Spin 2 operators in holographic SCFTS in four and five dimensions

Michael Gutperle (UCLA)

MITP workshop

Michael Gutperle (UCLA)

Spin 2 operators

MITP workshop 1 / 31

- Spin 2 fluctuations in spaces with warped AdS factors
- Holographic duals of d = 4 N = 2 SCFTs
- Universal spin 2 fluctuations in d = 4 N = 2 SCFT duals _{Chen,Gutperle}, Uhlemann, 1903.07109
- Dual operators and supermultiplets
- Holographic duals of d = 5 SCFTs
- Universal spin 2 fluctuations in d = 5 SCFT duals Gutperle, Uhlemann, Varela 1805.11914

< 🗇 🕨 < 🖃 🕨

- KK spectrum of supergravity solutions with AdS_{d+1} factor gives short protected multiplets in dual CFT, e.g type IIB supergravity on $AdS_5 \times S^5$ Kim and van Nieuwenhuizen
- spacetimes with AdS_{d+1} and S_p factors warped over Σ

$$ds^{2} = f_{1}(y)ds^{2}_{Ads_{d+1}} + f_{2}(y)ds^{2}_{S_{p}} + g_{ab}(y)dy^{a}dy^{b}$$

Janus solutions, duals of Wilson lines in N = 4 SYM, duals of N = 2 SCFTs (LLM, GM), duals of 5d SCFTs, 6d SCFTs, massive IIA

- $\bullet\,$ Complicated ! Linearization, gauge symmetry, diagonalization of coupled fluctuations, PDE on $\Sigma\,$
- For a special class of fluctuations one can solve the first three problems Csaki et al. hep- th/0001033], Bachas and Estes, arXiv:1103.2800

