The holographic dual of the Ω -background

Kiril Hristov

INRNE, Bulgarian Academy of Sciences

Workshop on Holography, Generalized Geometry and Duality MITP, Mainz, 6-17 May 2019 > 1903.05095 with Nikolay Bobev and Friðrik Freyr Gautason

Important background literature

- Topological field theory [Witten'88]
- Ω-deformation [Nekrasov'02], [Nekrasov, Okounkov'03]
- Susy field theories on curved space [Festuccia, Seiberg'11], [Klare, Tomasiello, Zaffaroni'12]
- ▶ 5d $\mathcal{N} = 4^+$ supergravity [Romans'86]

- The Ω -deformation allows exact evaluation of the partition function on \mathbb{R}^4 , $Z_{Nekrasov}$.
- Z_{Nekrasov} a basic building block for many other localization results, fundamental importance.

- The Ω -deformation allows exact evaluation of the partition function on \mathbb{R}^4 , $Z_{Nekrasov}$.
- ► *Z_{Nekrasov}* a basic building block for many other localization results, fundamental importance.
- AdS/CFT gives a dual description of the same physics. Many exact results via susy localization on curved spaces useful for (quantum) gravity and vice versa.

- The Ω -deformation allows exact evaluation of the partition function on \mathbb{R}^4 , $Z_{Nekrasov}$.
- ► *Z_{Nekrasov}* a basic building block for many other localization results, fundamental importance.
- AdS/CFT gives a dual description of the same physics. Many exact results via susy localization on curved spaces useful for (quantum) gravity and vice versa.
- ► Is there a bulk dual to Z_{Nekrasov} and can it serve a similar fundamental purpose, and how?

- The Ω -deformation allows exact evaluation of the partition function on \mathbb{R}^4 , $Z_{Nekrasov}$.
- ► *Z_{Nekrasov}* a basic building block for many other localization results, fundamental importance.
- AdS/CFT gives a dual description of the same physics. Many exact results via susy localization on curved spaces useful for (quantum) gravity and vice versa.
- ► Is there a bulk dual to Z_{Nekrasov} and can it serve a similar fundamental purpose, and how?
- Here: just the beginning find the simplest bulk dual!

- ▶ Vector multiplets: (A_{μ}, ϕ, ψ) with arbitrary gauge groups G
- Hypermultiplets: (q^u, ξ) in some representation of G

Intro: $4d \mathcal{N} = 2$ field theories

- ▶ Vector multiplets: (A_{μ}, ϕ, ψ) with arbitrary gauge groups G
- Hypermultiplets: (q^u, ξ) in some representation of G
- ▶ In Euclidean signature, R-symmetry $SO(1, 1) \times SU(2)$, Lorentz group $SO(4) = SU(2)_{left} \times SU(2)_{right}$

Intro: $4d \mathcal{N} = 2$ field theories

- ▶ Vector multiplets: (A_{μ}, ϕ, ψ) with arbitrary gauge groups G
- Hypermultiplets: (q^u, ξ) in some representation of G
- ▶ In Euclidean signature, R-symmetry $SO(1, 1) \times SU(2)$, Lorentz group $SO(4) = SU(2)_{left} \times SU(2)_{right}$
- ▶ Supercharges $Q, Q^+_{\mu\nu}, G^\mu$ (scalar, selfdual two-form, vector) on \mathbb{R}^4

Intro: $4d \mathcal{N} = 2$ field theories

- ▶ Vector multiplets: (A_{μ}, ϕ, ψ) with arbitrary gauge groups G
- Hypermultiplets: (q^u, ξ) in some representation of G
- ▶ In Euclidean signature, R-symmetry $SO(1, 1) \times SU(2)$, Lorentz group $SO(4) = SU(2)_{left} \times SU(2)_{right}$
- Supercharges $Q, Q^+_{\mu\nu}, G^\mu$ (scalar, selfdual two-form, vector) on \mathbb{R}^4
- ▶ Donaldson-Witten topological theory on any M_4 twist the $SU(2)_{left}$ with the $SU(2)_R$, only Q preserved works for an arbitrary $\mathcal{N} = 2$ theory

Intro: the Ω -deformation

▶ Pick any 4d $\mathcal{N} = 2$ susy QFT on \mathbb{R}^4 , consider supercharge

$$\tilde{Q} = Q + E_a \Omega^a_{\mu\nu} x^\mu G^\nu , \qquad (1)$$

 $\Omega^a_{\mu\nu}x^\mu$ the Killing vectors of SO(4) rotations.

