
MITP Workshop 
Holography, Generalized Geometry and Duality 

05/2019

Henning Samtleben

A B

Exceptional Field Theories & Applications 



  dimensional reduction and duality symmetries 

  exceptional geometry & tensor hierarchy 

  generalized Scherk-Schwarz reductions

plan

based on work with  Olaf Hohm, Arnaud Baguet, Hadi Godazgar, Mahdi Godazgar, 
Hermann Nicolai, Edvard Musaev, Gianluca Inverso, Marc Magro, Emanuel 
Malek, Mario Trigiante, Valentí Vall Camell

A B

Henning Samtleben                                                                                                      ENS Lyon

  consistent truncations  
  AdS5 x S5 
  Sp, Hp,q   spheres and hyperboloids 
  Sp x Hp,q   products of spheres: dyonic gaugings 

  supergravity magic 
  timelike dualities 
  generalized IIB supergravity

exceptional field theory

  applications



A B

Henning Samtleben                                                                                                      ENS Lyon

manifestly duality covariant formulation of maximal supergravity

upon toroidal reduction on Td, eleven-dimensional supergravity 
exhibits the global exceptional symmetry group Ed(d)  

     after proper dualisation/reorganisation of the fields

ExFT : reformulate D=11 supergravity such that Ed(d) (or its 
remnants) becomes manifest  before  dimensional reduction

D=11 supergravity

T7

maximal supersymmetry, global  E7(7) 

D=4 supergravity

IIB supergravity

T5

maximal supersymmetry, global  E6(6)

D=5 supergravity

exceptional field theory  (ExFT)

example: E6(6) : exceptional field theory

[Cremmer, Julia]
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D=5 maximal supergravity    (torus reduction of D=11 or IIB)

gµ⌫

Aµ
M Bµ⌫ M

:    5 x 5 external metric 

:    27 vector fields 27 two-form fields 

MMN :    27 x 27 internal metric, parametrizing  E6(6)/USp(8) 

+ Ltop � Vpot(MMN , gµ⌫)

=3

L = R +
1
24

�µMMN�µMMN � 1
4
MMN Fµ�

MFµ� N

after proper dualization of the dof’s  (different for IIA / IIB) 
the D=5 Lagrangian takes the E6(6) invariant form 

Ltop = dKMN FM ^ FN ^AKwith
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D=5 maximal supergravity    (torus reduction of D=11 or IIB)

gµ⌫

Aµ
M Bµ⌫ M

:    5 x 5 external metric 

:    27 vector fields 27 two-form fields 

MMN :    27 x 27 internal metric, parametrizing  E6(6)/USp(8) 

+ Ltop � Vpot(MMN , gµ⌫)

=3

L = R +
1
24

�µMMN�µMMN � 1
4
MMN Fµ�

MFµ� N

after proper dualization of the dof’s  (different for IIA / IIB) 
the D=5 Lagrangian takes the E6(6) invariant form 

exceptional field theory:  

— same Kaluza-Klein reorganisation of the higher-dimensional fields  

— keeping the dependence on all internal coordinates (non-abelian gauge structure)



E6(6) : exceptional field theory

A B

Henning Samtleben                                                                                                      ENS Lyon

+ Ltop � Vpot(MMN , gµ⌫)

=3

L = R +
1
24

�µMMN�µMMN � 1
4
MMN Fµ�

MFµ� N

L = bR+
1

24
DµMMN DµMMN � 1

4
MMN Fµ⌫

MFµ⌫N

+ Ltop � Vpot(MMN , gµ⌫)

M = 1, . . . , 27internal (exceptional) space :
external space-time : {xµ} µ = 0, . . . , 4— all fields live on

— internal coordinates enhanced to E6(6) representation:  6 —> 27

subject to the section constraint (covariant restriction down to 6 coordinates)

dKMN @M ⌦ @N = 0
dKMN @Mf @Ng = 0

dKMN @M@Nf = 0
⇢

[Berman, Godazgar, Perry, West, 
Coimbra, Strickland-Constable, Waldram, 
Cederwall, Kleinschmidt, Thompson]

exceptional field theory:  

— same Kaluza-Klein reorganisation of the higher-dimensional fields  

— keeping the dependence on all internal coordinates (non-abelian gauge structure)

[Hohm, H.S.]