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(
SYM Operator	desc	SUGRA	dim	spin	Y	$SU(4)_R$	lowest reps
$O_k \sim tr X^k, k \ge 2$	-	$h^{\alpha}_{\alpha} a_{\alpha\beta\gamma\delta}$	k	(0, 0)	0	(0, k, 0)	20',50,105
$O_k^{(1)} \sim \text{tr}\lambda X^k, k \ge 1$	Q	$\psi_{(\alpha)}$	$k + \frac{3}{2}$	$(\frac{1}{2}, 0)$	$\frac{1}{2}$	(1, k, 0)	20,60,140'
$O_k^{(2)} \sim \text{tr}\lambda\lambda X^k$	Q^2	$A_{\alpha\beta}$	k + 3	(0, 0)	1	(2, k, 0)	$10_c, 45_c, 126_c$
$O_k^{(3)} \sim \text{tr}\lambda \bar{\lambda} X^k$	$Q\bar{Q}$	$h_{\mu\alpha} a_{\mu\alpha\beta\gamma}$	k + 3	$(\frac{1}{2}, \frac{1}{2})$	0	(1, k, 1)	$15,\!64,\!175$
$O_k^{(4)} \sim \operatorname{tr} F_+ X^k, k \ge 1$	Q^2	$A_{\mu\nu}$	k + 2	(1, 0)	1	(0, k, 0)	$6_c, 20_c, 50_c$
$O_k^{(5)} \sim tr F_+ \overline{\lambda} X^k$	$Q^2 \bar{Q}$	ψ_{μ}	$k + \frac{7}{2}$	$(1, \frac{1}{2})$	$\frac{1}{2}$	(0, k, 1)	$4^*, 20^*, 60^*$
$O_k^{(6)} \sim tr F_+ \lambda X^k$	Q^3	"λ"	$k + \frac{7}{2}$	$(\frac{1}{2}, 0)$	3/2	(1, k, 0)	4,20,60
$O_k^{(7)} \sim \text{tr} \lambda \lambda \overline{\lambda} X^k$	$Q^2 \bar{Q}$	$\psi_{(\alpha)}$	$k + \frac{9}{2}$	$(0, \frac{1}{2})$	1/2	(2, k, 1)	36,140,360
$O_k^{(8)} \sim tr F_+^2 X^k$	Q^4	В	k + 4	(0,0)	2	(0, k, 0)	$1_c, 6_c, 20'_c$
$O_k^{(9)} \sim \text{tr}F_+FX^k$	$Q^2 \bar{Q}^2$	$h'_{\mu\nu}$	k + 4	(1, 1)	0	(0, k, 0)	1,6,20'
$O_k^{(10)} \sim tr F_+ \lambda \bar{\lambda} X^k$	$Q^3 \bar{Q}$	$A_{\mu\alpha}$	k + 5	$(\frac{1}{2}, \frac{1}{2})$	1	(1, k, 1)	15, 64, 175
$O_k^{(11)} \sim \text{tr} F_+ \bar{\lambda} \bar{\lambda} X^k$	$Q^2 \bar{Q}^2$	$a_{\mu\nu\alpha\beta}$	k + 5	(1, 0)	0	(0, k, 2)	$10_c, 45_c, 126_c$
$O_k^{(12)} \sim \text{tr} \lambda \lambda \overline{\lambda} \overline{\lambda} X^k$	$Q^2 \bar{Q}^2$	$h_{(\alpha\beta)}$	k + 6	(0, 0)	0	(2, k, 2)	84,300,2187
$O_k^{(13)} \sim tr F_+^2 \overline{\lambda} X^k$	$Q^4 \bar{Q}$	"λ"	$k + \frac{11}{2}$	$(0, \frac{1}{2})$	$\frac{3}{2}$	(0, k, 1)	$4^*, 20^*, 60^*$
$O_k^{(14)} \sim tr F_+ \lambda \overline{\lambda} \overline{\lambda} X^k$	$Q^3 \bar{Q}^2$	$\psi_{(\alpha)}$	$k + \frac{13}{2}$	$(\frac{1}{2}, 0)$	1/2	(1, k, 2)	36*,140*,360*
$O_k^{(15)} \sim tr F_+ F \lambda X^k$	$Q^3 \bar{Q}^2$	ψ_{μ}	$k + \frac{11}{2}$	$(\frac{1}{2}, 1)$	1/2	(1, k, 0)	4,20,60
$O_k^{(16)} \sim tr F_+ F^2 X^k$	$Q^4 \bar{Q}^2$	$A_{\mu\nu}$	k + 6	(1,0)	1	(0, k, 0)	$1_c, 6_c, 20'_c$
$O_k^{(17)} \sim tr F_+ F \lambda \bar{\lambda} X^k$	$Q^3 \bar{Q}^3$	$h_{\mu\alpha} a_{\mu\alpha\beta\gamma}$	k + 7	$(\frac{1}{2}, \frac{1}{2})$	0	(1, k, 1)	15,64,175
$O_k^{(18)} \sim tr F_+^2 \bar{\lambda} \bar{\lambda} X^k$	$Q^4 \bar{Q}^2$	$A_{\alpha\beta}$	k + 7	(0,0)	1	(0, k, 2)	$10_c, 45_c, 126_c$
$O_k^{(19)} \sim tr F_+^2 F \overline{\lambda} X^k$	$Q^4 \bar{Q}^3$	$\psi_{(\alpha)}$	$k + \frac{15}{2}$	$(0, \frac{1}{2})$	$\frac{1}{2}$	(0, k, 1)	$4^*, 20^*, 60^*$
$O_k^{(20)} \sim tr F_+^2 F^2 X^k$	$Q^4 \bar{Q}^4$	$h^{\alpha}_{\alpha} a_{\alpha\beta\gamma\delta}$	k + 8	(0,0)	0	(0, k, 0)	1,6,20'

Table 7: Super-Yang-Mills Operators, Supergravity Fields and $SO(2, 4) \times U(1)_Y \times SU(4)_R$ Quantum Numbers. The range of k is $k \ge 0$, unless otherwise specified.

