HOLOGRAPHIC ORIGIN of the BEKENSTEIN-HAWKING ENTROPY of 1/16 BPS AdS₅ BLACK HOLES

Davide Cassani

INFN Padova

1810.11442, 1904.05865 with A. Cabo-Bizet, D. Martelli, S. Murthy

"Holography, Generalized Geometry and Duality"

Mainz Institute for Theoretical Physics 10 May 2019

Black hole microstate counting

A major achievement of string theory :

provide the microstates that account for the entropy of (supersymmetric) black holes

asymptotically AdS₄ Benini, Hristov, Zaffaroni '15, ...

Entropy of supersymmetric AdS₄ black holes computed by the Legendre transform of a topologically twisted index

Supersymmetric black holes in AdS₅

Supersymmetric black holes in AdS₅ have been known for 15 years

Gutowski, Reall '04, Chong, Cvetic, Lu, Pope '05, Kunduri, Lucietti, Reall ...

1/16 BPS, carry angular momentum & electric charge

Implace S⁵ with more general M₅ → SO(6) broken to just U(1) → E, J_1, J_2, Q

Supersymmetric black holes in AdS₅

microscopic origin ??

Supersymmetric black holes in AdS₅

microscopic origin ??

use AdS_5/CFT_4 type IIB on $AdS_5 \times S^5 \iff \mathcal{N} = 4$ SYM, replace S^5 with more general $M_5 \iff \mathcal{N} = 1$ SCFT₄, e.g. conifold theory microstates: 1/16 BPS states with assigned angular momenta and charge Task: count them at large N. Attempts in the past unsuccessful

Difficulties on field theory side

Why failed?

- 1/16 BPS states not "protected enough"
- natural quantity to consider: superconformal index
 Kinney, Maldacena, Minwalla, Raju '05

At large N, $\mathcal{I}(\omega_1, \omega_2) \sim \mathcal{O}(1) \Rightarrow$ cannot reproduce $\mathcal{O}(N^2)$ entropy

reason: many cancellations between bosonic and fermionic states

Difficulties on field theory side

Why failed?

Index also understood as partition function on $S^1 imes S^3$, twisted by ω_1, ω_2

Path integral and Index differ by susy Casimir energy

Assel, DC, Martelli '14

$$Z(\omega_1, \omega_2) = e^{-\mathcal{F}(\omega_1, \omega_2)} \mathcal{I}(\omega_1, \omega_2)$$

At large N , $-\log Z = \mathcal{F} = -rac{2}{27} rac{(\omega_1 + \omega_2)^3}{\omega_1 \omega_2} c ~\sim \mathcal{O}(N^2)$

anomaly coeff $a = c \sim \mathcal{O}(N^2)$

Difficulties on field theory side

Why failed?

Index also understood as partition function on $S^1 imes S^3$, twisted by ω_1, ω_2

Path integral and Index differ by susy Casimir energy

Assel, DC, Martelli '14

$$Z(\omega_1, \omega_2) = \mathrm{e}^{-\mathcal{F}(\omega_1, \omega_2)} \mathcal{I}(\omega_1, \omega_2)$$

At large N , $-\log Z = \mathcal{F} = -rac{2}{27} rac{(\omega_1 + \omega_2)^3}{\omega_1 \omega_2} c ~\sim \mathcal{O}(N^2)$

anomaly coeff $a=c\sim \mathcal{O}(N^2)$

HOPE? susy Casimir energy not enough

 $\mathcal{F}(\omega_1, \omega_2)$ is a grand-canonical partition function

homogeneous of degree 1 \rightarrow Legendre transform = 0 \rightarrow no entropy

Difficulties on gravity side

AdS/CFT (at large N)

 $\mathrm{e}^{-I_{\mathrm{gravity}}[M_5]} = Z[M_4] \qquad \qquad M_4 = \partial M_5$

gravity boundary conditions \iff QFT background fields

Black hole thermodynamics:Gibbons, Hawkingrelates entropy S and on-shell gravity action $I(\beta, \Omega_i, \Phi) = \beta E - S - \beta \Omega_i J_i - \beta \Phi Q$ Quantum Statistical Relation $E = \frac{\partial I}{\partial \beta}$, $J_i = -\frac{1}{\beta} \frac{\partial I}{\partial \Omega_i}$, $Q = -\frac{1}{\beta} \frac{\partial I}{\partial \Phi}$ $\beta = T^{-1}$