• Deform Lagrangian with \tilde{Q} -invariant terms.

Intro: the Ω -deformation

▶ Pick any 4d $\mathcal{N} = 2$ susy QFT on \mathbb{R}^4 , consider supercharge

$$\tilde{Q} = Q + E_a \Omega^a_{\mu\nu} x^\mu G^\nu , \qquad (1)$$

 $\Omega^a_{\mu\nu}x^\mu$ the Killing vectors of SO(4) rotations.

- Deform Lagrangian with \tilde{Q} -invariant terms.
- Choose a symplectic form ω on \mathbb{R}^4 ,

$$\omega \equiv \mathrm{d}x^1 \wedge \mathrm{d}x^2 + \mathrm{d}x^3 \wedge \mathrm{d}x^4 \;, \tag{2}$$

implying a complex structure $z_1 = x^1 + ix^2, z_2 = x^3 + ix^4$,

$$H \equiv \epsilon_1 |z_1|^2 + \epsilon_2 |z_2|^2 \tag{3}$$

Intro: Nekrasov partition function

consider

$$Z_N(a,\epsilon_{1,2}) \equiv \left\langle \exp \int_{\mathbb{R}^4} \omega \wedge Tr(\phi F + \psi \psi) - H \ Tr(F \wedge F) \right\rangle_a$$
(4)

a - Coulomb branch parameter

Intro: Nekrasov partition function

consider

$$Z_N(a,\epsilon_{1,2}) \equiv \left\langle \exp \int_{\mathbb{R}^4} \omega \wedge Tr(\phi F + \psi \psi) - H \ Tr(F \wedge F) \right\rangle_a$$
(4)

- ► *a* Coulomb branch parameter
- ► $\epsilon_{1,2}$ a susy modification of the theory, \mathbb{R}^4 becomes equivariantly compact \rightarrow calculate exactly $Z_N(a, \epsilon_{1,2})$

Intro: Nekrasov partition function

consider

$$Z_N(a,\epsilon_{1,2}) \equiv \left\langle \exp \int_{\mathbb{R}^4} \omega \wedge Tr(\phi F + \psi \psi) - H \ Tr(F \wedge F) \right\rangle_a$$
(4)

- ► *a* Coulomb branch parameter
- ► $\epsilon_{1,2}$ a susy modification of the theory, \mathbb{R}^4 becomes equivariantly compact \rightarrow calculate exactly $Z_N(a, \epsilon_{1,2})$
- in an expansion around small $\epsilon_{1,2}$,

$$\log Z_N(a,\epsilon_{1,2}) = \frac{1}{\epsilon_1\epsilon_2}\mathcal{F}_0 + \frac{(\epsilon_1 + \epsilon_2)}{\epsilon_1\epsilon_2}\mathcal{H}_{1/2} + \mathcal{F}_1 + \frac{(\epsilon_1 + \epsilon_2)^2}{\epsilon_1\epsilon_2}\mathcal{G}_1 + \dots$$
(5)

For an \mathcal{M}_4 with a U(1)-isometry one can localize $Z_{\mathcal{M}_4}$ to the fixed points of the U(1) on \mathcal{M}_4 , where we locally recover the Ω -deformation on \mathbb{R}^4 .

- For an \mathcal{M}_4 with a U(1)-isometry one can localize $Z_{\mathcal{M}_4}$ to the fixed points of the U(1) on \mathcal{M}_4 , where we locally recover the Ω -deformation on \mathbb{R}^4 .
- ► → Construct $Z_{\mathcal{M}_4}$ with a number of $Z_N(a, \epsilon_{1,2})$ for each fixed point, correctly identifying $\epsilon_{1,2}$ at every point and integrating over the Coulomb branch parameter a "gluing procedure".
- → Use *F*₀(*a*), *H*_{1/2}(*a*), *F*₁(*a*), *G*₁(*a*) to construct large class of susy partition functions of a given *N* = 2 theory.