D'Hoker and Freedman, TASI lectures

Michael Gutperle (UCLA)

- KK spectrum of supergravity solutions with AdS_{d+1} factor gives short protected multiplets in dual CFT, e.g type IIB supergravity on $AdS_5 \times S^5$ Kim and van Nieuwenhuizen
- spacetimes with AdS_{d+1} and S_p factors warped over Σ

$$ds^2 = f_1(y)ds^2_{Ads_{d+1}} + f_2(y)ds^2_{S_p} + g_{ab}(y)dy^a dy^b$$

Janus solutions, duals of Wilson lines in N = 4 SYM, duals of N = 2 SCFTs (LLM, GM), duals of 5d SCFTs, 6d SCFTs, massive IIA

- $\bullet\,$ Complicated ! Linearization, gauge symmetry, diagonalization of coupled fluctuations, PDE on $\Sigma\,$
- For a special class of fluctuations one can solve first three problems Bachas and Estes, arXiv:1103.2800

イロト イポト イヨト イヨト

• metric fluctuation in AdS_{d+1}

$$ds^2 = f_1 \left(ds^2_{AdS_{d+1}} + h_{\mu
u} dx^\mu dx^
u
ight) + \hat{g}_{ab} dz^a dz^b$$

• transverse, symmetric, traceless tensor with mass M in AdS_{d+1}

$$h_{\mu\nu}(x,z) = h^{[tt]}_{\mu\nu}(x)\psi(z) \;, \qquad \qquad \square^{(2)}_{AdS_{d+1}}h^{[tt]}_{\mu\nu} = (M^2-2)h^{[tt]}_{\mu\nu} \;.$$

• Linearized Einstein equations, decouple and reduce to scalar Laplace equation

$$\frac{1}{\sqrt{-g}}\partial_M\sqrt{-g}g^{MN}\partial_Nh_{\mu\nu}=0$$

 Uses: spin 2 excitations on defects, massive gravity, massive IIA warped compactifications Richard et. al. 1410.4669, Passias and Tomasiello 1604.04286, Pang et. al. 1711.07781, Passias and Richmond 1804.09728

(日) (同) (三) (三)

Holographic duals of d = 4, N = 2 SCFTs

• M-theory: $AdS_5 \times S_1^{\beta} \times S^2$ warped over 3 dim space x_1, x_2, y Lin, Lunin, Maldacena, hep-th/0409174; Gaiotto and Maldacena 0904.4466

$$ds^{2} = 4f_{1}ds_{AdS_{5}}^{2} + f_{2}ds_{S^{2}}^{2} + f_{4}dy^{2} + f_{6}\left(dx_{i}dx^{i} + \frac{f_{3}}{f_{6}}\left(d\beta + A_{i}dx^{i}\right)^{2}\right)$$

metric factors

$$\begin{split} f_1 &= e^{2\tilde{\lambda}} , & f_2 &= y^2 e^{-4\tilde{\lambda}} , & f_3 &= 4 e^{2\tilde{\lambda}} (1 - y^2 e^{-6\tilde{\lambda}}) , \\ f_4 &= \frac{e^{-4\tilde{\lambda}}}{1 - y^2 e^{-6\tilde{\lambda}}} , & f_6 &= f_4 e^D , & A_i &= \frac{1}{2} \epsilon_{ij} \partial_j D \end{split}$$

• $\tilde{\lambda}$ is expressed in terms of D

$$e^{-6\tilde{\lambda}} = -rac{\partial_y D}{y(1-y\partial_y D)}$$

イロト イヨト イヨト

• supergravity solution preserving 16 Susys if D satisfies 3dim Toda equation

$$(\partial_1^2 + \partial_2^2)D + \partial_y^2 e^D = 0$$

• Boundary condition $Vol(S^2) \rightarrow 0$ smoothly at y = 0 if

$$\partial_y D|_{y=0} = 0$$
, $D|_{y=0} = finite$

• Four cycle
$$S^2 \times S^1$$
, S^1 closes off at $y = y_c$

$$e^{D}|_{y \sim y_{c}} \sim y - y_{c}$$

• M5 brane sources can be includes as source terms in the Toda equation

$$(\partial_1^2 + \partial_2^2)D + \partial_y^2 e^D = -2\pi \sum_i \delta^{(2)}(x - x^{(i)})\theta(2N_5^{(i)} - y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• Simple example: M5 brane wrapped on g > 1 Riemann surface (no punctures) Maldacena and Nunez, hep-th/0007018

$$e^D = \frac{1}{x_2^2} \left(\frac{1}{4} - y^2 \right)$$

 x_1, x_2 parameterize H_2 , quotient by Γ produces Σ_g . $y \in [0, \frac{1}{2}]$.

