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Important background literature
I Topological field theory - [Witten’88]

I Ω-deformation - [Nekrasov’02], [Nekrasov, Okounkov’03]

I Susy field theories on curved space - [Festuccia, Seiberg’11],
[Klare, Tomasiello, Zaffaroni’12]

I 5d N = 4+ supergravity - [Romans’86]



Motivation

Exact holography?
I The Ω-deformation allows exact evaluation of the partition

function on R4, ZNekrasov.

I ZNekrasov a basic building block for many other localization
results, fundamental importance.

I AdS/CFT gives a dual description of the same physics. Many
exact results via susy localization on curved spaces useful for
(quantum) gravity and vice versa.

I Is there a bulk dual to ZNekrasov and can it serve a similar
fundamental purpose, and how?

I Here: just the beginning - find the simplest bulk dual!
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Intro: 4d N = 2 field theories

I Vector multiplets: (Aµ, φ, ψ) with arbitrary gauge groups G

I Hypermultiplets: (qu, ξ) in some representation of G

I In Euclidean signature, R-symmetry SO(1, 1)× SU(2), Lorentz
group SO(4) = SU(2)left × SU(2)right

I Supercharges Q,Q+
µν , G

µ (scalar, selfdual two-form, vector) on
R4

I Donaldson-Witten topological theory on anyM4 - twist the
SU(2)left with the SU(2)R, only Q preserved - works for an
arbitrary N = 2 theory
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Intro: the Ω-deformation

I Pick any 4d N = 2 susy QFT on R4, consider supercharge

Q̃ = Q+ EaΩaµνx
µGν , (1)

Ωaµνx
µ the Killing vectors of SO(4) rotations.

I Deform Lagrangian with Q̃-invariant terms.

I Choose a symplectic form ω on R4,

ω ≡ dx1 ∧ dx2 + dx3 ∧ dx4 , (2)

implying a complex structure z1 = x1 + ix2, z2 = x3 + ix4,

H ≡ ε1|z1|2 + ε2|z2|2 (3)
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Intro: Nekrasov partition function

I consider

ZN (a, ε1,2) ≡
〈

exp

∫
R4

ω ∧ Tr(φF + ψψ)−H Tr(F ∧ F )

〉
a

(4)

I a - Coulomb branch parameter

I ε1,2 a susy modification of the theory, R4 becomes equivariantly
compact→ calculate exactly ZN (a, ε1,2)

I in an expansion around small ε1,2,

logZN (a, ε1,2) =
1

ε1ε2
F0 +

(ε1 + ε2)

ε1ε2
H1/2 + F1 +

(ε1 + ε2)2

ε1ε2
G1 + ...

(5)
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Intro: gluing copies of ZN(a, ε1,2)

I For anM4 with a U(1)-isometry one can localize ZM4 to the
fixed points of the U(1) onM4, where we locally recover the
Ω-deformation on R4.

I → Construct ZM4 with a number of ZN (a, ε1,2) for each fixed
point, correctly identifying ε1,2 at every point and integrating over
the Coulomb branch parameter a - "gluing procedure".

I → Use F0(a),H1/2(a),F1(a),G1(a) to construct large class of
susy partition functions of a given N = 2 theory.

I Similarly deform Q to Q̃ on manifolds other than R4 - NO twist.
Even richer story for twists of N = 4 SYM...

I Here: stay at the superconformal point, a = 0 - full Coulomb
branch not visible⇒ only one of ε1,2 accessible.
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Ω-background

I Instead of modifying the path-integral, consider a background of
4d N = 2 sugra, in particular here off-shell superconformal
gravity.

I Explicit background constructed in [Hama, Hosomichi’13] from
deconstructing the ellipsoid, in agreement with the classification
of [Klare, Zaffaroni’13].

I SUGRA Weyl multiplet: metric g(4)
µν , two real 2-forms T±µν ,

SO(1, 1) + SU(2) gauge fields A0
µ, A

ij
µ , a real scalar d̃ + fermions.

I Ω-background: vanishing fermions, flat R4 metric,
A0 = Aij = d̃ = T+ = 0,

T− = db = −2β ω , b = 2β(x[2dx1] + x[4dx3]) . (6)

with β = ε1 + ε2 [Hama, Hosomichi’13], [Klare, Zaffaroni’13].
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Conformal Killing spinors in the Ω-background

I 12 supercharges preserved,

ζ+ = ζ+
0 , ζ− = ζ−0 −

i

2
bmγ

mζ+
0 + xmγmη

+
0 ,

η± =
1

4
γm∂mζ

∓ ,⇒ η+ = η+
0 , η− = 0

(7)

I not all S-supersymmetries are broken!

I for comparison, on usual R4 with T− = 0: 8 Q’s + 8 S’s,

ζ± = ζ±0 + xmγmη
∓
0 , η± = η±0 (8)
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Deformation of the Lagrangian

I Due to the background 2-form T−, additional couplings to the flat
space N = 2 theory dictated by superconformal gravity coupled
to vectormultiplets (Aµ, φ, ψ) and hypermultiplets (qu, ξ):

δL = β ω ∧ Tr(φF + ξ̄γξ) . (9)

I Tr(F ∧ F ) term absent in the superconformal gravity formalism!

I ⇒We cannot switch on freely both deformation parameters ε1,2
of Nekrasov using only the background Weyl multiplet.
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The bulk: 5d N = 4+ supergravity

I 5d sugra with no extra matter, minimal physical theory (various
string theory embeddings).