- For an \mathcal{M}_4 with a U(1)-isometry one can localize $Z_{\mathcal{M}_4}$ to the fixed points of the U(1) on \mathcal{M}_4 , where we locally recover the Ω -deformation on \mathbb{R}^4 .
- ► → Construct $Z_{\mathcal{M}_4}$ with a number of $Z_N(a, \epsilon_{1,2})$ for each fixed point, correctly identifying $\epsilon_{1,2}$ at every point and integrating over the Coulomb branch parameter a "gluing procedure".
- → Use *F*₀(*a*), *H*_{1/2}(*a*), *F*₁(*a*), *G*₁(*a*) to construct large class of susy partition functions of a given *N* = 2 theory.
- ▶ Similarly deform Q to \tilde{Q} on manifolds other than \mathbb{R}^4 NO twist. Even richer story for twists of $\mathcal{N} = 4$ SYM...

- For an \mathcal{M}_4 with a U(1)-isometry one can localize $Z_{\mathcal{M}_4}$ to the fixed points of the U(1) on \mathcal{M}_4 , where we locally recover the Ω -deformation on \mathbb{R}^4 .
- ► → Construct $Z_{\mathcal{M}_4}$ with a number of $Z_N(a, \epsilon_{1,2})$ for each fixed point, correctly identifying $\epsilon_{1,2}$ at every point and integrating over the Coulomb branch parameter a "gluing procedure".
- → Use *F*₀(*a*), *H*_{1/2}(*a*), *F*₁(*a*), *G*₁(*a*) to construct large class of susy partition functions of a given *N* = 2 theory.
- ▶ Similarly deform Q to \tilde{Q} on manifolds other than \mathbb{R}^4 NO twist. Even richer story for twists of $\mathcal{N} = 4$ SYM...
- ► *Here:* stay at the superconformal point, a = 0 full Coulomb branch not visible \Rightarrow only one of $\epsilon_{1,2}$ accessible.

$\Omega\text{-}\mathsf{background}$

- ► Instead of modifying the path-integral, consider a background of 4d N = 2 sugra, in particular here off-shell superconformal gravity.
- Explicit background constructed in [Hama, Hosomichi'13] from deconstructing the ellipsoid, in agreement with the classification of [Klare, Zaffaroni'13].

$\Omega\text{-}\mathsf{background}$

- ► Instead of modifying the path-integral, consider a background of 4d N = 2 sugra, in particular here off-shell superconformal gravity.
- Explicit background constructed in [Hama, Hosomichi'13] from deconstructing the ellipsoid, in agreement with the classification of [Klare, Zaffaroni'13].
- ► SUGRA Weyl multiplet: metric $g_{\mu\nu}^{(4)}$, two real 2-forms $T_{\mu\nu}^{\pm}$, SO(1,1) + SU(2) gauge fields $A_{\mu}^{0}, A_{\mu}^{ij}$, a real scalar \tilde{d} + fermions.

$\Omega\text{-}\mathsf{background}$

- ► Instead of modifying the path-integral, consider a background of 4d N = 2 sugra, in particular here off-shell superconformal gravity.
- Explicit background constructed in [Hama, Hosomichi'13] from deconstructing the ellipsoid, in agreement with the classification of [Klare, Zaffaroni'13].
- ► SUGRA Weyl multiplet: metric $g^{(4)}_{\mu\nu}$, two real 2-forms $T^{\pm}_{\mu\nu}$, SO(1,1) + SU(2) gauge fields A^0_{μ}, A^{ij}_{μ} , a real scalar \tilde{d} + fermions.

• Ω -background: vanishing fermions, flat \mathbb{R}^4 metric, $A^0 = A^{ij} = \tilde{d} = T^+ = 0$,

$$T^{-} = db = -2\beta \omega$$
, $b = 2\beta (x_{[2}dx_{1]} + x_{[4}dx_{3]})$. (6)

with $\beta = \epsilon_1 + \epsilon_2$ [Hama, Hosomichi'13], [Klare, Zaffaroni'13].

