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0. Introduction

eInflation is considered almost a “Standard Model” of cosmology,
since it agrees with data and solves a set of classic “puzzles” of
Hot Big Bang cosmology

eBut there is an extension of it into the strong gravity domain,
where it can be dealt with holographically (in the AdS/CFT of
gauge/gravity duality): holographic cosmology

eModel by P. Mc Fadden and K. Skenderis (2009) offers a phenomeno-
logical set-up in this extended paradigm: use 241d theories
with ‘“generalized conformal structure” and fix parameters from
CMBR data.

eDifferent parametrical fitting than A—CDM with inflation, but
fit to CMBR is as good (x2 of 0.5 difference, 824.0 vs. 823.4)

eCould be improved by lattice calculation at intermediate cou-
pling (in progress)



e\We will show that the classic puzzles of Hot Big Bang cosmol-
ogy solved by inflation are also solved in holographic cosmology

eFor the monopole and relic problem, detailed calculations in a
toy model needed

e The cosmological constand problem (high A to low A) is un-
derstood as a natural consequence of RG flow.

eA possible top-down origin, via a “dimensional reduction” of
N =4 SYM vs. AdSs x S°, in “time”.



1. Holographic cosmology (McFadden, Skenderis, 2009)

eWick rotated cosmology (cosmology/domain wall correspon-
dence)

ds® +dz? + a?(2)[6;; + hij(z, @)]da"dz?
(2, 7) = ¢(z) +09(2,%)a,
with k2 = —k2, § = —iq.

eThis has a (phenomenological) gravity dual; Wick rotation im-
plies g = —iq, N = —iN.

eCMBR observations: power spectra of perturbations ;; and ¢,
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oA holographic (strong gravity — perturbative field theory) calcu-

lation, either direct, or based on Maldacena’s map Z[P] = V[P],
extended to this case, gives

2 q>
A = —
5(@) 1672ImB(—iq)
2q3
NZ(q) = —
7(a) 2ImA(—iq)
(we used k2 = —k2, § = —iq), where
(Tij (DT (—q)) = A(@) N5 + B(@)mijmy;
1 4;4;
Mkt = ™) — Eﬂiﬂkz , Tij = 045 — =

q
eEuclidean field theory is super-renormalizable SU(N) gauge

theory, with A; = AT, ¢M = ¢*MT,, v = y2T, and “general-

ized conformal structure” — dimensions contained in g only, and
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eAction is
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e [ hen, calculate in field theory
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eFit to data is as good as A—CDM with inflation, X2 of 824.0 vs.
823.5, and fixes parameters (V, ggff, and simplified couplings).

eFind that g2 is not perturbative for [ < 30 = exclude it from
the fit. To put it back: need lattice calculation (in progress).
(Afshordi, Coriani, Delle Rose, Gould, Skenderis, 2017)

eAnother quantity needed here: global symmetry current corre-
lators, giving

GNP (—q)) = N2q64B ;11 (92¢)

where again

fJ(ggfr) = fJo [1 — leggfr In ggfr + szggfr + O(gé‘fr)}



2. Hot Big Bang puzzles and their solutions in
inflation

1. Smoothness and horizon: observed correlation size 2rgy/
horizon distance dg at [s, today:

_ 2rg(to)
dr(to)

Inflation: expansion with a(t) o< t™, n > 1 or ellt — scales expand
exponentially and dy(t;,) o« eVe, giving

dH(tls)
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needs p > 1 or a(t) x eft (inflation) to decr., then incr.:
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gives same condition as at 1. For T; = Tinfiation ~ 101°GeV,
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3. Relic and monopole problem

-Monopoles: direct searches: 3 < 10739 monopoles/nucleon =
< 1030 monopoles per volume dilution (at phase transition, the
Kibble mechanism gives ~ 1 mon./nucleon) = need dilution by
Ne > In 1010 ~ 23 e-folds (for phase transition, before the end of
inflation).

-Relics: Not over close the Universe =< 10~ 11 reduction in
volume since phase transition (when 3 ~ 1 relic/nucleon)

4. Entropy problem: Sy (tggn) ~ 1093, but at phase transition,
~ 1/horizon. Inflation: large growth of entropy during reheating,
and exponential exp. increases entropy in horizon.

5. Perturbations problem: CMBR pert. are classical, and
were super-horizon in the past. Inflation: scales « th, but H ~
const. = scales get out of horizon.