�
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L = bR+
1

24
DµMMN DµMMN � 1

4
MMN Fµ⌫

MFµ⌫N

+ Ltop � Vpot(MMN , gµ⌫)

dependence on internal coordinates induces non-abelian gauge structure

Dµ = @µ � LAµ

[Coimbra, Strickland-Constable, Waldram]

L⇤ V M = ⇤N@NV M � 
h
@N⇤M

i

adj
V N

Fµ⌫
M ⌘ 2@[µA⌫]

M �
⇥
Aµ, A⌫

⇤M
E

+ 10 dMNK@KBµ⌫N

two-form field equations compensated by the topological term

Stop =

Z
d27Y

Z

M6

�
dMNK F

M
^ F

N
^ F

K
� 40 dMNK

HM ^ @NHK

�

boundary term of a six-dimensional bulk

non-associativity of generalized diffeomorphisms induces modified YM field strengths

generalized diffeomorphisms
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Vpot =
1

24
MMN@MMKL (12 @LMNK � @NMKL)

— invariant under generalized diffeomorphisms 

— generalised (internal) curvature scalar

�1

2
g�1@Mg @NMMN � 1

4
MMNg�1@Mg g�1@Ng � 1

4
MMN@Mgµ⌫ @Ngµ⌫

 “potential”

L = bR+
1

24
DµMMN DµMMN � 1

4
MMN Fµ⌫

MFµ⌫N

+ Ltop � Vpot(MMN , gµ⌫)
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unique action with generalized diffeomorphism invariance 
in all 5+27 coordinates   (modulo section condition) 

:  reproduces full IIA supergravity    ( additional singlet 1:  D=11 supergravity)

=3

27 �� 1 + 5� + 10 + 5 + 5� + 1

section condition is solved upon breaking E6(6) —> SL(5)

=3

27 �� 1 + 5� + 10 + 5 + 5� + 1:  reproduces full IIB supergravity    ( preserves an SL(2) )

=3

MMN =

�

�������

M0,0 M0,m M0
mn M0

m M00̄

Mk,0 Mk,m Mk
mn Mk

m Mk0̄

Mkl
0 Mkl

m Mkl,mn Mkl,m Mkl
0̄

Mk
0 Mk

m Mk,mn Mk,m Mk
0̄

Mk,0 Mk,m Mk
mn Mk

m Mk0̄

M0̄,0 M0̄,m M0̄
mn M0̄

m M0̄0̄

�

�������

together with proper dictionary of ExFT fields into IIA/IIB
=3

MMN =

�

�������

M0,0 M0,m M0
mn M0

m M00̄

Mk,0 Mk,m Mk
mn Mk

m Mk0̄

Mkl
0 Mkl

m Mkl,mn Mkl,m Mkl
0̄

Mk
0 Mk

m Mk,mn Mk,m Mk
0̄

Mk,0 Mk,m Mk
mn Mk

m Mk0̄

M0̄,0 M0̄,m M0̄
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�

�������

dKMN @M ⌦ @N = 0

L = bR+
1

24
DµMMN DµMMN � 1

4
MMN Fµ⌫

MFµ⌫N

+ Ltop � Vpot(MMN , gµ⌫)
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manifestly duality covariant formulation of maximal supergravity

E6(6) : exceptional field theory

ExFT

Exceptional Form ofD ¼ 11 Supergravity

Olaf Hohm1,* and Henning Samtleben2,†

1Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-1-80333 Munich, Germany
2Laboratoire de Physique, Université de Lyon, UMR 5672, CNRS, École Normale Supérieure de Lyon,

46, Allée d’Italie, F-69364 Lyon Cedex 07, France
(Received 14 August 2013; published 4 December 2013)

Eleven-dimensional supergravity reveals large exceptional symmetries upon reduction, in accordance

with the U-duality groups of M theory, but their higher-dimensional geometric origin has remained a

mystery. In this Letter, we show that D ¼ 11 supergravity can be extended to be fully covariant under the

exceptional groups EnðnÞ, n ¼ 6, 7, 8. Motivated by a similar formulation of double field theory we

introduce an extended ‘‘exceptional spacetime.’’ We illustrate the construction by giving the explicit E6ð6Þ
covariant form: the full D ¼ 11 supergravity, in a 5þ 6 splitting of coordinates but without truncation,

embeds into an E6ð6Þcovariant 5þ 27 dimensional theory. We argue that this covariant form likewise

comprises type IIB supergravity.