Conformal Killing spinors in the Ω -background

► 12 supercharges preserved,

$$\zeta^{+} = \zeta_{0}^{+}, \quad \zeta^{-} = \zeta_{0}^{-} - \frac{i}{2} b_{m} \gamma^{m} \zeta_{0}^{+} + x^{m} \gamma_{m} \eta_{0}^{+},$$

$$\eta^{\pm} = \frac{1}{4} \gamma^{m} \partial_{m} \zeta^{\mp}, \Rightarrow \eta^{+} = \eta_{0}^{+}, \quad \eta^{-} = 0$$
(7)

Conformal Killing spinors in the Ω -background

12 supercharges preserved,

$$\begin{aligned} \zeta^{+} &= \zeta_{0}^{+} , \quad \zeta^{-} &= \zeta_{0}^{-} - \frac{i}{2} b_{m} \gamma^{m} \zeta_{0}^{+} + x^{m} \gamma_{m} \eta_{0}^{+} , \\ \eta^{\pm} &= \frac{1}{4} \gamma^{m} \partial_{m} \zeta^{\mp} , \Rightarrow \eta^{+} = \eta_{0}^{+} , \quad \eta^{-} = 0 \end{aligned}$$
(7)

not all S-supersymmetries are broken!

Conformal Killing spinors in the Ω -background

12 supercharges preserved,

$$\begin{aligned} \zeta^{+} &= \zeta_{0}^{+} , \quad \zeta^{-} &= \zeta_{0}^{-} - \frac{i}{2} b_{m} \gamma^{m} \zeta_{0}^{+} + x^{m} \gamma_{m} \eta_{0}^{+} , \\ \eta^{\pm} &= \frac{1}{4} \gamma^{m} \partial_{m} \zeta^{\mp} , \Rightarrow \eta^{+} = \eta_{0}^{+} , \quad \eta^{-} = 0 \end{aligned}$$
(7)

- not all S-supersymmetries are broken!
- ▶ for comparison, on usual \mathbb{R}^4 with $T^- = 0$: 8 Q's + 8 S's,

$$\zeta^{\pm} = \zeta_0^{\pm} + x^m \gamma_m \eta_0^{\mp} , \quad \eta^{\pm} = \eta_0^{\pm}$$
(8)

Due to the background 2-form T⁻, additional couplings to the flat space N = 2 theory dictated by superconformal gravity coupled to vectormultiplets (A_μ, φ, ψ) and hypermultiplets (q^u, ξ):

$$\delta \mathcal{L} = \beta \ \omega \wedge Tr(\phi F + \bar{\xi}\gamma\xi) \ . \tag{9}$$

Due to the background 2-form T⁻, additional couplings to the flat space N = 2 theory dictated by superconformal gravity coupled to vectormultiplets (A_μ, φ, ψ) and hypermultiplets (q^u, ξ):

$$\delta \mathcal{L} = \beta \ \omega \wedge Tr(\phi F + \bar{\xi}\gamma\xi) \ . \tag{9}$$

- $Tr(F \wedge F)$ term absent in the superconformal gravity formalism!
- ► ⇒ We *cannot* switch on freely both deformation parameters $\epsilon_{1,2}$ of Nekrasov using only the background Weyl multiplet.

The bulk: 5d $\mathcal{N} = 4^+$ supergravity

- 5d sugra with no extra matter, minimal physical theory (various string theory embeddings).
- Metric g⁽⁵⁾_{µν}, scalar X = e^{-λ/√6}, SO(1, 1)_R symmetry f = da, SU(2)_R symmetry Fⁱ = dAⁱ + gεⁱ_{jk}A^j ∧ A^k, two 2-forms B[±] charged under the SO(1,1)_R, H[±] = dB[±] ∓ g a ∧ B[±], odd-dim. (anti-)selfdual.