Difficulties on gravity side

AdS/CFT (at large N)

 $\mathrm{e}^{-I_{\mathrm{gravity}}[M_5]} = Z[M_4] \qquad \qquad M_4 = \partial M_5$

gravity boundary conditions \iff QFT background fields

Black hole thermodynamics:Gibbons, Hawkingrelates entropy S and on-shell gravity action $I(\beta, \Omega_i, \Phi) = \beta E - S - \beta \Omega_i J_i - \beta \Phi Q$ Quantum Statistical Relation $E = \frac{\partial I}{\partial \beta}$, $J_i = -\frac{1}{\beta} \frac{\partial I}{\partial \Omega_i}$, $Q = -\frac{1}{\beta} \frac{\partial I}{\partial \Phi}$ $\beta = T^{-1}$

HOPE?

Thermodynamics for supersymmetric black holes is subtle : $eta
ightarrow\infty$

- what are the relevant chemical potentials for $\beta \to \infty$? $\Omega_i \to 1, \Phi \to 3/2$
- do these match ω_1, ω_2 on the field theory side?

fixed!

Table of functions

The non-BPS solution

Five-dimensional minimal gauged supergravity

sources dual R-current

$$\mathcal{L} = (R+12)*1 - rac{2}{3}F \wedge *F + rac{8}{27}F \wedge F \wedge A$$

The non-BPS solution

Five-dimensional minimal gauged supergravity

$$\mathcal{L} = (R+12)*1 - rac{2}{3}F \wedge *F + rac{8}{27}F \wedge F \wedge A$$

Non-supersymmetric, non-extremal black hole solution

Chong, Cvetic, Lu, Pope

4 parameters
$$r_+$$
, a , b , q
4 independent charges E , J_1 , J_2 , Q
4 independent chemical pot. β , Ω_1 , Ω_2 , Φ

 $I(\beta, \Omega, \Phi) = \beta E - S - \beta \Omega J - \beta \Phi Q$

We want to take susy & extremal limit $\beta \rightarrow \infty$

The BPS limit

- many possible limits towards susy & extremal BH
- $\beta \to \infty$ implies extremality but not susy
- supersymmetry is :

$$q = -ab + (1 + a + b) r_{+}^{2} \pm \sqrt{-r_{+}^{2}(r_{+}^{2} - r_{*}^{2})^{2}}$$

reality requires
$$r_+ = r_*$$

 $r_* = a + b + ab$

→ tune two parameters

susy & extremal horizon radius

→ in the Lorentzian causally meaningful solution, susy implies extremality.

The BPS limit

- many possible limits towards susy & extremal BH
- $\beta \to \infty$ implies extremality but not susy
- supersymmetry is :

$$q = -ab + (1 + a + b) r_{+}^{2} \pm \sqrt{-r_{+}^{2}(r_{+}^{2} - r_{*}^{2})^{2}}$$

reality requires $r_+ = r_*$

 $r_* = a + b + ab$

susy

 $\beta = \infty$.

→ tune two parameters

susy & extremal horizon radius

- → in the Lorentzian causally meaningful solution, susy implies extremality.
- \diamond we'd like to impose susy and only later $\beta \rightarrow \infty$. Makes sense?

The quantum statistical relation holds in a Euclidean section of the solution. More generally, in the complexified solution.

 \rightarrow allow q to be complex \rightarrow 3-param family of complexified, susy solutions at finite β

constraint on chemical potentials

chemical potentials are complex!

physical meaning?

regularity condition ensuring the Killing spinor is antiperiodic along the shrinking thermal circle

crucial that we have not taken $\beta \to \infty$ yet

Define difference between the chemical potentials and their BPS values

 $\omega_1=eta(\Omega_1-1)\ ,\qquad \omega_2=eta(\Omega_2-1)\ ,\qquad arphi=eta(\Phi-rac{3}{2})$ Silva

These are conjugate to J_1 , J_2 , Q if one takes time translations to be generated by the susy Hamiltonian $\{Q, \overline{Q}\} = E - J_1 - J_2 - \frac{3}{2}Q$

