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Motivation

....a catalyst for theoretical progress in diverse areas: statistical physics; QFT
theory; condensed matter and of course String Theory.

» Target space T-duality — intrinsically stringy = new geometric ideas e.g.
generalised geometry or DFT

» More generally U-dualities = M-+theory?
» Gauge-gravity dualities or holography!

What other dualities?

What are their uses?



Motivation

A hierarchy of T-dualities

Bianchi-Conservation democracy 2

1. Abelian isometries = Abelian T-duality
K=0y, K,Kl=0, dxJ=0
2. Non-Abelian isometries = Non-Abelian T-duality auevedo,pe La 0ssa
Ko= kit [KaoKy] = ucKe,  dxdo=0
3. Non-Abelian Non-isometries = Poisson-Lie T-duality «imicksevera

Ko=kid,  [KaK] = fp°Ke,  dxdo=F¥y A



Motivation

Reasons to be skeptical ...apologia
» Quantum g; and o status unclear ... Holography large N
» Baroque or ugly geometries ... wrong variables

Reasons to care
» Non-Abelian T-duality holographic backgrounds for exotic quiver QFTs
» 7-and X integrable deformations of AdSs superstring
» Close connection to gauged supergravity

Examples of generalised parallelisable geometries

A manifold structure for DFT

v

v
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Non-linear sigma model and principal chiral model

Strings in curved target space M, E; = Gjj + Bj;:

5= [ 0G0 + Bi()0-X
Suppose an isometry group G of vector field Ky then Noether currents
Jia =K' (Gji £ By) 0+ X
Useful example M = G, a group manifold, and the PCM

S= /<9’10+979’1079> :/Liﬂablll, g=9X): £ =G

Left-invariant oneforms L = g~'dg



Recap: the Principal Chiral Model

» Classically (@and Quantum) Integrable: Lax formulation of e.q.m.

z
1— 22

L(z) = g 'dg+ xg 'dg, dC—LAL=0,

1-—22
z € C an auxiliary parameter;
» oo of conserved charges encoded in zexpansion of monodromy

T(z) = Pexp/ dol,, 0:;7(z)=0



Non-Abelian T-dual: The Buscher Procedure

Gauging procedure to obtain the non-Abelian T-dual geometry

1. Gauge G, in PCM 8g — Dg = dg — Ag
2. Double the degrees of freedom with Lagrange multipliers

L =vF,_ F, =[D: D]

3. Gauge Fix g = 1 and integrate by parts
4. Integrate out non-propagating gauge fields to get new sigma model

1 . a c o\
ST dual = - /0+V (K28ap + Fap®ve) 10V

Classical equivalence (canonical transformation) to PCM



Non-Abelian T-dual: Example of S?

Lag. multipliers in spherical coordinates

(vi,va,vs) = (r,0,9)
Extract T-dual geometry

— 2
ds? = %’; + r2'2 ff# (db? + sin? 6dg?)

P
‘5:¢07%|Og(f2+n4)

Extends to RR sector and type Il supergravity stetsos mompson



A-deformations: The Sfetsos Procedure

Rather similar to the Buscher procedure this recipe produces integrable A
deformations isretsos 13121 as a regularisation of non-Abelian T-duality

1. Double the d.o.f.: x%Spcm[g] + kSwzwlg]
2. Gauge G; in PCM and G in WZW
3. GaugeFixg=1
4. Integrate out non-propagating gauge fields
kX , .
S)\ = I(Swzw+ % / Tr(g 10+gogaigg 1)

k

Og:(landg)il A:m

Integrable model for all values of \!



Interpolation between CFT and non-Abelian T-duals

Nice behaviour in limits of small and large deformations:
» X — 0: current bilinear perturbation

k o
Sxlaso & kSwzw + ;/)\ﬂlf +O(\?)
» X\ — 1: non-Abelian T-dual of PCM
Salrot & %/mx"((sab +EX) Tt X+ ok

In this limit the gauged WZW in the Sfetsos Procedure becomes a Lagrange
multiplier term of the Buscher Procedure



D-branes in the A\-model

Boundaries break symmetries but b.c. that preserve integrability?