- Toda equation is nonlinear PDE, difficult to find solutions systematically. Petropoulos et al. 1308.6583.
- Isometry along x_1 we can reduce M-theory to type IIA by change of variables

$$e^D = \sigma^2 \;, \qquad \qquad y = \sigma \partial_\sigma V \;, \qquad \qquad x_2 = \partial_\eta V$$

イロト 不得 トイヨト イヨト 二日

metric and dilaton

$$ds^2 = 4f_1 ds^2_{AdS_5} + f_2 (d\sigma^2 + d\eta^2) + f_3 ds^2_{S^2} + f_4 d\beta^2 , \qquad e^{2\phi} = f_8$$

• Solution is determined by a function $V(\sigma, \eta)$ satisfying the cylindrical Laplace equation

$$\ddot{V} + \sigma^2 V^{\prime\prime} = 0 \;, \qquad \qquad \dot{V} \equiv \sigma \partial_\sigma V \;, \qquad \qquad V^\prime \equiv \partial_\eta V$$

metric functions

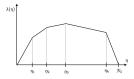
イロト 不得下 イヨト イヨト 二日

Holographic duals of d = 4 a N = 2 SCFTs

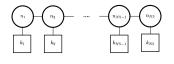
• Boundary condition on V ion $\sigma \in [0, \infty], \eta \in [0, \eta_c]$.

$$\dot{V}|_{\eta=0}=\dot{V}|_{\eta=\eta_c}=0,\qquad\dot{V}|_{
ho}=\lambda(\eta)$$

• $\lambda(\eta)$ is a line charge density, determining the fluxes



• Generic field theory long linear quiver with bi-fundamental flavors (NS5 branes) and fundamental flavors (D6) branes Aharony et al. 1206.5916, many others.



Universal Spin 2 supergravity modes

• metric fluctuation is AdS_5 in the N = 2 M-theory background

$$ds^2 = 4f_1\left(ds^2_{AdS_5} + h_{\mu
u}dx^\mu dx^
u
ight) + \hat{g}_{ab}dz^a dz^b$$

• symmetric traceless tensor of mass M

$$h_{\mu
u}(x,z) = h^{[tt]}_{\mu
u}(x)\psi(z) \;, \qquad \qquad \Box^{(2)}_{AdS_5}h^{[tt]}_{\mu
u} = (M^2 - 2)h^{[tt]}_{\mu
u}$$

• equation of motion for $h_{\mu\nu}$

$$\frac{1}{\sqrt{-g}}\partial_M\sqrt{-g}g^{MN}\partial_Nh_{\mu\nu}=0$$

• equation for ψ

$$\frac{4}{f_1^{3/2}\sqrt{\hat{g}}}\partial_a \left[f_1^{5/2}\sqrt{\hat{g}}\hat{g}^{ab}\partial_b\right]\psi = -M^2\psi$$

Universal Spin 2 supergravity modes

• the equation of motion for $h_{\mu
u}$

$$\left[\frac{4e^{6\tilde{\lambda}}}{y^2}\nabla_{S^2}^2 - \frac{4}{y\partial_y e^D}\partial_y y^2 e^D\partial_y - \frac{4y}{\partial_y e^D}\partial_m g_3^{mn}\partial_n + M^2\right]\psi = 0$$

where

$$\partial_m g_3^{mn} \partial_n = \partial_{x_1}^2 + \partial_{x_2}^2 - 2\left(A_1\partial_1 + A_2\partial_2\right)\partial_\beta + \left(A_1^2 + A_2^2 + \frac{f_6}{f_3}\right)\partial_\beta^2 .$$
(1)

• Expand in spherical harmonics on S^2 and KK modes on S^1

$$\psi = \sum_{\ell mn} \phi_{\ell mn}(\mathbf{y}, \mathbf{x}_1, \mathbf{x}_2) \mathbf{Y}_{\ell m} \mathbf{e}^{in\beta} , \qquad \nabla_{\mathbf{S}^2}^2 \mathbf{Y}_{\ell m} = -\ell(\ell+1) \mathbf{Y}_{\ell m}$$

quantum number *I* related to $SU(2)_R$ charge and *n* to $U(1)_R$ charge in N = 2 SCFT.