The bulk: 5d $\mathcal{N} = 4^+$ supergravity

- 5d sugra with no extra matter, minimal physical theory (various string theory embeddings).
- Metric $g_{\mu\nu}^{(5)}$, scalar $X = e^{-\lambda/\sqrt{6}}$, $SO(1,1)_R$ symmetry f = da, $SU(2)_R$ symmetry $F^i = dA^i + g\varepsilon^i{}_{jk}A^j \wedge A^k$, two 2-forms B^{\pm} charged under the $SO(1,1)_R$, $H^{\pm} = dB^{\pm} \mp g \ a \wedge B^{\pm}$, odd-dim. (anti-)selfdual.
- Bosonic Lagrangian

$$\mathcal{L} = \sqrt{g^{(5)}} \left[R - \frac{1}{2} |d\lambda|^2 + 2X^4 |f|^2 + g^2 (X^2 + 2X^{-1}) - X^{-2} \left(\text{tr} |F|^2 + B^+ \cdot B^- \right) \right] + \text{CS terms },$$
(10)

The bulk: 5d $\mathcal{N} = 4^+$ supergravity

- 5d sugra with no extra matter, minimal physical theory (various string theory embeddings).
- Metric $g_{\mu\nu}^{(5)}$, scalar $X = e^{-\lambda/\sqrt{6}}$, $SO(1,1)_R$ symmetry f = da, $SU(2)_R$ symmetry $F^i = dA^i + g\varepsilon^i{}_{jk}A^j \wedge A^k$, two 2-forms B^{\pm} charged under the $SO(1,1)_R$, $H^{\pm} = dB^{\pm} \mp g \ a \wedge B^{\pm}$, odd-dim. (anti-)selfdual.
- Bosonic Lagrangian

$$\mathcal{L} = \sqrt{g^{(5)}} \Big[R - \frac{1}{2} |d\lambda|^2 + 2X^4 |f|^2 + g^2 (X^2 + 2X^{-1}) - X^{-2} \left(\text{tr} |F|^2 + B^+ \cdot B^- \right) \Big] + \text{CS terms },$$
(10)

Maximally supersymmetric vacuum (16 supercharges) AdS₅: λ = 0 ⇒ X = 1, f = Fⁱ = B[±] = 0. Background Weyl multiplet in 4d superconformal gravity = susy boundary condition for an asymptotically AdS₅ bulk solution.

- Background Weyl multiplet in 4d superconformal gravity = susy boundary condition for an asymptotically AdS₅ bulk solution.
- Full bosonic solution (fermions = 0):

$$\lambda = 0, \quad a = 0, \quad A^{i} = 0, \quad B^{+} = 0,$$

$$ds_{5}^{2} = \frac{L^{2}}{z^{2}} (dz^{2} + ds_{4}^{2}), \qquad (11)$$

$$B^{-} = -\frac{L}{z} \beta (dx_{1} \wedge dx_{2} + dx_{3} \wedge dx_{4}) = \frac{L}{2z} T^{-},$$

- Background Weyl multiplet in 4d superconformal gravity = susy boundary condition for an asymptotically AdS₅ bulk solution.
- Full bosonic solution (fermions = 0):

$$\lambda = 0, \quad a = 0, \quad A^{i} = 0, \quad B^{+} = 0,$$

$$ds_{5}^{2} = \frac{L^{2}}{z^{2}} (dz^{2} + ds_{4}^{2}), \qquad (11)$$

$$B^{-} = -\frac{L}{z} \beta (dx_{1} \wedge dx_{2} + dx_{3} \wedge dx_{4}) = \frac{L}{2z} T^{-},$$

Very easy! No flow away from AdS₅ because of remaining conformal S supercharges.

The bulk: Killing spinors for Ω -AdS₅

► Use spinors of definite chirality and SO(1,1) eigenvalues, $\gamma_{1234}\varepsilon_0^{\pm} = \pm \varepsilon_0^{\pm}$ and $\hat{\sigma}_3 \varepsilon_{0\pm} = \pm \varepsilon_{0\pm}$.

The bulk: Killing spinors for Ω -AdS₅

- ► Use spinors of definite chirality and SO(1,1) eigenvalues, $\gamma_{1234}\varepsilon_0^{\pm} = \pm \varepsilon_0^{\pm}$ and $\hat{\sigma}_3 \varepsilon_{0\pm} = \pm \varepsilon_{0\pm}$.
- Explicit Killing spinors for Ω-AdS₅ (12 independent supercharges)

$$\epsilon = z^{-1/2} \varepsilon_0^- + (z^{1/2} + z^{-1/2} x^m \gamma_m) \varepsilon_0^+ + z^{-1/2} \left(1 - \frac{i}{2} b_m \gamma^m \hat{\sigma}_+ \right) \varepsilon_0^+ .$$
(12)

▶ $\varepsilon^{-}_{-} = 0$ but $\varepsilon^{+}_{+} \neq 0 \rightarrow$ four *S*'s preserved.