Technique: Conserved boundary Monodromy cherednik 84, siyanin 88

Transport the Lax from 0 — =, and reflect 7 — 0
(2) = 1%(0, 7, ~2)T(.0,2)
™ 0
= Pexp/ QLo (—2) - Pexp/ Lo(2)
0 T

Q) € aut g automorphism encodes reflection at boundary.
Conserved charges Q" = Tr(T?(2))" if

8. T(2) = [T°(2), N(2)]



D-branes in the A\-model

» Using explicit form of Lax we find integrable boundary conditions:
Og-1lg™'0-gllow = —2- Ogl01gg " los
> Interpret these as a mix of Dirichlet and Neumann b.c.
BTXD =0, éab&,XbN = aba-rXbN = (Bab =+ 27T0/Fab)a‘rXbN

with gauge flux F = dA on the brane.
» D-branes are twisted conjugacy classes — matching beautiful results in CFT

Alekseev Schomerus, Felder et al., Stanciu, Stanciu Figueroa-O'Farrill

Cu(g) = {hgwh™he G}, w(e®) ~ ™.



Asymmetric A-model and D-branes

A-deformations of G/H gauged WZW model. Integrable deformation of cigar
black hole2 Requires an additional twist to Sfetsos procedure by an outer
automorphism in the gauging.

14+ X% dedé X de? +dE?

2:k
O =k T TTo0 14 P

» D1 hairpins 8- (£ — &) =0and 9,(£ — &) =0

» DO living at the tip 9,6 =9:£ =0, 6 =€ =0
» D2 with world volume gauge field

Open questions for application for integrable deformations of Sine-Liouville
(FZZ conjecture) and matrix model dual?
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Poisson-Lie Symmetry

Relax assumption of isometries but still keep T-duality? o-model on group G
with isometries broken in a special way wimci severa

» Modified conservation law for currents:
d*.]a = Fbca Jb /\Jc
» Constrains metric and Bfield E; = G;; + B;

LKa Ei[ = i: chKgKgEmiEn[

1. This condition can be solved!
2. When it is solved there is an equivalent dual o-model on G



Drinfeld Double technology 1

Compatibility on g and g gives a cocycle condition, i.e. bi-Algebra structure

0= FopF— 2Fd[aci:deb] + 2ch[an]df67

Equivalent to Drinfeld double algebra o: T, = (Ta, T)
[T, Ts] = iFagTc
Ta Tol = iFopTe,  [Ta, ) = iF*Te — iFa®Te, [T°, 7] = iF*T°
Maximally isotropic subgroups g and §

N(Te,Ty) =0, n(Te, ) =065, n(T°,T)=0,



Drinfeld Double technology 2

Important combination of adjoint actions (the Poisson bi-vector)
N=TT.®T,:G—gAg
a0” =n(glag " T), b" =n(gT°g™",T"), Tl =beag
Nice behaviour under group multiplication
Opg =g + (ag-1 ® ag-1)I; , Tle =0
Essentially the integral of the F?.:

dHub _ _LcFubc _ 2Lchd[aHb]d



PLT Pairs of Sigma models

» PL T-duality equivalence between two o-models

Slg] = /g’lfhg(fal +M)~'g'o-g, ge€G

39 = / §l0.gE + )50 g, geG

» Ey = Gy + By contains d? constant moduli (can promote to functions of

spectators)
» The two models are related by a canonical transformation
» Normally very "ugly” target spaces, algebraic structure quite hidden



Examples

This set up subsumes both Abelian and non-Abelian T-duality and goes further

u(1)?, § = u(1)?, T = II = 0 = Abelian T-dual
g=u(1)?, T =0, I = £,,°X. = non-Abelian T-dual
g and g both non-Abelian = PL T-dual

2 =g° =g+ (a+n) = Integrable n-models

[
Il

1.
2.
3.
4.