(as in the index)

Define difference between the chemical potentials and their BPS values

$$\omega_1=eta(\Omega_1-1)\ ,\qquad \omega_2=eta(\Omega_2-1)\ ,\qquad arphi=eta(\Phi-rac{3}{2})$$
 Silva

These are conjugate to J_1 , J_2 , Q if one takes time translations to be generated by the susy Hamiltonian $\{Q, \overline{Q}\} = E - J_1 - J_2 - \frac{3}{2}Q$ (as in the index)

The constraint $\beta (1 + \Omega_1 + \Omega_2 - 2\Phi) = 2\pi i$ becomes:

$$\omega_1+\omega_2-2arphi=2\pi i$$

on-shell action

action
$$I = \frac{16}{27} \frac{\varphi^3}{\omega_1 \omega_2} c \rightarrow$$
 matches the entropy function!

action obtained by background subtraction method (vanishes in AdS)

on-shell action
$$I(\omega_i, \varphi) = \frac{16}{27} \frac{\varphi^3}{\omega_1 \omega_2} c$$

constraint $\omega_1 + \omega_2 - 2\varphi = 2\pi i$

using $E = J_1 + J_2 + \frac{3}{2}Q$ Quantum Statistical Relation becomes :

 $I = -S - \omega_1 J_1 - \omega_2 J_2 - \varphi Q$

Now take extremal limit $r_+ \rightarrow r_*$

 $\beta \rightarrow \infty$ but $\omega_1, \omega_2, \varphi$ remain finite \rightarrow the limit is smooth

→ these relations define a BPS black hole thermodynamics

Start from
$$I(\omega_i, \varphi) = \frac{16}{27} \frac{\varphi^3}{\omega_1 \omega_2} c$$

Entropy $S(J_i, Q)$ as Legendre transform, subject to constraint :

$$S = -I - \omega_1 J_1 - \omega_2 J_2 - \varphi Q - \Lambda (\omega_1 + \omega_2 - 2\varphi - 2\pi i)$$

Lagrange multiplier

$$-rac{\partial I}{\partial \omega_i} = J_i + \Lambda \;, \qquad -rac{\partial I}{\partial arphi} = Q - 2\Lambda$$

yields: $S=\pi\sqrt{3Q^2-8c(J_1+J_2)}=rac{ ext{Area}}{4}$

physical derivation of the extremization principle of Hosseini, Hristov, Zaffaroni

• constraint between the charges J_1 , J_2 , Q follows from reality of the entropy

From gravity to field theory

Now that we have gained insight on the gravity side

let's see how the dual field theory computation is defined.

Localization computation

 S^3

 S^{1}_{β}

black hole requires $n = \pm 1$

• S^3 fibered over S^1

 $ds^{2} = d\tau^{2} + d\theta^{2} + \sin^{2}\theta \left(d\phi_{1} - i\Omega_{1}d\tau\right)^{2} + \cos^{2}\theta \left(d\phi_{2} - i\Omega_{2}d\tau\right)^{2}$

 $A = i \, \Phi \, d au$

complexify chemical pot, $\beta(1 + \Omega_1 + \Omega_2 - 2\Phi) = 2\pi i n$, $n \in \mathbb{Z}$

for n odd, supercharge is antiperiodic

dynamical fields are: periodic bosons, antiperiodic spinors

Localization computation

 S^3

 S^1_β

black hole requires $n = \pm 1$

 $ds^{2} = d\tau^{2} + d\theta^{2} + \sin^{2}\theta \left(d\phi_{1} - i\Omega_{1}d\tau\right)^{2} + \cos^{2}\theta \left(d\phi_{2} - i\Omega_{2}d\tau\right)^{2}$

 $A = i \, \Phi \, d au$

complexify chemical pot, $\beta(1 + \Omega_1 + \Omega_2 - 2\Phi) = 2\pi i n$, $n \in \mathbb{Z}$

for n odd, supercharge is antiperiodic

dynamical fields are: periodic bosons, antiperiodic spinors

A localization computation gives the exact partition function:

$$Z(\omega_1,\omega_2,arphi)=\mathrm{e}^{-\mathcal{F}(\omega_1,\omega_2,arphi)}\mathcal{I}(\omega_1,\omega_2,arphi)$$

where again $\omega_1 = \beta(\Omega_1 - 1)$, $\omega_2 = \beta(\Omega_2 - 1)$, $\varphi = \beta(\Phi - \frac{3}{2})$ with $\omega_1 + \omega_2 - 2\varphi = 2\pi i n$