The bulk: Killing spinors for Ω -AdS₅

- ► Use spinors of definite chirality and SO(1,1) eigenvalues, $\gamma_{1234}\varepsilon_0^{\pm} = \pm \varepsilon_0^{\pm}$ and $\hat{\sigma}_3 \varepsilon_{0\pm} = \pm \varepsilon_{0\pm}$.
- Explicit Killing spinors for Ω-AdS₅ (12 independent supercharges)

$$\epsilon = z^{-1/2} \varepsilon_{0+}^{-} + (z^{1/2} + z^{-1/2} x^m \gamma_m) \varepsilon_{0+}^{+} + z^{-1/2} \left(1 - \frac{i}{2} b_m \gamma^m \hat{\sigma}_+ \right) \varepsilon_{0-}^{+}.$$
(12)

- ▶ $\varepsilon^{-}_{-} = 0$ but $\varepsilon^{+}_{+} \neq 0 \rightarrow$ four *S*'s preserved.
- Moving away from the conformal vacuum = giving vev v to the scalar X³ = 1 + vz² ⇒ a susy flow breaking conformality, e⁺₊ = 0 with an IR singularity as z → ∞.

Uplift to IIB supergravity

Simple form in string frame:

$$ds^{2} = \sqrt{\Delta} \left(ds_{5}^{2} + L^{2}Xd\theta^{2} \right) + \frac{L^{2}}{\sqrt{\Delta}} \left(\frac{1}{X}\cos^{2}\theta \ d\Omega_{3}^{2} - X^{2}\sin^{2}\theta \ d\phi^{2} \right),$$

$$F_{5} = -\frac{iL^{4}}{g_{s}} (1 + \star_{10})d\left(\frac{\Delta X^{2}}{z^{4}}\right) \wedge vol_{4}, \quad \Delta = X\cos^{2}\theta + X^{-2}\sin^{2}\theta$$

$$B_{2} = ig_{s}C_{2} = \frac{L^{2}}{4}e^{-\phi}\sin\theta \ B^{-}, \quad C_{0} = 0, \quad e^{\Phi} = g_{s}.$$

Uplift to IIB supergravity

Simple form in string frame:

$$ds^{2} = \sqrt{\Delta} \left(ds_{5}^{2} + L^{2} X d\theta^{2} \right) + \frac{L^{2}}{\sqrt{\Delta}} \left(\frac{1}{X} \cos^{2} \theta \, d\Omega_{3}^{2} - X^{2} \sin^{2} \theta \, d\phi^{2} \right)$$

$$F_{5} = -\frac{iL^{4}}{g_{s}} (1 + \star_{10}) d\left(\frac{\Delta X^{2}}{z^{4}} \right) \wedge vol_{4}, \quad \Delta = X \cos^{2} \theta + X^{-2} \sin^{2} \theta$$

$$B_{2} = ig_{s}C_{2} = \frac{L^{2}}{4} e^{-\phi} \sin \theta B^{-}, \quad C_{0} = 0, \quad e^{\Phi} = g_{s}.$$

► The "internal" space becomes a deformation of 5d de Sitter → Hull's type IIB* supergravity (e.g. standard IIB sugra with purely imaginary RR fields).

Derive Z_N from the sugra action or any other non-trivial observables to check holography?

- Derive Z_N from the sugra action or any other non-trivial observables to check holography?
- Ω-background for N = 2*? See the mass parameter and thus both ε_{1,2}?

- Derive Z_N from the sugra action or any other non-trivial observables to check holography?
- Ω-background for N = 2*? See the mass parameter and thus both ε_{1,2}?
- Generalize the holographic construction of Ω-like backgrounds to other dimensions.

- Derive Z_N from the sugra action or any other non-trivial observables to check holography?
- Ω-background for N = 2*? See the mass parameter and thus both ε_{1,2}?
- Generalize the holographic construction of Ω-like backgrounds to other dimensions.
- ► Investigate holographic duals to the more general Nekrasov-Okounkov twist of N = 2 theories, as well as the 3 special twists of N = 4 SYM.