I Metric g(5)
µν , scalar X = e−λ/

√
6, SO(1, 1)R symmetry f = da,

SU(2)R symmetry F i = dAi + gεijkA
j ∧Ak, two 2-forms B±

charged under the SO(1, 1)R, H± = dB± ∓ g a ∧B±, odd-dim.
(anti-)selfdual.

I Bosonic Lagrangian

L =
√
g(5)

[
R− 1

2
|dλ|2 + 2X4|f |2 + g2(X2 + 2X−1)

−X−2
(
tr|F |2 +B+ ·B−

) ]
+ CS terms ,

(10)

I Maximally supersymmetric vacuum (16 supercharges) AdS5:
λ = 0⇒ X = 1, f = F i = B± = 0.
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The bulk: Ω-AdS5

I Background Weyl multiplet in 4d superconformal gravity = susy
boundary condition for an asymptotically AdS5 bulk solution.

I Full bosonic solution (fermions = 0):

λ = 0 , a = 0 , Ai = 0 , B+ = 0 ,

ds2
5 =

L2

z2
(dz2 + ds2

4) ,

B− = −L
z
β (dx1 ∧ dx2 + dx3 ∧ dx4) =

L

2z
T−,

(11)

I Very easy! No flow away from AdS5 because of remaining
conformal S supercharges.
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The bulk: Killing spinors for Ω-AdS5

I Use spinors of definite chirality and SO(1, 1) eigenvalues,
γ1234ε

±
0 = ±ε±0 and σ̂3ε0± = ±ε0±.

I Explicit Killing spinors for Ω-AdS5 (12 independent supercharges)

ε = z−1/2ε−0 + + (z1/2 + z−1/2xmγm)ε+
0 +

+ z−1/2

(
1− i

2
bmγ

mσ̂+

)
ε+

0 − .
(12)

I ε−− = 0 but ε+
+ 6= 0→ four S’s preserved.

I Moving away from the conformal vacuum = giving vev v to the
scalar X3 = 1 + vz2 ⇒ a susy flow breaking conformality,
ε+

+ = 0 with an IR singularity as z →∞.



The bulk: Killing spinors for Ω-AdS5

I Use spinors of definite chirality and SO(1, 1) eigenvalues,
γ1234ε

±
0 = ±ε±0 and σ̂3ε0± = ±ε0±.

I Explicit Killing spinors for Ω-AdS5 (12 independent supercharges)

ε = z−1/2ε−0 + + (z1/2 + z−1/2xmγm)ε+
0 +

+ z−1/2

(
1− i

2
bmγ

mσ̂+

)
ε+

0 − .
(12)

I ε−− = 0 but ε+
+ 6= 0→ four S’s preserved.

I Moving away from the conformal vacuum = giving vev v to the
scalar X3 = 1 + vz2 ⇒ a susy flow breaking conformality,
ε+

+ = 0 with an IR singularity as z →∞.



The bulk: Killing spinors for Ω-AdS5

I Use spinors of definite chirality and SO(1, 1) eigenvalues,
γ1234ε

±
0 = ±ε±0 and σ̂3ε0± = ±ε0±.

I Explicit Killing spinors for Ω-AdS5 (12 independent supercharges)

ε = z−1/2ε−0 + + (z1/2 + z−1/2xmγm)ε+
0 +

+ z−1/2

(
1− i

2
bmγ

mσ̂+

)
ε+

0 − .
(12)

I ε−− = 0 but ε+
+ 6= 0→ four S’s preserved.

I Moving away from the conformal vacuum = giving vev v to the
scalar X3 = 1 + vz2 ⇒ a susy flow breaking conformality,
ε+

+ = 0 with an IR singularity as z →∞.



Uplift to IIB supergravity

I Simple form in string frame:

ds2 =
√

∆
(
ds2

5 + L2Xdθ2
)

+
L2

√
∆

(
1

X
cos2 θ dΩ2

3 −X2 sin2 θ dφ2

)
,

F5 = − iL
4

gs
(1 + ?10)d

(
∆X2

z4

)
∧ vol4 , ∆ = X cos2 θ +X−2 sin2 θ

B2 = igsC2 =
L2

4
e−φ sin θ B− , C0 = 0 , eΦ = gs .

I The "internal" space becomes a deformation of 5d de Sitter→
Hull’s type IIB∗ supergravity (e.g. standard IIB sugra with purely
imaginary RR fields).



Uplift to IIB supergravity

I Simple form in string frame:

ds2 =
√

∆
(
ds2

5 + L2Xdθ2
)

+
L2

√
∆

(
1

X
cos2 θ dΩ2

3 −X2 sin2 θ dφ2

)
,

F5 = − iL
4

gs
(1 + ?10)d

(
∆X2

z4

)
∧ vol4 , ∆ = X cos2 θ +X−2 sin2 θ

B2 = igsC2 =
L2

4
e−φ sin θ B− , C0 = 0 , eΦ = gs .

I The "internal" space becomes a deformation of 5d de Sitter→
Hull’s type IIB∗ supergravity (e.g. standard IIB sugra with purely
imaginary RR fields).



Future studies

I Derive ZN from the sugra action or any other non-trivial
observables to check holography?

I Ω-background for N = 2∗? See the mass parameter and thus
both ε1,2?

I Generalize the holographic construction of Ω-like backgrounds to
other dimensions.

I Investigate holographic duals to the more general
Nekrasov-Okounkov twist of N = 2 theories, as well as the 3
special twists of N = 4 SYM.
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