Yang-Baxter and n Deformations

Integrable models wimcik 021 based on modified Yang-Baxter eq
[RA,RB] — R([RA,B] + [A,RB]) = —c’[A,B], VA Beg
An integrable deformed PCM

1 .
Sn 27Tf/d207-f(3+99 — 099 )

» ¢ = —1 = n Deformations

» ¢=0 = Includes e.g. TsT
PLtype with

Fubc _ RaeFer beFeca , EO _ 7]71 _R



Generalised Geometry for PL Geometries |

Curved Generalised Metric encodes physical E; = G;; 4 B;; whereas Flat
Generalised Metric encodes d? moduli Ey = Gy + Bo.

Ho— G,’] —BG'B -BG Hoan — (GO)cb — BoGElBo —ByGy
U= G—IB G—l AB — Go—lBO Go—l

Similar O(d, d) invariant pairing

(0 1 (01
M=\1 o e =\1 o
Generalised Frame Fields give a twisting matrix € O(d, d)
HT/ = E]AHABEJB
PL T-duality as an O(d, d) operation:
Un-twist IA_:’IA ® Invert Hag @ retwist with Ef



Generalised Geometry for PL Geometries 2

Explicit construction of globally defined frame fields as I'(TG + T*G)

N Ea:Hab Le
EA:{ E —V Vot

Recall Lie derivative of V=v+v on W= w4+ u:
LyW = [v,w] + (Lyv — ivdp)

Frame algebra wassien

Le, Es = Fas“Ec
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A doubled formalism for PL T-duality

» “"Doubled Formalism”: group element g(X) on D depends on 2d
coordinates X/
LX) =g 'dg
» PL Dual Pairs follow from chira-WZW wimcik & severa; stetsos; Hull & Reid-Edwards;

Driezen,Sevrin,DT 1

Sp = / CLAMpLE 4 LAnagl? + / Fas®noclA ALE ALC
)

M3

> RG ﬁ-fU nction Ol: H [Avramis, Derendi , Prezas; Sfet iampos-DT1.

dHas
dlog it

1
=Ras = g(HACHBF — nacner) (HCH™ — ) Fyy e



A doubled formalism for PL T-duality

Integrate out half the degrees of freedom reduces to conventional o-models

PL or n case A case
» 0 = g+ g two subalgebras: > 0 = g+ £ one subalgebra:
Drinfeld Double Manin quasi-riple

- Solg] B
giV )\g:gg g:QQI

Sp6ldl o Svseld]
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A doubled space time

Some questions:
» Can we connect directly the doubled worldsheet to supergravity?
» Can we make simple the underlying structures of these geometries?

» Can we extend PL symmetry to the Ramond-Ramond sector?

We can — utilising ideas of DFT on a group manifold siumenhagen assierusu and
generalised geometry in SUGRA wee strickiand-Constable, Waldram

A more formal Courant Algebroid perspective see tsevers,vaiach asi0.077631



DFTonD

A dynamical space-time theory (DFT ki, zwievacn) for generalised metric H and
sco|c|r (density) d on a group mcnifo|d D [Blumenhagen,Hassler,Lust], see also Geissbuhler; Cederwall;

Sns = / e LUV H Vo™ — SHPVsH Vo Hac
— 2V AdVeHE 4 418V 4 dVd + %FACDFBCD'HAB)
Group structure hides in derivatives:
Li(X)=g 'Og, Da=La8, [Da, Ds]=Fa"Dc

VAVBZDAVB—F%FACBVC—WFAVB , F4=DjslogdetL .