DOI: 10.1103/PhysRevLett.111.231601 PACS numbers: 11.25.Yb, 04.65.+e, 04.50.%h, 11.15.%q

Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ[2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ[3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞT-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form

S¼
Z

d5xd27YeL;

L & R̂þ 1

24
g!"D!MMND"MMN

% 1

4
MMNF !"MF N

!" þ e%1Ltop % VðM; eÞ: (1)
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D=5+27 with section condition

dictionary dictionary

D=11 sugra IIB sugra

upon solving the section constraint: reformulation of the original theories 

IIA and IIB supergravity accommodated in the same framework
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manifestly duality covariant formulation of maximal supergravity

E6(6) : exceptional field theory

dictionary

IIB sugra

D=5 maximal sugra 
global  E6(6)
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DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
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Minkowski up to a possible warp factor. This leaves open
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dimensional Einstein gravity. By proper Kaluza–Klein-type
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full theory takes a form that is manifestly covariant under the
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tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
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tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
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theory, whose low-energy limit is given by 11-dimensional
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should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ[2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ[3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞT-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
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Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form
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history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form
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Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ[2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ[3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞT-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form
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Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ[2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ[3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
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niques from ‘‘double field theory’’ (DFT), an approach that
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manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
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Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form
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IIB sugra

D=5 maximal sugra 
global  E6(6) 

gauge group SO(6)

AdS5  x S5 

  AdS5  x S5 : maximal supersymmetric solution of IIB 

  fluctuations around the background: D=5 gauged supergravity 

  explicit reduction formulas: highly non-trivial

D=11 on AdS4 x S7 : [de Wit, Nicolai] 1987 
D=11 on AdS7 x S4 : [Nastase, van Nieuwenhuizen, Vaman] 1999 
IIB on AdS5 x S5 :       shown for various sub-sectors…

ds2 = ��2/3(x, y) gµ⌫(x) dx
µdx⌫ +Gmn(x, y)

�
dym +K[ab]

m(y)Aab
µ (x)dxµ

� �
dyn +K[cd]

n(y)Acd
⌫ (x)dx⌫

�

Gmn(x, y) = �2/3(x, y)K[ab]
m(y)K[cd]

n(y)Mab,cd(x)

[Gunaydin,Romans,Warner] 
[Pernici,Pilch,vNieuwenhuizen]
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consistent truncation via generalized Scherk-Schwarz ansatz in ExFT

in terms of an E6(6)—valued twist matrix                 and scale factorUM
N (Y ) ⇢(Y )

dictionary

ExFT

IIB sugra

D=5 maximal sugra 
global  E6(6) 

gauge group SO(6)

AdS5  x S5 

=3

MMN (x, Y ) = UM
K(Y ) MKL(x) UN

L(Y )
=3

Aµ
M (x, Y ) = ��1(Y ) (U�1)K

M (Y ) Aµ
K(x)

=3

Bµ� M (x, Y ) = ��2(Y ) UM
K(Y ) Bµ� K(x)

[Gunaydin,Romans,Warner] 
[Pernici,Pilch,vNieuwenhuizen]
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consistent truncation via generalized Scherk-Schwarz ansatz in ExFT

in terms of an E6(6)—valued twist matrix                 and scale factorUM
N (Y ) ⇢(Y )

dictionary

ExFT

IIB sugra

D=5 maximal sugra 
global  E6(6) 

gauge group SO(6)

AdS5  x S5 
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M (Y ) Aµ
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=3
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  system of consistency equations 

  generalized parallelizability 

  no general classification of its solutions (Lie algebras vs Leibniz algebras)