6. Baryon asymmetry problem: (N — NB)/NB ~ 1079, Its
creation needs interactions out of equilibrium. Inflation — true
(fast expansion) and 1072: S; ~ 10°.
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3. Solution of puzzles in holographic cosmology
1. Smoothness and horizon problem
ed nongeometric phase, but at the end - geometrical.

eHolographic map nonlocal, even though field theory is causal
and local — generates apparent nonlocality.

eMore precisely, RG flow (UV to IR) dual to inverse time evo-
lution: AdS geodesic, joining z and y at spatial distance L =
L = cR?/rg, where ro = minimum radial distance in AdS. But
r—et/R so I, = cRe t/B so k = %th, where k is momentum
scale.

e | hen, constraint on N, becomes constraint on amount of RG
flow = an amount of 107°% in k2 (or 63 e-folds) for T; ~

1016GeV.
11



2. Flatness problem

eAgain RG flow <> inverse time evolution. We want to see then
that (grav.) perturbations decrease along the inverse RG flow
(from IR to UV).

2
efFor ggﬁ = % < 1 (late times), we find

f(ggff> = Jo <1 - flggfr In ggfr + f29§ff + O(ngf))

where f1 < O (for best fit, and most of the theor. parameter
space) and fi; dominates over f>. But since

Flg2¢) x g ~14+25Ing~1—25Ing2 + ...
we have 26 ~ f1g2¢ < 0 = T;; is marginally relevant.

oCFT terminology, but only generalized conf. structure, yet
same results: 6 < 0 = dilution along inverse RG flow.

eQuantitatively, same cond.: at least 107°% of RG flow in k2 (63
e-folds) for T; ~ 1016GeV .
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4. Entropy problem: inflation — reheating.

eNow — 4 period corresponding to reheating. But, in field the-
ory: obvious: dual field theory has grav. modes + SM modes:
transfer of energy from one to the other. Entropy larger in the
UV (late times) than IR (initial times) — # of d.o.f. decreases
along RG flow. Large entropy — large N. S ~ 102 (UV) to
S1 ~ 1 (IR) is a constraint.

5. Perturbations problem

eAlso easier: classical (h;;hy;) perturbations in CMBR are dual
to quantum <Tikal> — usual QFT perturbations. But now, no
assumptions (like QFT in curved space and Bunch-Davies vac-
uum) — initial conditions: vacuum is unique perturbative QFT
vacuum.

6. Baryon asymmetry problem. Same solution. But now: re-
actions out of thermal equilibrium: no thermal equilibrium along
the RG flow. Nr. of d.o.f. changes rapidly
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4. Relic and monopole problem, and toy model
o7 geometry. But monopole defined by topology: abstractly.

eMonopole in the bulk — vortex (top. and magn. charge) on
the boundary. AdS/CFT: True case: ‘“'t Hooft monopole” —
“true vortex'', but approx. case: “Dirac monopole”’ — “Dirac
vortex' .

eConstraint: dilution of monopole current jg‘ perturbations in
the bulk — in inverse RG flow, of 10710 in linear size. = need
6(j) < 0. For relics, coupling to T;;, need dilution of T;; pert.
along the RG flow of 10~% — same, and less stringent, as for
flatness problem.

eBut: A7 (gauge) in bulk — j¢ (global) in QFT. Moreover, mag-
netic 'j’g‘ replaced by electric 5. Since QFT is phenomenological,
no definite 5 — need toy model.
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eToy model: SU(N) gauge symm., SO(3) global, allowing for
vortex solutions. A, and 6 complex scalars ¢§L, 1 = 1,2 and
a =1,2,3 for 3 of SO(3), all in SU(N). Potential (scalar self-
int.)

V = ATr|¢1 x ¢o|°

Then the Euclidean action is

1 = — —
S = /d3a:Tr ZFWFW + Y |Dudil® + N1 x ¢o|?

i=1,2
and the SO(3) global currents are

. . b

ji= > i} Dy + h.c
i=1,2

where DB = 9,648 — ig(T) AP AS.
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e [ WO loop calculation in dim. reg.: 4 divergences, but removed
— only p dependence in finite piece. Find (one-loop plus 2-loop):