DFTon D

Symmetry algebra of DFT requires a “section condition” constraint

» Conventional 2d diffeomorphisms
LeV* = 8DV — wePFgVA + wDpe® VA
» Generalised diffeomorphisms
CgVA = fBVBVA - VBVBfA - nABnCDVCVBED + WDB.fBVA

» Section condition
1/"°Dp @ Dgo = 0

Solve the section condition so fields that depend only on half the
coordinates = generalised geometry applied to SUGRA waiaram etai1



Results

1. At level of DFT on D

» Equation of motion for H g in DFT on D match worldsheet 5%
> PL conditions extend to determine dilaton and RR fields

Fasc TG =0, G=-KG,
G a MW Spin(d, d) spinor
2. On section, target space M = D/G

> Recover we conventional DFT for % with section condition solved

> non-unimodular case recover the correct modified supergravity e.q.m
> Explicit examples of 7 and X models show that this recovers the solutions to
(modified-)sugra inc. fluxes
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Conclusions

v

Rich interplay between integrable models and generalised notions of
duality

Generalised dualities have concrete holographic application

v

v

Poisson Lie geometries provide an elegant generalised geometry
realisation

A doubled approach, at both the worldsheet and space time, can expose
their hidden simplicity

v

N
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The Squashed PCM

» Deform PCM to o-model on a squashed S? tchereani sn:
S= i/ FoTr(g 'org9 '0-g) + CLL P
27 s

S =Tr(g '0+gT)

» Integrable but SU(2), x SU(2)z — SU(2); x U(1)z
» Non-local charges recover semi-classical version of (affine extension of}

Z/{q (5 [2) [Kawaguchi, Matsumoto, Yoshida '11, '121

3 _Q3
_ q% —q %k VC
(R}, R Yo = B = gq=exp (HC)



Yang-Baxter and n Deformations

Integrable models wimei 021 based on modified Yang-Baxter eq
R-matrix: Solution of classical (modified) YB equation:
[RA RB| — R([RA, B + [A,RB|) = —c*[A,B], VABeg
An integrable deformed PCM

_ 1 -1 1 -1
S, = 2ﬂ/ZdQJTr(g 8+g,1_77Rg ELg)

» Broken G recovered in a hidden quantum group symmetry g = "'

» ¢ = —1 = n Deformations
» ¢c=0 = Includes e.g. TsT



n Deformations and Supergravity

v

Cosets and super-cosets e.g. AdSs x S° superstring metduc, Magro, vicedo 13001

> H-Sym mefric, SOlVeS modifled SUGRA [Orlando et al 1607, Arutyunov et al. 15111

v

Weyl invariant (solve SUGRA) if unimodular worsato and wuitt 16081

v

Relation of modified to DFT established tsakamoto et ai; Baguet et an

Update Hoare, Seibold genuine SUGRA solution for n-deformed AdSs x S°
(different choice of R)



n and Poisson-Lie

v

Mcdified conservation law for currents of broken Gy in n-model:

d*.]a: Fbca.lb/\.]c

fbe, structure constants for gz

[A, Bz = [RA, B + [A, RB]

v

v

Mathematically g @ gr ~ g© defines a Drinfel’d Double
» xJ pure gauge in a dual algebra (Field Equations < Bianchi identity)

v

So although not isometric just the right structure for PL T-duality uaimcik severa

For i deformation By = * — R.



n, A and Poisson-Lie

n and \ connected by generalised Poisson Lie T-duality

[Vicedo 1504; Hoare & Tseytlin 1504; Siampos Sfetsos DT 1506; Klimcik 15081

» PL dualise n model + Analytic continue certain Euler angles and
deformation parameters

TN K1—)

» Acting on the parameter g we have

~3

g=¢e"wqg=e
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Recap: WZW model

Consider PCM + WZ term :

2 _ _ 1 _ _ _
Swzw = Z—ﬂ/zdzﬂg '0.9,9710-g) + ko /M (g~ 'dg,[g""dg, g "dg])

v

Here OM3 = %5 and k € Z (say) = path integral independent of M.

v

IR fixed point x* = k = we have a CFT

v

G, x Gg current algebra:

94(g '0-g)=0 0-(94g9g ') =0

Gauging ‘anomaly’ free sub-groups = gauged-WZW =- coset CFTs

v



M- Lax

Integrable model for all values of A!