⇥
(U�1)M

P (U�1)N
L @PUL

K
⇤
351

!
= ⇢XMN

K

[Gunaydin,Romans,Warner] 
[Pernici,Pilch,vNieuwenhuizen]
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dictionary

ExFT

IIB sugra

D=5 maximal sugra 
global  E6(6) 

gauge group SO(6)

AdS5  x S5 

twist matrix                 associated to SO(6)          
=3

U � SL(6)

  background  AdS5 x S5 

  full reduction formulas of IIB on AdS5 x S5

=3

MMN (x, Y ) = UM
K(Y ) MKL(x) UN

L(Y )
=3

Aµ
M (x, Y ) = ��1(Y ) (U�1)K

M (Y ) Aµ
K(x)

=3

Bµ� M (x, Y ) = ��2(Y ) UM
K(Y ) Bµ� K(x)

in terms of sphere harmonics and the fields of D=5 maximal supergravity

[Gunaydin,Romans,Warner] 
[Pernici,Pilch,vNieuwenhuizen]

U = ( g−1/2∂i𝒴A

𝒴A − 2 ζi∂i𝒴A) ∈ SL(6)
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the generalized Scherk-Schwarz reduction ansatz for the
twist matrices obtained in [17]. The Scherk-Schwarz origin
also proves consistency of the truncation in the sense that
all solutions of the respective D ¼ 5 maximal supergrav-
ities lift to solutions of the type IIB fields equations.
By virtue of the explicit embedding of the IIB theory into
EFT [22,36] these formulas can be pulled back to read
off the reduction formulas for the original type IIB fields.
Upon some further computational effort we have also
derived the explicit expressions for all the components
of the IIB four-form. Along the way, we explicitly verified
the IIB self-duality equations. Although their consistency
is guaranteed by the general construction, we have seen
that their validation by virtue of nontrivial Killing vector
identities still represents a rewarding exercise.
We have in this paper restricted the construction to the

bosonic sector of type IIB supergravity. In the EFT frame-
work, consistency of the reduction of the fermionic sector
follows along the same lines from the supersymmetric
extension of the E6ð6Þ exceptional field theory [49] which
upon generalized Scherk-Schwarz reduction yields the
fermionic sector of the D ¼ 5 gauged supergravities [17].
In particular, compared to the bosonic reduction ansatz (2.1),
the EFT fermions reduce as scalar densities, i.e. their y-
dependence is carried by somepower of the scale factor, such
asψμ

iðx; yÞ ¼ ρ−
1
2ðyÞψμ

iðxÞ, etc. A derivation of the explicit
reduction formulas for the original IIB fermions would
require the dictionary of the fermionic sector of EFT into
the IIB theory, presumably along the lines of [40]. The very
existence of a consistent reduction of the fermionic sector
can also be inferred on general grounds [2] combining the
bosonic results with the supersymmetry of the IIB theory.
We close by recollecting the full set of IIB reduction

formulas derived in this paper. The IIB metric is given by

ds2 ¼ Δ−2=3ðx; yÞgμνðxÞdxμdxν

þGmnðx; yÞðdym þK½ab&
mðyÞAab

μ ðxÞdxμÞ

× ðdyn þK½cd&
nðyÞAcd

ν ðxÞdxνÞ; ð6:1Þ

in standard Kaluza-Klein form, in terms of vectors K½ab&
m

from (3.38) that are Killing for the (Lorentzian) metric ~Gmn
from (3.9), and the internal block Gmn of the metric (6.1)
given by the inverse of

Gmnðx; yÞ ¼ Δ2=3ðx; yÞK½ab&
mðyÞK½cd&

nðyÞMab;cdðxÞ:

ð6:2Þ

The IIB dilaton and axion combine into the symmetric SL
(2) matrix

mαβðx; yÞ ¼ Δ4=3ðx; yÞYaðyÞYbðyÞMaα;bβðxÞ; ð6:3Þ

in terms of the harmonics Ya from (3.45). Since
detmαβ ¼ 1, this equation can also be used as a defining
equation for the functionΔðx; yÞ. The different components
of the two-form doublet are given by