Michael Gutperle (UCLA)

イロト イポト イヨト イヨト

Universal Spin 2 supergravity modes

• resulting PDE looks pretty hopeless

$$\begin{bmatrix} -\frac{4y}{\partial_y e^D} \left(\frac{1}{y^2} \partial_y y^2 e^D \partial_y + \partial_1^2 + \partial_2^2 - 2in (A_1 \partial_1 + A_2 \partial_2) \right) \\ + \frac{4n^2 y}{\partial_y e^D} \left(A_1^2 + A_2^2 \right) + n^2 (y \partial_y D) + \frac{4\ell(\ell+1)}{y \partial_y D} + M^2 - 4\ell(\ell+1) - n^2 \end{bmatrix} \phi_{\ell mn} = 0$$

• The following ansatz solves the PDE

$$\phi^{a}_{\ell m n} = y^{\ell} e^{\frac{n}{2}D}, \qquad \qquad M^{2} = -4 + (2 + 2\ell + n)^{2}.$$
 (2)

if D satisfies the Toda equation.

- Universal solutions present in any holographic dual of d = 4, N = 2 SCFTs
- There are other solutions, but they are all not regular and non-normalizable.

- 4d N = 2 superconformal algebra SU(2, 2|2).
- $SU(2)_R \times U(1)_R$ symmetry quantum numbers R, r. Spins j, \overline{j} .
- operator in superconformal multiplet

$$[j,\overline{j}]^{R;r}_{\Delta}$$

• Poincare supersymmetries

$$Q: [1,0]^{1;-1}_{rac{1}{2}}, \qquad ar{Q}: \ [0,1]^{1;+1}_{rac{1}{2}}$$

Identify KK quantum numbers with R-charges

$$R=2I, r=2n$$

• Mass $M^2 = -4 + (2 + 2\ell + n)^2$ gives dimension of massive spin 2 operator

$$[2,2]^{2l;2n}_{\Delta=4+2l+n}$$

Michael Gutperle (UCLA)

イロト 不得下 イヨト イヨト 二日

• Supermultiplets are left-right combinations of 4 types L, A₁, A₂, B₁.

	\overline{L}	\overline{A}_1	\overline{A}_2	\overline{B}_1
L	$[j; \overline{j}]^{(R,r)}_{\Delta}$ $\Delta > 2 + R + \max \{j - \frac{1}{2}r, \overline{j} + \frac{1}{2}r\}$	$[j; \overline{j} \ge 1]^{(R;r>j-\overline{j})}_{\Delta}$ $\Delta = 2 + R + \overline{j} + \frac{1}{2}r$	$[j; \overline{j} = 0]^{(R;r>j)}_{\Delta}$ $\Delta = 2 + R + \frac{1}{2}r$	$[j; \overline{j} = 0]^{(R,r>j+2)}_{\Delta}$ $\Delta = R + \frac{1}{2}r$
A_1	$[j \ge 1; \overline{j}]_{\Delta}^{(R;r< j-\overline{j})}$ $\Delta = 2 + R + j - \frac{1}{2}r$	$[j \ge 1; \overline{j} \ge 1]^{(R;r=j-\overline{j})}_{\Delta}$ $\Delta = 2 + R + \frac{1}{2}(j + \overline{j})$	$[j \ge 1; \overline{j} = 0]^{(R;r=j)}_{\Delta}$ $\Delta = 2 + R + \frac{1}{2}j$	$[j \ge 1; \overline{j} = 0]^{(R;r=j+2)}_{\Delta}$ $\Delta = 1 + R + \frac{1}{2}j$
A_2	$\begin{split} [j &= 0; \vec{j}]_{\Delta}^{(R_{T} < -\vec{j})} \\ \Delta &= 2 + R - \frac{1}{2}r \end{split}$	$[j = 0; \overline{j} \ge 1]^{(R;r=-\overline{j})}_{\Delta}$ $\Delta = 2 + R + \frac{1}{2}\overline{j}$	$\begin{split} [j=0;\overline{j}=0]^{(R;r=0)}_{\Delta}\\ \Delta=2+R \end{split}$	$[j = 0; \overline{j} = 0]^{(R;r=2)}_{\Delta}$ $\Delta = 1 + R$
B_1	$\begin{split} [j = 0; \overline{j}]^{(R;r<-(\overline{j}+2))}_{\Delta} \\ \Delta = R - \frac{1}{2}r \end{split}$	$\begin{split} [j = 0; \overline{j} \geq 1]^{(R;r=-(\overline{j}+2))}_{\Delta} \\ \Delta = 1 + R + \frac{1}{2}\overline{j} \end{split}$	$\begin{split} [j=0;\overline{j}=0]^{(R;r=-2)}_{\Delta}\\ \Delta = 1+R \end{split}$	$[j = 0; \overline{j} = 0]^{(R;r=0)}_{\Delta}$ $\Delta = R$