Gauge field e.q.m.:
AL =X0g0:gg ", A.=-X04-10g '9yg, Og=(1—Aadg) "

lax (ze C)

, dCH+HLAL=0
z



£-model for n, A

7 case )\ case
0=g+g
d=g+gr=g"=g+a+n
Szgdiag

<< 21,2 >>=Im< 24,2 >

<< A{x1,y1}, {x2, y2} >>

i i =< X1, X2 > — < yi1,y2 >
_ 1 —_
£:Z—sn—n V2= s+ HZ

1-x 0

— 1+

He (o k) = (5 4)
NRK KN — NRK



e Generalised A models, symmetries, S-matrix and quantisation

Appadu, Hollowood, Price, DT [1706.05322,1802.06016]
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Generalised )\ & YB-)\ Theories

» Sfetsos Procedure can be generalised by replacing PCM:
kSwzwlg) + Slg] = / Tr(g '0+90g§ '0-9)
> ) now a matrix A:
Sx = kSwzw + kS / Tf(9718+9;(379971)
27 | A-1+ Adg

A=1+k'®
» Idea: if © defined integrable PCM, A can define an integrable theory



Generalised \ & YB-)\ Theories for SU(2)

A-XXZ Model A-YB Model

o = diag(c .67, A7) 0 =l+5(1-R)"

Trigonometric Lax

Rational Lax
Lo=Ht[4°TiT — £ [4°T°T Lo = (ct + dR)T4 + (c- + dR)JT-
RG invariant RG invariant
i KR 1-eH(1-N? __2m)
’YQ:Z 22— g2 2 k(1 —))
“Non ultra-local” i.e. central term in current algebra
a b ¢ 4c k ab ¢/
{ji(x)7k7i(y)} = Tab ji(x)éxy:t %5 (5)(),



Classical Symmetries

» Expand monodromy to find symmetries but need to determine expansion

points!
T(z) = Pexp (- / Eo(z))

» Determine Maillet r/s algebra
{E%, L%} = [I'(Zl, Zz), [:% —+ [:%](512 + [S(Zl, 22), [,% — [:%]512 — 25(21, 22)512

» Locate special points z, where lim._,o r(z., z. + €) = finite



Charges and Symmetries

v

Special points associated to Quantum Group Symmetries
e.g. For A\ — YB model at ¢(z,) = i d(z.) we find

v

+x
Q ~ / T, @~ / (Jo £iJ3) exp [—iz Jo3<iy>dy]

[e']

g=exp (%) =e”~ Homogenous Gradation

v

For A — XXZ model similar with g = exp[r+/+2] Principal Gradation
QG parameters are RG invariant

v

v

Second quantum group point given by KM currents with

, i
9 = €XP (?)



Exact S-Matrix

Based on symmetries, limits and RG behaviour, we find conjectured form for
S-matrices using known blocks

> A-XXZ Model in UV Safe Domain 7'? < 0 semard Leciair
Sv-xz = Ssc(0,7') ® Sl(el;)os(e)
» A-XXZ Model Other Domain (periodic in rapidity)
Sz = Sp(0, %) @ Spos(6)
» )\-YB Model (periodic in rapidity, parity broken)

Sa—xxz = Sh(0,%) ® SRSOS( )



'Proving' S-matrix |

v

Non-ultra-local i.e.d” makes conventional techniques (QISM) inapplicable

» Alleviation raddeev-resneticnin takes a limit, modifies UV but same IR properties
k.
k—0, = ,~ fixed
E7A

v

In this limit the Lax connection becomes ultra-local (s(z, w) — 0) and can
be regularised, and quantised, on a lattice

» Obtain a lattice theory, XXZ anisotropic spin chain.
N
H% = Z (U,l,O',%_,_l + 0,2,0,%4_1 + COS’yagai’H)
n=1
» Actually need a spin S = £ chain and identify
y=21 —k

,y/



'Proving' S-matrix Il

v

Ground state using TBA «iitov-Reshetiknin find Dirac Sea dominated by k-Bethe
strings whose density p(z) obeys integral equation

(@) + pn(2) + - [ K(z= y)oly)dy = (2

v

Holes with density p, are excitations above the ground state

v

Amazing fact, these excitations scatter relativistically with a kernel

K(z) = dilzLogS(z) = /Ooo cos(zw) (coth(kw) + coth(v'w)) tanh 7w

v

This corresponds exactly to the S-matrix of the A-XXZ Model



Appendix: S-matrix Technology

Rapidity
E=mcosh®, P= msinh@

Axioms:

1. Factorization 2-body factorisation, no particle production

2. Analyticity. Only poles along the imaginary axis 0 < Imf < 7 associated

to stable bound states.
3. Hermitian analyticity
S{e) = Si(—9) .
4. Unitarity
Zs (0)SE.(0)" = 6imbin, OER.