Cmn
αðx; yÞ ¼ −

1

2
εαβΔ4=3ðx; yÞmβγðx; yÞYcðyÞ

×K½ab&
mnðyÞMab

cγðxÞ;
Cμm

αðx; yÞ ¼ 0;

Cμν
αðx; yÞ ¼

ffiffiffiffiffi
10

p
YaðyÞBμν

aαðxÞ: ð6:4Þ

Next, we give the uplift formulas for the four-form
components in terms of the Killing vectors K½ab&

mðyÞ,
Killing tensors K½ab&mnðyÞ, the sphere harmonics YaðyÞ
given in (3.45), the function Z½ab&kmnðyÞ given by (3.21),
and the four-form ~CklmnðyÞ from (3.49). In order not to
clutter the formulas, in the following we do not display the
dependence on the arguments x and y as it is always clear
from the definition of the various objects whether they
depend on the external or internal coordinates or both. The
final result reads

Cklmn ¼ ~Cklmn þ
1

16
~ωklmnpΔ4=3mαβ

~Gpq∂qðΔ−4=3mαβÞ;

Cμkmn ¼
ffiffiffi
2

p

4
Z½ab&kmnAμ

ab;

Cμνmn ¼
ffiffiffi
2

p

4
K½ab&

kZ½cd&kmnA½μ
abAν&

cd;

Cmμνρ ¼ −
1

32
K½ab&m

"
2

ffiffiffiffiffiffi
jgj

p
εμνρστMab;NFστN þ

ffiffiffi
2

p
εabcdefΩ

cdef
μνρ

#
−
1

4

ffiffiffi
2

p
K½ab&

kK½cd&
lZ½ef&mklðA½μ

abAν
cdAρ&

efÞ;

Cμνρσ ¼ −
1

16
YaYb

" ffiffiffiffiffiffi
jgj

p
εμνρστDτMbc;NMNca þ 2

ffiffiffi
2

p
εcdefgbF½μν

cdAρ
efAσ&

ga
#

þ 1

4

" ffiffiffi
2

p
K½ab&

kK½cd&
lK½ef&

nZ½gh&kln − YhYjεabcegjηdf
#
A½μ

abAν
cdAρ

efAσ&
gh þ ΛμνρσðxÞ: ð6:5Þ
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ds2 = ��2/3(x, y) gµ⌫(x) dx
µdx⌫ +Gmn(x, y)

�
dym +K[ab]

m(y)Aab
µ (x)dxµ

� �
dyn +K[cd]

n(y)Acd
⌫ (x)dx⌫

�

Gmn(x, y) = �2/3(x, y)K[ab]
m(y)K[cd]

n(y)Mab,cd(x)

e.g. 4-form  (after reconstructing all components, in Kaluza-Klein basis)

consistency of the reduction of Eq. (A1), which after all
should be guaranteed by consistency of the ansatz.
What comes to the rescue is some additional properties
of the twist matrix together with some highly nontrivial

nonlinear identities among the components of an
E6ð6Þ matrix. Namely the last factor in the first term
of (A10) drastically reduces upon certain index
projections

ðU−1ÞaqK½bc$
m ∂m Uq

c þ ðU−1ÞbqK½ac$
m ∂m Uq

c ¼ −
ffiffiffi
2

p
ηab;

ðU−1ÞaqK½bc$
m ∂m Uq

d þ ðU−1ÞbqK½ca$
m ∂m Uq

d þ ðU−1ÞcqK½ab$
m ∂m Uq

d ¼ 0; ðA12Þ

as may be verified by explicit computation. Moreover, the
tensor X ðabÞcd;e

f defined in (A11) is of quite restricted
nature and satisfies

X ðabÞcd;e
f ¼ X ðabÞ½cd;e$

f −
2

5
δf½cX ðabÞd$g;e

g

−
2

45
δf½cX ðabÞd$e;g

g þ
1

9
δfeX ðabÞcd;g

g; ðA13Þ

implying in particular that

X ðabÞe½c;d$
e ¼ − 1

6
X ðabÞcd;e

e: ðA14Þ

The identity (A13) is far from obvious and hinges
on the group properties of the matrix (4.12). It can be
verified by choosing an explicit parametrization of this
matrix (e.g. as given in [36]), at least with the help of
some computer algebra [50–52]. Combining this identity
with the properties (A12) of the twist matrix, we conclude

