flavor central charge are related to anomalies associated to the R-symmetry

δϵSeff[A] = ∫M4

ϵa𝒜a = ∫M4

ϵaDμ jμ
a

Background Gauge Field for Global symmetry



Anomaly Polynomial
• Wess-Zumino consistency conditions imply that anomalies are naturally 

geometric quantities   
• In even dimensions D,

for curvature of spacetime tangent bundle

for background gauge curvature form

ID+2 = IgaugeD+2 + IgravD+2 + Imixed
D+2General structure:

f(TrFm)

f(TrRm)

Descent procedure:

          the anomaly polynomial,  
 a closed, gauge-invariant (D+2)-form in  

�Se↵ =

Z

MD

I(1)D

ID+2 = dI(0)D+1, �I(0)D+1 = dI(1)D

order in gauge 
parameter

MD+2

e.g. For D=4 I6 = C1Tr(F3) + C2Tr(F1F2
2) + C3Tr(F)p1(TM4)

The C’s are the anomaly 
coefficients 



    The 4d SCFTs are labeled by: 
• Euler characteristic  
• Local data at the punctures.  

 

Regular punctures 
Boundary conditions for SCFT             
labeled by a partition of     , 
    1-1 with Young tableaux

4D N=2 Class S Arena

N = ∑
k

knk

Flavor symmetry at Puncture is fixed 

G = S (∏
k

U(nk))

�(⌃g,n) = �2g + 2� n

N

6d (2,0) SCFTs of type AN-1 

4d theory of “Class S”

Worldvolume theory is

N M5 branes

Partial topological twist over     
         (genus g, n punctures)  
to preserve susy
⌃g,n

 



SU(N) x SU(N) x U(1)

=        free bifundamental hypermultiplets 

N M5 branes

p = ��(⌃g=0,n=3) = 1

N2

Example: Hypermultiplets



• Anomalies of Class S theories have been studied by using field theory methods — QFT dualities 
and anomaly matching in Higgs branch [Chacaltana, Distler, Tachikawa ’12] 

Structure of anomalies with Regular Punctures

I𝒮
6 = − χ(Σg,n)Ib

6 +
n

∑
α=1

I6(Gα)

Universal contribution  
Independent of puncture data

Contribution from each puncture 
Independent of Riemann Surface data 

Fixed by boundary data

∫Σg,n

I8[AN−1] = − χ(Σg,n)Ib
6

Universal part fixed by reducing 
6D anomaly of Riemann Surface 

Goal: Provide a geometric derivation of anomaly polynomial by directly 
Considering the compactification of the M5-branes



Outline

• Anomaly Inflow for M5-branes 

• Puncture Geometry



Anomaly Inflow for M5-Branes 



Anomaly Inflow
• Gauge symmetries and diffeomorphisms can be broken classically when Gauge and 

Gravitational theories are taken over spaces with boundaries or when there are localized sources 

• When gauge symmetries and diffeomorphisms are restricted on boundaries or on localized 
sources, they induce global symmetries 

• The effective action of the localized degrees of freedoms at the boundaries or on the sources can 
be anomalous under the induced global symmetry 

• Consistency of the sources and boundaries requires the quantum anomaly of the localized 
degrees of freedom to cancel the anomalous variation of the bulk action [Callan, Harvey ‘85]  

• Dirichlet boundary conditions of bulk gauge fields are background fields for boundary global 
symmetry 

• Anomaly inflow makes the higher dimensional nature of anomalies from descent natural

Descent procedure:

          the anomaly polynomial,  
 a closed, gauge-invariant (D+2)-form in  

�Se↵ =

Z

MD

I(1)D

ID+2 = dI(0)D+1, �I(0)D+1 = dI(1)D

MD+2



M-theory with M5-brane sources
Consider the SUGRA action of 11D M-theory

SM

2π
= ∫M11

g [R −
1
2

|G4 |2 ] −
1
6

C3 ∧ G2
4 − C3 ∧ X8

X8 =
1

196 [p2
1(TM11) − 4p2(TM11)]

p1 ∼ Tr(R2), p2 ∼ Tr(R4)

X8 = dX (0)
7 , δdiff X (0)

7 = dX(1)
6

In addition to diff, there is a gauge symmetry C3 → C3 + dλ2

TM11 W6
= TW6 ⊕ NW6

The normal bundle is the          R-symmetry bundle 
The gravitational and R-symmetry anomalies  
must cancel the non-vanishing bulk variation

SO(5)

W6

M11 = W6 × ℝ5 dG4 = N δW6

In presence of M5-brane sources, the classical 
variation of the action is non-vanishing

δSM

2π
= − N∫M11

[X(1)
6 + λ2 ∧ G4] δW6

A more careful analysis is necessary to 
see the dependence of the bulk variation 

on the background fields



Variation with Background Fields
• Variation of action must be done with respect to a globally defined and closed object 