Table 15: Consistent two-sided multiplets in four-dimensional $\mathcal{N} = 2$ theories.

Cordova, Dumitrescu and Intriligator, 1612.00809

• for l = 0, n = 0 this is the stress tensor which sits in the multiplet $A_2\bar{A}_2$ with primary

$$[0,0]^{0;0}_{\Delta=2}$$

イロト イポト イヨト イヨト

- Match conformal dimension Δ , spins $(j\bar{j})$ and R charges R, r
- Multiplets from KK supergravity fluctuations are shortened and protected
- B_1 mutliplet only has $j \leq 1$
- A_1 multiplets contain spins j > 2. KK Supergravity has no such states
- the n = 0, l > 0 spin 2 operator is $Q^2 \bar{Q}^2$ descendants $A_2 \bar{A}_2$ of primary

 $A_2 \bar{A}_2$: $[0,0]^{2\ell,0}_{\Delta=2+2\ell}$

• For n > 0, l > 0 spin 2 operator $Q^2 \bar{Q}^2$ descendants in multiplets $A_2 \bar{L}$ and $L \bar{A}_2$

$$A_2 \bar{L}: \quad [0,0]_{2+2\ell+n}^{2\ell,-2n} , \qquad \qquad L \bar{A}_2: \quad [0,0]_{2+2\ell+n}^{2\ell,2n} ,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Summary and open questions

Summary:

- Found massive spin 2 excitation in holographic N = 2 duals, with SU(2)_R × U(1)_R charges
- Universal, this excitation is present in all holographic duals and does not depend on details of the theory.
- PDE satisfied due Toda equation for function D
- excitation falls into shortened multiplets $A_2\bar{A}_2$ and $A_2\bar{L} + L\bar{A}_2$

Open questions:

- Can we identify this operator on weakly coupled gauge theory side ?
- Can we find the whole multiplet in KK supergravity ?
- Are there other solutions (nonuniversal) ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Simpler field theory (not a long quiver) $N_f = 2N_C, SU(N_C)$

• mesonic operator from fundamental hypers

$$\mathcal{M}^{\prime a}_{\ Jb} = rac{1}{\sqrt{2}} \sum_{i=1}^{N_f} q^a_{Ji} ar{q}^{Ji}_b$$

• SU(2)_R singlet and a triplet,

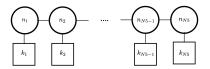
$$\mathcal{M}_{1} = \mathcal{M}_{I}^{I} , \qquad \qquad \left(\mathcal{M}_{3} \right)_{I}^{J} = \mathcal{M}_{I}^{J} - \frac{1}{2} \delta_{I}^{J} \mathcal{M}_{K}^{K}$$

•
$$\phi$$
 has R-charge -2, candidate for $[2, 2]^{2l;2n}_{\Delta=4+2l+n}$

$$\operatorname{tr}\Big(T_{\mu\nu}(\mathcal{M}_3)^\ell\phi^n\Big)$$

< 🗗 🕨

• For long linear quivers

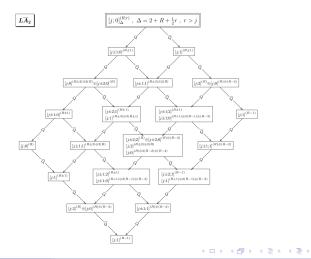


There are many more operators which carry the R-charges (ϕ_i for gauge factors, \mathcal{M} mesons for hypers)

- F and D term equations relate many of those, can we find a protected one ?
- has to work for any quiver dual to holographic SCFTs (at large N).