that the first term on the rhs of (A10) simplifies according
to

X ðabÞcd;e
fðU−1ÞeqK½cd$

m ∂m Uq
f

¼ 2

5
X ðabÞgðd;eÞ

gðU−1ÞeqK½fd$
m ∂m Uq

f

¼ 1

5

ffiffiffi
2

p
X ðabÞgd;e

gηde; ðA15Þ

such that its y-dependence reduces to the harmonics YaYb.
As a consequence, together with (A12), we conclude that

the penultimate term in (A10) reduces to

−
1

10

ffiffiffi
2

p ffiffiffiffiffi
jgj

p
YaYbX ðabÞcd;e

fðU−1ÞeqK½cd$
l∂lUq

f

¼ −
1

25

ffiffiffiffiffi
jgj

p
YaYbX ðabÞgc;d

gηcd: ðA16Þ

Together with (A8), Eq. (A1) then eventually reduces to

D ½μΛνρστ$ ¼ −
1

80
YaYb

ffiffiffiffiffiffi
jgj

p
εμνρστD λðMNacD λMbc;NÞ

þ 1

40
YaYb

ffiffiffiffiffiffi
jgj

p
εμνρστFκλN

"
Mbc;NFκλ

ac −
1

2

ffiffiffiffiffi
10

p
εαβηdbMdα

NBκλ
aβ

#

þ 1

100

ffiffiffiffiffiffi
jgj

p
εμνρστYaYbð10Mac;fd þ X ðafÞec;d

eÞηcdηbf

þ 1

32

ffiffiffi
2

p
εabcdefF½μν

abFρσ
cdAτ$

ef þ 1

16
F½μν

abAρ
cdAσ

efAτ$
ghεabcdehηfh

þ 1

40

ffiffiffi
2

p
A½μ

abAν
cdAρ

efAσ
ghAτ$

ijεabcegiηdfηhj; ðA17Þ

such that the y-dependence of the entire equation organizes into the form (A9). Now the x-dependent coefficient of the
traceless combination ðYaYb − 1

6 ηabÞ precisely reproduces the D ¼ 5 scalar equations of motion (4.16). In particular, the
third line of (A17) coincides with the SL(6) variation of the scalar potential (4.14). This match requires additional nontrivial
relations among the components of an E6ð6Þ matrix (4.12)

ηefMdα
hðaMbÞc;deMfα

ch ¼ ηefMgα
deMfc;gðaMbÞα

cd;

ηefMde;cðaMbÞγ;fαMdα;cγ ¼ 2ηefMde;cðaMbÞh;fgMdg;ch þ ηefMdα
hðaMbÞc;deMfα

ch; ðA18Þ

which can be proven similar to (A13). From these it is straightforward to deduce that

CONSISTENT TYPE IIB REDUCTIONS TO MAXIMAL 5D … PHYSICAL REVIEW D 92, 065004 (2015)

065004-21

e.g. metric  (standard Kaluza-Klein form)

  proves the consistent truncation of IIB on AdS5 x S5



A B

  consistent truncation on AdS5 x S5

Henning Samtleben                                                                                                      ENS Lyon

dictionary

ExFT

IIB sugra

AdS5  x S5 

twist matrix                 associated to SO(6)          
=3

U � SL(6)

  background  AdS5 x S5 

  full reduction formulas of IIB on AdS5 x S5

  proves the consistent truncation of IIB on AdS5 x S5

D=5 maximal sugra 
global  E6(6) 

gauge group SO(6) [Gunaydin,Romans,Warner] 
[Pernici,Pilch,vNieuwenhuizen]

U = ( g−1/2∂i𝒴A

𝒴A − 2 ζi∂i𝒴A) ∈ SL(6)