→ S^3 fibered over S^1

The prefactor

localization gives :

$${\cal F}=-rac{16}{27}rac{arphi^3}{\omega_1\omega_2}\,c$$

at large N

$$arphi=rac{1}{2}(\omega_1+\omega_2-2\pi i\,n)$$

 $n = 0 \rightarrow \mathcal{F} = -\frac{2}{27} \frac{(\omega_1 + \omega_2)^3}{\omega_1 \omega_2} c \qquad \text{susy Casimir energy}$

$$\bullet \quad n = 1 \quad \Rightarrow \qquad \mathcal{F} = -\frac{2}{27} \frac{(\omega_1 + \omega_2 - 2\pi i)^3}{\omega_1 \omega_2} c \qquad \begin{array}{c} \text{matches} \\ \Rightarrow \quad \text{minus the} \\ \text{entropy function} \end{array}$$

→ Legendre transform of $-\mathcal{F}$ is the Bekenstein-Hawking entropy

$$S=\pi\sqrt{3Q^2-8c(J_1+J_2)}=rac{\mathrm{Area}}{4}$$

The index

$${\cal I}(\omega_1,\omega_2,arphi)$$

Translate path integral into Hamiltonian formalism

 $\mathcal{I}(\omega_1,\omega_2,\varphi) = \operatorname{Tr} \mathrm{e}^{\pi i (n+1)F} \mathrm{e}^{-\beta \{\mathcal{Q},\overline{\mathcal{Q}}\} + \omega_1 J_1 + \omega_2 J_2 + \varphi Q}$

• Use:
$$\varphi = \frac{1}{2}(\omega_1 + \omega_2 - 2\pi i n)$$

 $e^{\pi i n F} = e^{-2\pi i n J_1}$ spin-statistics

• Obtain $\mathcal{I}(\omega_1, \omega_2, \varphi) = \operatorname{Tr}(-1)^F e^{-\beta \{\mathcal{Q}, \overline{\mathcal{Q}}\} + (\omega_1 - 2\pi i n)(J_1 + \frac{1}{2}Q) + \omega_2(J_2 + \frac{1}{2}Q)}$ = $\mathcal{I}(\omega_1 - 2\pi i n, \omega_2)$

→ superconformal index with a shifted chemical potential

Non-trivial as the shift is not an invariance of the index! Introduces extra phases

Cardy limit of the index

limit of large charges (at finite N) : $\omega_1, \omega_2 \rightarrow 0$

 $\varphi = \frac{1}{2}(\omega_1 + \omega_2 - 2\pi i n)$ remains finite when $n = \pm 1$

Choi, J. Kim, S. Kim, Nahmgoong; Honda; Arabi Ardehali; J. Kim, S. Kim, Song; Amariti, Garozzo, Lo Monaco large-N limit -> Benini-Milan

We find a universal saddle point controlled by anomalies. Dominant under some assumptions

→ $\mathcal{N} = 4$ SYM, non-chiral quivers with r<1, orbifold theories

$$-\log \mathcal{I} \sim rac{8arphi^3}{27 \omega_1 \omega_2} \left(5a-3c
ight) + rac{8\pi^2 arphi}{3 \omega_1 \omega_2} \left(a-c
ight)$$

generalizes

Di Pietro, Komargodski

at large N : $a = c \rightarrow$ matches entropy function \rightarrow Bekenstein-Hawking entropy

Summary

Open questions

- Why entropy function is encoded both in prefactor and in the index?
 4d Cardy formula relating the degeneracy of states to the vacuum energy? (at large N)
- subleading corrections to Bekenstein-Hawking entropy
 localization in supergravity?
- other dimensions, more black hole solutions, ... DC, Papini, WIP
- Iarge N limit of the index Benini-Milan
- Sen's approach : zoom near the horizon and use AdS₂ / CFT₁ should implement the transformation from microcanonical to grand-canonical

thanks for your attention !