• In presences of source,      is singular and the action is ill defined 

• Variation must account for background fields that live on the brane 

•      must be replaced with a suitable object that is gauge invariant, globally defined and non-
singular [Witten ’97; Freed, Harvey, Minasian, Moore ’98; Harvey, Minasian, Moore ’98]

angular form on the 5 transverse directions 
SO(5)-bundle = S4 ⇥ r

dG4 = Nδ(5)(r)dr ∧ dΩ4

Replace the RHS with characteristic classes which are smooth, 
well-defined on the full SO(5)-bundle.

gauge-invariant, closed, globally  
defined angular form

bump form

dG4 = dρ(r) ∧ E4

E4 =
N
V4

[DΩ4 + α1FDyy + α2FFy]

dya → Dya − Aab
SO(5)y

b, yaya = 1

DΩ4 =
1
4!

ϵa1⋯a5
Dya1⋯Dya4ya5

G4

G4

The total number of branes ∫S4

E4 = N

Satisfies Descent Relations

E4 = dE(0)
3 , δE(0)

3 = dE(1)
2

G4 = − ρ(r)E4 + ⋯



Variation with Background Fields — Answer

To express the answer after variation,  
in the region near the branes, write M11 = r × M10 , S4 ↪ M10 → W6

The variation of the M-theory action can be written as integral over a descent of a 12-form 

δSM

2π
= ∫M10

I(1)
10 I12 = dI(0)

11 , δI(0)
11 = dI(1)

10

I12 = −
1
6 (E4)3 − E4 ∧ X8

from fromδ(C3G2
4) δ (C3X8)

Inflow result for flat branes:

Anomaly polynomial for 6D SCFT
Anomaly polynomial for a free 6D 

(2,0) tensor multiplet 
Center of mass degree of freedom

Iinf
8 + I8[AN−1] + Ide

8 = 0Iinf
8 = ∫S4

I12



Reducing Anomaly Polynomial 

Consider the case when the branes  
are wrapped on an even dimensional 

compact geometry 

W6 = ℝ1,5−k × Xk , M10 = ℝ1,5−k × M4+k

S4 ↪ M4+k → Xk

The S4 fibration is fixed by SUSY

1. Construct the form      on          — Flux that support M-theory background 
2. Gauge      along the symmetries acting on          to obtain   
3. Integrate to obtain the lower dimensional anomaly polynomial

Ē4
Ē4

M4+k
M4+k E4

I8−k = ∫M4+k

I12
Anomaly polynomial of field theory is obtain by  

Integrating over compact directions



M5-branes on Riemann Surface

e.g. Consider the case when X2 = Σg,n , This configuration preserves  
8 supercharges Σg,n ⊂ CY2 = T*Σg,n

The space M6 = Σg,n × S4 has boundaries and we cannot reduce the anomaly polynomial on it

We assume that      can be smoothly glued to        
The possible choices of punctures map to the  

Possible choices for  

Xα
6 M6

Xα
6

Iinf
6 = ∫M̃6

I12 = ∫M6

I12 +
n

∑
α=1

∫Xα
6

I12

Contribution of puncture encoded in     and on                     Xα
6 E4

M10 = ℝ1,3 × Σg,n × S4 , M11 = r × M10

W6 S4 ↪ M6 → Σg,n
The 10D space near branes decomposes as

Consider a closure of      to       by gluing a space      at each puncture

Strategy for punctures:

M̃6 = M6 ∪
n

⋃
α=1

Xα
6

Xα
6M̃6M6



Bulk Contribution to Anomaly

Iinf
6 = ∫M̃6

I12 = ∫M6

I12 +
n

∑
α=1

∫Xα
6

I12

= Ibulk
6 + ∑

α

I6(Gα)

Ibulk
6 = ∫M6

I12 = ∫Σg,n

Iinf
8 = − χ(Σg,n)I6

Integrating on the sphere yields 
The anomaly for 6D theory

Integrate the 6D polynomial while 
Implementing the twist 

Universal term fixed by 6D

The game is to understand puncture geometry and how to fix the flux on it



Puncture Geometry and Puncture data



The non-puncture I
Consider a point on the Riemann Surface and a small disc       centered around it    Dα

Now, we have the product geometry the disc with the sphere fiber Xα
6 = Dα × S4

The 4-sphere can be parametrized as [μ] × S1
ϕ × S2

Ω , μ ∈ [0,1] , {
S2

Ω → μ = 0
S1

ϕ → μ = 1

µ = 1

µ = 0
� ⇠ � + 2⇡

The disc can be parametrized with (rΣ, β)

Xα
6 = Xα

4 × S2
ΩAlso write 



The non-puncture II
Perform a change of coordinates, trick motivated by holography [Gaiotto, Maldacena ’09, IB ‘15]