A B

Henning Samtleben                                                                                                      ENS Lyon

dictionary

ExFT

IIB sugra

AdS5  x S5 

similar: twist matrix                 associated to  
  SO(p,q) and CSO(p,q,r)         

=3

U � SL(6)

D=5 maximal sugra 
global  E6(6) 

gauge group SO(6)

  consistent truncation on AdS5 x S5

built from sphere harmonics on  SO(p,q)/SO(p–1,q)

[Gunaydin,Romans,Warner] 
[Pernici,Pilch,vNieuwenhuizen]

U = ( g−1/2∂i𝒴A

𝒴A − 2 ζi∂i𝒴A) ∈ SL(6)



A B
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ExFT
dictionary

IIB sugra

D=5 maximal sugra 
global  E6(6) 

gauge group SO(6)

D=5 maximal sugra 
global  E6(6) 

gauge group SO(p,q)
D=5 maximal sugra 

global  E6(6) 

gauge group CSO(p,q,r)

hyperboloid compactifications

similar: twist matrix                 associated to  
  SO(p,q) and CSO(p,q,r)         

=3

U � SL(6)

built from sphere harmonics on  SO(p,q)/SO(p–1,q)



A B
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ExFT

D=5 maximal sugra 
global  E6(6) 

gauge group SO(6)

D=5 maximal sugra 
global  E6(6) 

gauge group SO(p,q)
D=5 maximal sugra 

global  E6(6) 

gauge group CSO(p,q,r)

  background: (warped) hyperboloids 

  in general no IIB solutions, still consistent truncations!

hyperboloid compactifications

dictionary

IIB sugra!

!

[Hull, Warner] [Baron, Dall’Agata]

similar: twist matrix                 associated to  
  SO(p,q) and CSO(p,q,r)         

=3

U � SL(6)



other examples of consistent truncations

A B

Henning Samtleben                                                                                                      ENS Lyon

consistent truncations with smaller isometry groups

products of spheres and hyperboloids                 ,
=3

Sp � Sq
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=3

Sp �Hq
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[Inverso, HS, Trigiante, Malek]

specific D=4 construction, based on electric/magnetic split of internal coordinates 

inducing dyonic gaugings
=3

(SO(p, q)� SO(p�, q�)) � N
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[Dall’Agata, Inverso]

4.1.3 Case 5 ! 3+ 1+ 1

Let us split the index i into i = ↵,↵
0
, a, where ↵ = 1, 2, 3, ↵0 = 4, 5, 6 and a = 7, 8 is the

index labeling the singlets. The SO(3)d generators in the 8 of SO(8) read:

t↵ =

0

B@
✏�↵� 0 0

0 ✏�0↵�0 0

0 0 02

1

CA , (4.6)

and satisfy the relations (4.4). With the general ansatz for Aij , Ai
jkl in terms of singlets

under this SO(3)d (c.f. appendix B), we find aside from the known N = 8 solution only the

following solution:

A↵� = �↵� , A↵0�0 = 2⇠ �↵0�0 , A77 = 2 ⌘ , A88 = ⇠ ⌘ e
i'
,

A
7
↵0�0� =

p
2 ⇠ ⌘ e�i'4 ✏↵0�3�0�3 � , A

↵0
�0�7 = �

p
2 e�i'4 ✏↵0�3�0�3 � ,

A
↵0

�0�08 =
p
2 ⇠ ei

'
4 ✏↵0�3�0�3 �0�3 , A

↵0
↵ab = �⌘ e

i'2 �
↵0�3
↵ ✏ab ,

A
7
8↵0↵ = �⇠ e

i'2 �↵0�3↵ , A
↵0

�0↵� = �2 �↵
0�3�0�3

↵� , (4.7)

where ⌘, ⇠ = ±1. The parameter ⇠ can be disposed of by means of a SU(8) transformation

while the sign ⌘ can be changed by shifting ' ! '+2⇡. We can thus set ⇠ = ⌘ = +1. Notice

that A
8
ijk = 0 which implies that this is actually an N = 4 solution and that the residual

symmetry group is enhanced to SO(4).