5. Crossing

SZ’(@) = Ci SZ:,.(I'W — H)C Sr (,ﬂ- —9),

i'i

where C is the charge conjugation matrix.



Appendix: Gradation |

[Hi, Ej] = ajiE;,  [Hi, Fl = —aif;,  [E, F] = 8;H;

Generalised Cartan matrix a; has off diagonal elements equal —2.

K= Ho + Hi is central. K= 0, i.e. centreless representations su(2) becomes
the loop algebra. Reps are the tensor of an su(2) rep and functions of a
variable z. Gradation is the relative action in su(2) space and zspace.

homogenous gradation
E1:T‘+7 F1:T_, E():ZQT_, FO:Z_2T+, H1:—H0:T3
. principal gradation

E1:ZT+, F12271T7, E():ZTi, F02271T+, H1=—H0=T3



Appendix: Homogenous Gradation

T +2 QF 23 Q;
Zo = +in +1 at Qf Qr
0 9t 9= -9 9

2z, = —in -1 ot 03, a-
l -2 ot, 03, 2,

Figure: The charges and their grades for the expansion of the monodromy around the pair of
special points z = +in. The blue/red and positive/negative graded charges are associated to +in,
respectively. The red and blue charges generate the affine quantum group in homogenous gradation
and all the other charges are obtained by repeated Poisson brackets of these charges.



Appendix: Principal Gradation

su(2),.

T +2 23

Zy = OO _|_1 D+ Q,

7o =—00 -1 9t Q-

l -2 0%,

Figure: The charges and their grades for the expansion of the monodromy around the pair of
special points z = o0 (or 0, co with a multiplicative spectral parameter). The blue/red and
positive/negative graded charges are associated to +oo, respectively. The red and blue charges
generate the affine quantum group in principal gradation and all the other charges are obtained by
repeated Poisson brackets of these charges.




RG in YB-\ model
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RG in -\ model

——7I\ \“\:;». (7=
N

Figure: The RG flow (to the IR) of the XXZ lambda model. The WZW fixed point is identified by the
blue blob. The blue line is a line of UV fixed points. The green curve is a UV safe trajectory that has
~" € R. The red curve is a cyclic RG trajectory with v/ = io, o € R. The trajectory has a jump in
the coupling A from —co to oo, but is continuous in 1/X.
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Demulder, Dorigoni, DT [1604.07851]
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D-branes in the A\-model

» DBI action
Spa = /e_q) \/ é-l—]:
» )\ enters spectrum of D-branes. E.g. SU(2), ¢ a scalar fluctuation and g a

gauge flucuation

o LN (24820 2 5
d2\ g /)  ka'1-)2 20 (1422 5 g/’

1+22

Note 6§ not a moduli, D-branes are stabilised

v

v

Flux quantisation = D-branes stabilised to conjugacy classes of integrable
hlghesf welghts Bachas, Petropolous; Stanciu Figueroa-O'Farrill

v

e.g. SU(2)i: 2 DO’s and k — 1 D2's wrapping S* whose size is a function
of A



A Commentary

A deformations solve SUGRA with appropriate RR fields isretsos o, sorsato wuirn

v

v

Quantum group symmetry expected with g = e watowood etan

v

Can be quantised on a light cone lattice as spin-k Heisenberg XXX

Spi n-cho in [Hollowood,Price,Appadu (+DT)]

v

Also applied to cosets isretsost, supercosets wotiowood et an
One-loop marginal deformation in case of PSU(2, 2|4)! wppadu, Holtowoodn

v