Supermultiplet in supergravity

Can we find the whole multiplet in supergravity ?



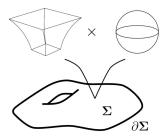
3

Can we find the whole multiplet in supergravity ?

- Use supersymmetry transformation on $h_{\mu\nu}$. We can easily go up the multiplet.
- Full KK reduction is difficult, maybe not hopeless in M-theory for scalar primary since symmetry restricts the ansatz

Image: A match a ma

Holographic duals of d = 5 SCFTs



Ansatz for type IIB supergravity solution realizes $SO(2,5) \times SU(2)_R$ as isometries of a warped product of $AdS_6 \times S^2$ over two dimensional Riemann surface Σ , with boundary $\partial \Sigma$.

$$ds^2 = f_6^2(z,\bar{z}) ds_{AdS_6}^2 + f_2^2(z,\bar{z}) ds_{S^2}^2 + \rho^2(z,\bar{z}) dz \otimes d\bar{z}$$

The complex three form field strength (NS-NS and RR 2 form potential) takes the form

$$G = g_z e^z \wedge \omega_{S^2} + g_{\bar{z}} e^{\bar{z}} \wedge \omega_{S^2}$$

and the dilaton ϕ and axion χ only depend on coordinates z, \bar{z} of Σ .

Local solutions

- The local solution is completely determined (up to one additional constant of integration) by two holomorphic functions A_±(w).
- From $A_{\pm}(w)$. we can form two functions κ^2 and G

$$\kappa^{2} = -|\partial_{w}A_{+}|^{2} + |\partial_{w}A_{-}|^{2}, \quad G = |A_{+}|^{2} - |A_{-}|^{2} + B + \bar{B}$$

where

$$\partial_w \mathcal{B} = A_+ \partial_w A_- - A_- \partial_w A_+$$

regular solutions

$$\kappa^2>0, \quad G>0, \quad \kappa^2|_{\partial\Sigma}=0, \quad G|_{\partial\Sigma}=0$$

3

イロト イポト イヨト イヨト

Global solutions

• A large class of regular solutions can be constructed from the following ansatz: Σ is the upper half plane, $\partial_w A_{\pm}$ have *L* simple poles on the real line with complex residues.

$$A_{\pm}(w) = A_{\pm}^{0} + \sum_{\ell=1}^{L} Z_{\pm}^{\ell} \ln(w - p_{\ell}), \quad \overline{Z_{\pm}^{\ell}} = -Z_{\mp}^{\ell}, \quad \sum_{\ell=1}^{L} Z_{\pm}^{\ell} = 0$$

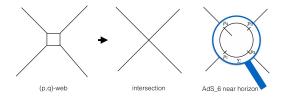
 $\sum_{\substack{G=0 \ x_1 \ G=0 \ x_2}} Vanishing of G on \partial \Sigma \text{ implies } L \text{ jump conditions} (one for each pole) with <math>Z^{[\ell,\ell']} = Z^{\ell}_+ Z^{\ell'}_- - Z^{\ell'}_+ Z^{\ell'}_ A^0 Z^k_- + \bar{A}^0 Z^k_+ + \sum_{\ell \neq k} Z^{[\ell,k]} \ln |p_\ell - p_k| = 0, \quad k = 1, 2, \cdots L$

 Number of moduli of our solutions: 2L-2 free real parameters, they can be chosen to be L - 1 complex residues Z⁺_p correspond to (p, q) 5-brane charges.

(日) (周) (三) (三)

5-brane intersection

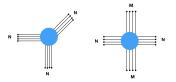
• The poles are remnants of semi-infinite fivebranes of a 5-brane intersection



- $L \ge 3$ Minimum 3 (p,q) 5-brane intersection.
- L 1 (p,q) 5-brane charges completely specify intersection and sugra solution.