⌘

⌘max

⇢

(ρ, η, χ, β) χ = ϕ + β

S1
χ → 0 , ρ → 0

Dβ = dβ − LdχS1
β ↪ Xα

4 → ℝ3 ,

ρ → 0, L = { 1 η < ηmax

0 η > ηmax

The connection has monopole source with unit charge 1

r⌃

µ

1

S2
⌦ ! 0

S1
� ! 0

S1
� ! 0

(rΣ, μ, ϕ, β)

The disc region



⇢

⌘

⌘max

⌘a

Monopole Geometry as Puncture geometry
More interesting geometry obtained by adding more monopole sources

Dβ − Ldχ

Add p monopoles at locations η = ηa, ηp = ηmax

In the region near ρ = 0, L(ρ, η) Piece-wise constant

Next we consider the possible flux for E4
It is constrained by flux quantization  

and regularity

The region near a monopole can be described  
by a single center Taub-Nut space  

X8The 8-form      picks up a contribution  
from each Taub-Nut space

Monopole charge given by the flux

ka = ∫S2
a

d(Dβ)
2π

= − Δη=ηa
L(ρ = 0) = ℓa − ℓa+1, ℓp+1 = 0

S2
a



Cup Flux

⇢

⌘max

⌘a

⌘a�1

⌘a+1

⇥ (aS1
� + bS1

�) ⇥ S2
⌦ ' S4' Ca

4

combination that vanishes on axis

∫Ca
4

E4 = ya ∈ ℤ



Total flux 

⇢

⌘max

⌘a

⌘a�1

⌘a+1

⇥ S1
� ⇥ S2

⌦ ' S4

N = ∫S4

E4 = yp ∈ ℤ



Bubble flux

⇢

⌘max

⌘a

⌘a�1

⌘a+1

⇥ S2
⌦ ' Ba

4S1
�⇥

∫Ba
4

E4 = wa − wa−1 ∈ ℤ+

0 = w0 < w1⋯ < wp, wa ∈ ℤ+

Positivity of flux fixed by orientation of cycle



Regularity and Partition of N

This partition of N defines a Young diagram.

1 k = N
e.g. max puncture

1

N � 1

k = 1

k = 1
e.g. min puncture

S2
a ⇥ S2

⌦

⇢

⌘max

⌘a

⌘a�1

⌘a+1

Regularity of flux near monopole implies

∫S2
a×S2

Ω

E4 = 0

= ya − ya−1 − waka

ya =
a

∑
b

waka, N =
p

∑
b

waka



Flavor Symmetry
Flavor symmetry comes from two cycles in puncture geometry

｝ka � 1

Resolution of the monopole singularity leads to
(ka − 1) ℙ1 with harmonic forms ω̂a,I

⇢

⌘max

⌘a

⌘a�1

⌘a+1

S1
�⇥ ⌘ Sa

Each two cycle has associated harmonic form, ωa

E4 ⊃
1

2π

p

∑
a=1

ka−1

∑
I=1

̂FI
a ∧ ω̂a,I

Background fields for Cartan elements of             symmetrySU(ka)

Total flavor symmetry at puncture: G = S (∏U(ka))

E4 ⊃
1

2π

p

∑
a=2

Fa ∧ ωa

Background field for a          symmetryU(1)



Anomaly answer

The final answer can be compared to field theory analysis

Iinf
6 + ICFT

6 + Idecoupled
6 = 0

free tensor multiplet on smooth Riemann Surface

kinf
SU(ka) + kCFT

SU(ka) = 0Flavor central charge: 

• We provide a geometric derivation of the anomaly polynomial for N=2 class S 
theories with regular punctures 

• We are able to match with previous field theory analysis 
• Anomaly data completely encoded in topology of M-Theory background 
• We describe a class of geometries that capture data associated to regular 

punctures 
• The description of the puncture is encoded in consistency of various flux on 

the puncture geometry!



Anomaly answer
With all the data the class       can be constructed.  Plug into      and integrate E4 I12

I6(⌃g,n)
inf =

N�

2


(cr1)

3

3
� cr1p1(TM4)

12

�
� (4N3 �N)�

6
cr1c

R
2

Na =
aX

b=1

`b(wb � wb�1)

I6(P↵)
inf =

1

2

pX

a=1

Naka


(cr1)

3

3
� cr1p1(TM4)

12

�

�
pX

a=1


2

3
`2a(w

3
a � w3

a�1)�
1

6
Naka + `a(Na � wa`a)(w

2
a � w2

a�1)

�
cr1c

R
2

�
pX

a=1

2Nac
r
1 ch2(SU(ka))

= I inf6 (⌃g,n) +
X

↵

I inf6 (P↵)I inf6

p = # of monopoles



Outlook

• The 12-form polynomial of M-theory can be used in holographic systems to 
compute anomalies 

• What are geometries that capture the anomalies for systems with Irregular 
punctures? 

• How are puncture geometries related to descriptions in terms of Hitchin’s 
equations? 

• What are the geometries that capture punctures for N=1 class S or class Sk? 

• Do they provide a new method for obtaining puncture data? 

• What is the associated polynomial for general (1,0) theories?



Thank you!