1% 2N v
(75 (0)jy (—p)) = NQ%SGZ’ K% — ) —4-169—1Jo (5 - b ) + flmte]

p p P’
where Jg ~ —z>24finite. But: generlized conf. structure —
N?p N?p

<jﬁ(p)j£(—p)> Tﬁuu[l‘l'cgefr'n gefr‘l' 1= Tﬁuu[l Cgefrln p+...]
eBut definining anomalous dimension as before,

(G(P)i(—p)) x N2mupt 120 ~ N2pruw[1+25Inp+ ...]

gives 26 = —cg2. Finally, we obtain

2 5
0j = —59eff > 0

so ji* is irrelevant: grows in the UV.
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eBut: need vortex current. In Abelian-Higgs model,

1
L v
Jvortex — EGM POuip

Then the correlators are related as

2
)i (—p)) = (8 = P22 = (it e D) oo —p)) = (8 — 222 )
p p

KQ
eBut, more precisely (Witten; Herzog, Kovtun, Sachdev, Son) confor-
mal structure in 241d = (¢ replaced by K in the nonabelian
case)

AN ¢
(Ji(p)j;(—p) = ( 255 — png) o2 + kapkz

e [ hen implies for the magnetic current

2
— - p©0;; —pip; 1 €jkPk W
(7i(p)3;(—=p)) = -
! J 271/ p2 t2 + w? 21 2 4 w?

eFor w =0 =1t — 1/t in Abelian case and K_,; — (K1), in the

nonabelian case.
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eoIln both cases, S duality — Maxwell duality in bulk. Acts the
same for us.

eConf. structure or generalized conf. structure — same form of
correlators.

eThen, inversion = 1+ 25Ilnp -~ 1 —258Inp, so 6(5) = —6(4).
Then 6(j) < 0 and j is relevant, as we wanted.

eMust 3 vortex. Here: Abelian Dirac vortex. 3U(1) C SO(3)
with

Ju =1 Z QyiDM;i + h.c.
i=1,2

under which ¢ — e'*¢7, ¢35 — e'“¢3.

e [ hen, d vortex ansatz tht keeps V = 0O,
¢f = p1(r) fr'™, ¢35 = ¢o(r) ™

eSol. of eq. of m. with ansatz — vortex nr. — vortex current.
18



5. Cosmological constant problem explained in
holographic cosmology

e/ problem: why is A so small today (yet A ~ H2M3, in infla-
tion)? QFT + gravity = problem. About 10~120 problem.

eCan map it holographically to solved problem in QFT7? Yes.
elnverse RG flow will dilute A (for time evolution).

oIn N =4 SYM vs. AdSs x S°:

1 1 12 1
= =O‘—4~a’2732:>a’7z~—
A geyN R VA

eBut since 2;9R = dA + 8rG T (E.eqs), we get
N\ < R 1

Y

2 ~ 2
Mg, ™ Mgy VA
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eBut: late times <+ UV: ¢ — oo = g2 — 0, so we need: R/M3 ~
(gerf)P, with p > 0, unlike p = —1/2 before (93¢ = g°N/q = \/q.

Then we would get
2 P
A < (ﬂ)
Meg, 9

which means natural flowing of A from IR to UV is due to
dimensional RG flow. Principle: quantum A in 3+1d FLRW is
related to 24-1d QFT scale: low A «< high q.

eExample 1: Holographic dual of Dp-branes. g3 = g\, NUP~3,
where U = r/a’ = q. String frame solution is

5/4

I g%MN 1

N
ds” > | U, |9y Ndp dU> |9 uNdp ;o
o . ng/MNdpdx”_I_ Us—r U= * Us-r %

U2 2 2dU2 2 2

U
1 | U3-»r | U
adR ~ ~ —
vV Aeff g2y N 9o N

2
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eValidity of sugra: ggfr < 1land N > 1= for p =2 (our case)

GNP < U < g3y N
so pert. SYM is valid at large U (and sugra is not).

eString frame has problems. But in Einstein frame,
1/8 1/8 1/8
R~ PR+ o 2o = L (QQN) o Ae o Re (M)
VN N\ U M3, ~ M2 U
so p = 1/8. Moreover, after KK reduction on the sphere, we
get a(t) x t’ = good FLRW cosmology.

eCaveat: sugra strongly coupled at ¢t — oo = need to transition
to new FLRW phase (via ‘“reheating”).
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eExample 2: Compactified NS5-branes (on S3 with a twist)

eHolographic theory: Maldacena-HN solution: In UV, gg.¢r =
e? ~ e P — 0, as well as
1 1