Image: A math a math

Examples with low number of poles



• 3 Poles: 5-brane web of N D5-branes, N NS5-branes and N (1, 1)5-branes. Field theories are 5dim versions of T_N theories. Long quivers Benini et al, 0906.0359

$$[2] \xrightarrow{y_1} (2) \xrightarrow{x_1} (3) - \dots - (N-2) \xrightarrow{x_{N-3}} (N-1) \xrightarrow{y_2} [N]$$

• 4 Poles: 5-brane web of *N* D5-branes, *M* NS5-branes. Long quiver Aharony et al hep-th/9710116.

$$[N] \xrightarrow{y_1} (N) \xrightarrow{x_1} \cdots \xrightarrow{x_{M-2}} (N) \xrightarrow{y_2} [N]$$

Michael Gutperle (UCLA)

Massive spin two fluctuations

Same approach as for the d = 4 N = 2 holographic duals. Warped space time over Σ₂ fluctuation

$$ds^2 = f_6^2 ig(ds^2_{AdS_6} + h_{\mu
u} dx^\mu dx^
u ig) + \ f_2^2 ds^2_{S^2} + 4
ho^2 |dw|^2 \; ,$$

with

$$h_{\mu\nu}(x,y) = h^{[tt]}_{\mu\nu}(x)\psi(y), \quad \Box^{(2)}_{AdS_6}h^{[tt]}_{\mu\nu} = (m^2 - 2)h^{[tt]}_{\mu\nu}.$$

• • • • • • • • • • • •

Massive spin two fluctuations

• Equation for ψ on $S^2 \times \Sigma$ becomes

$$\frac{1}{f_6^4 f_2^2 \rho^2} \partial_a \big(f_6^6 f_2^2 \eta^{ab} \partial_b \psi \big) + \frac{f_6^2}{f_2^2} \nabla_{S^2}^2 \psi + m^2 \psi = 0 ,$$

• expand ψ in spherical harmonics on $S^2 \ \psi(y) = \phi_\ell(w, \bar{w}) Y_{\ell m}(S^2)$

$$6\partial_a (G^2 \eta^{ab} \partial_b \phi_\ell) - \ell(\ell+1) (9\kappa^2 G + 6|\partial G|^2) \phi_\ell + m^2 \kappa^2 G \phi_\ell = 0 \; .$$

looks horrible but there are two simple solutions simple solution

$$\phi_{\ell} = G^{\ell}, \qquad m^2 = 3\ell(3\ell+5)$$

 $\phi_{\ell} = G^{\ell}(A_+ - \bar{A}_-), \qquad m^2 = 3\ell(3\ell+6)$

• This works because κ and G satisfy $\partial_w \partial_{\bar{w}} G = -\kappa^2$ and A_{\pm} are holomorphic

Michael Gutperle (UCLA)

Massive spin two fluctuations

• Using $m^2 = \Delta(\Delta - 5)$ we see that this solution is dual to a spin two operators of dimension

$$\Delta_{B_2} = 5 + 3\ell, \qquad \Delta_{A_4} = 6 + 3\ell$$

- The spin 2 operators are Q^4 descendants in a short multiplets denoted B_2 and A_4 in the notation of Cordova, Dumitrescu and Intriligator arXiv:1612.00809
- The dimension of the scalar primaries in the two multiplets are

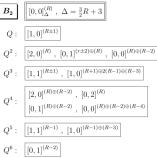
$$\Delta_{B_2}=3+3\ell\,,\qquad \Delta_{A_4}=4+3\ell$$

Universally present for all IIB solutions

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

F(4) Supermultiplets

B_2 and A_4 short mutliplets in F(4) SCFT



- $[0,0]^{(R)}_{\Delta}$, $\Delta=\frac{3}{2}R+4$ A_4
- $[1,0]^{(R\pm 1)}$ Q:

 $[1,0]^{(R-1)}$

- Q^{2} :
- $[2,0]^{(R)}$, $[0,1]^{(R\pm 2)\oplus(R)}$, $[0,0]^{(R\pm 2)\oplus(R)}$

 $[2,0]^{(R)}$, $[0,1]^{(R)\oplus(R-2)}$, $[0,0]^{(R)\oplus(R-2)}$ Q^{6} :

 Q^7 :

- $[1,1]^{(R\pm1)}$, $[1,0]^{2(R\pm1)\oplus(R-3)}$ Q^{5} :
- Q^4 :

イロト 不得下 イヨト イヨト

- Q^{3} :
- $[1,1]^{(R\pm 1)}$, $[1,0]^{(R\pm 3)\oplus 2(R\pm 1)}$

3