~——0
NR2(p) Np

&Ry ~+/gs <1 and o/Rg ~

Then also
Rg e®/2

=L L 0
2 2
M2, M2,

SO we have

as advertised.

eCaveat: UV is not free SYM: 3 KK modes on S3.
22



eGeneric holographic cosmology
oFLRW cosmology: ds? = —dt? + a?(t)dz?.

oFor a(t) ~ eft = Ricci R = 6k2. For a(t) ~ t" = small

n(2n — 1) 1 1 A C
x Ty M
t2 [a(D)]?/m — q?" Mg~ qP
where we assumed t ~ ¢", r > 0, since p = 2r > 0 for UV <«
large t.

R —=
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6. Possible top-down model: “dnmensnonal
reduction” of N =4 SYM vs. AdSg x S°

e Top-down model (Awad, Das, Nampuri, Narayan, Trivedi, 2008 and
Brandenberger, Ferreira, Morrison, Cai, Das, Wang, 2016) modifying N =
4 SYM vs. AdSs x S°:

2
ds® = R2 [dz? + (—dT? + a®(T)di?)] + R?d22

and ¢ = ¢(7T). 3 unique solution of e.o.m.,

2/V3
a(T) o T1/3 | #T) = <%)

oIn conformal time, ds3 = a?(t)[—dt? +dz?], a ~ t1/2 and we get

3
6 (i)f
R
which means an N = 4 SYM with time-dependent coupling

|t|>ﬁ

t) = el
gym(t) = gvmo (R
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eBut, conformal transf. on the boundary by a?(t) can be removed
by a coordinate transf. in the bulk. It is (p = 22)

L= 4 1 n 1
- 4" 16t’3'0
') = o) =9t +— +/2 \/_Int—l— +/2
d) = o) =9¢ 4t 163 16¢/3
giving near the boundary at p =20
. / p/2
cb(t):\/_llnt - +32t’4]

which means that we have N' = 4 SYM with ¢2,,(t) AND a
time-dependent VEV

(TEIFR) o 5o g # 0
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e To connect with phenomenological holographic cosmology, need
a “dimensional reduction” in t. Indeed, there FLRW time ¢ Wégk

radial r <+ energy scale.

eBut: Wlh;;] evolved with H « RG flow of correlators from
Z|hi;]. Wick rotation: time evolution <> radial evolution.

eMaldacena map: Wlh;;] = Z[h;;] is for path integral over fields
in past time, with boundary condition hij at time t.

eNow: d radial r and time t, so we generalize:
Wlhiltr = Z[hijlt,q

eBoundary condition both at time ¢t and at radial scale r. Here
r <> q. energy scale of QFT. Path integral over times < t.
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eHolographic map is the same = same (T;;T};) = same Ag(q)
and Ar(q).

eField theory: Z: path integral over time until ¢ also. Then

— [ dt——2 Bzl
5 — |t ) s

is dominated by low t (low gym(t)).

e [ hen, “dimensional reduction” in t, and
1 1 e dt R tx RK 1

/dt 2 ~ 2 V32 (t/R)l_\@ 2 2
) 9yno Jtm (¢/R) 9y M0 tee  9ymo 934

e [ he effective 3d coupling is

2
2 = 934N _ 9ymoN
= g K (RQ)
eODbtain specific 3d QFT — but it is excluded from the best fit
to CMBR.
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ePerhaps need larger coupling (ggfr is not < 1) — then need
lattice gauge theory to test it.

eOr maybe use another gravity dual pair and “dimensionally re-
duce”. (here a(t) is “stiff matter").

28



7. Conclusions

QHoIographic cosmology fits CMBR as well as A—CDM plus in-
flation.

e [ he Hot Big Bang cosmology puzzles are solved, just as infla-
tion does, with some being explained more naturally.

e I he cosmological constant Ajqs1 — Anow IS e€xplained as inverse

27\ P
RG evolution in scale g by -2 < (M) . p> 0.
M3, q
eGeneralizing the Maldacena map W[h;;] = Z[h;;] to W[h;l:, =
Z[hij]t,q and “dimensionally reducing” in t, we can get top-down
models. The simplest contradicts CMBR observations.

eHolographic cosmology is a larger paradigm that includes infla-
tion (for perturbative gravity), and has new corners (perturbative
gauge theory) that are just as good as inflation.
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