4.2 Gauge Groups and E7(7)-Invariants

We have identified two AdS vacua in maximal supergravity by solving the system of quadratic

constraints (2.6) for the embedding tensor. As the next step, we will have to determine the

associated gauge groups, i.e. identify in which gauged maximal supergravity these vacua live.

We can compute the associated gauge group generators via (2.4), (2.3), and (2.1). Much of

the structure of the gauge group can already be inferred from the E7(7)-invariant signature

of the (generalized) Cartan-Killing metric

sign[Tr(XM ·XN )] . (4.8)

The above matrix has 28 vanishing eigenvalues (due to the locality constraint (2.2)) while

the other 28 eigenvalues define the Cartan-Killing metric of the gauge algebra.

4.2.1 The N = 4 vacuum

We first compute the Cartan-Killing metric (4.8) for the N = 4 vacuum (4.7) as a function

of the angular parameter '. This allows the following identification of the corresponding

underlying gauge group:

parameter signature of C.-K. metric gauge group

' = 2⇡ (1+, 15�, 120) [SO(1, 1)⇥ SO(6)]n T
12

0  ' < 2⇡ (7+, 21�) SO(1, 7)

(4.9)
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gauge group
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D=4 maximal sugra

AdS4 × S5 × ℝ
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consistent truncations with smaller isometry groups

products of spheres and hyperboloids                 ,
=3

Sp � Sq
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[Inverso, HS, Trigiante, Malek]

specific D=4 construction, based on electric/magnetic split of internal coordinates 

inducing dyonic gaugings
=3

(SO(p, q)� SO(p�, q�)) � N
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[Dall’Agata, Inverso]

4.1.3 Case 5 ! 3+ 1+ 1

Let us split the index i into i = ↵,↵
0
, a, where ↵ = 1, 2, 3, ↵0 = 4, 5, 6 and a = 7, 8 is the

index labeling the singlets. The SO(3)d generators in the 8 of SO(8) read:

t↵ =

0

B@
✏�↵� 0 0

0 ✏�0↵�0 0

0 0 02

1

CA , (4.6)

and satisfy the relations (4.4). With the general ansatz for Aij , Ai
jkl in terms of singlets

under this SO(3)d (c.f. appendix B), we find aside from the known N = 8 solution only the

following solution:

A↵� = �↵� , A↵0�0 = 2⇠ �↵0�0 , A77 = 2 ⌘ , A88 = ⇠ ⌘ e
i'
,

A
7
↵0�0� =

p
2 ⇠ ⌘ e�i'4 ✏↵0�3�0�3 � , A

↵0
�0�7 = �

p
2 e�i'4 ✏↵0�3�0�3 � ,

A
↵0

�0�08 =
p
2 ⇠ ei

'
4 ✏↵0�3�0�3 �0�3 , A

↵0
↵ab = �⌘ e

i'2 �
↵0�3
↵ ✏ab ,

A
7
8↵0↵ = �⇠ e

i'2 �↵0�3↵ , A
↵0

�0↵� = �2 �↵
0�3�0�3

↵� , (4.7)

where ⌘, ⇠ = ±1. The parameter ⇠ can be disposed of by means of a SU(8) transformation

while the sign ⌘ can be changed by shifting ' ! '+2⇡. We can thus set ⇠ = ⌘ = +1. Notice

that A
8
ijk = 0 which implies that this is actually an N = 4 solution and that the residual

symmetry group is enhanced to SO(4).

4.2 Gauge Groups and E7(7)-Invariants

We have identified two AdS vacua in maximal supergravity by solving the system of quadratic

constraints (2.6) for the embedding tensor. As the next step, we will have to determine the

associated gauge groups, i.e. identify in which gauged maximal supergravity these vacua live.

We can compute the associated gauge group generators via (2.4), (2.3), and (2.1). Much of

the structure of the gauge group can already be inferred from the E7(7)-invariant signature

of the (generalized) Cartan-Killing metric

sign[Tr(XM ·XN )] . (4.8)

The above matrix has 28 vanishing eigenvalues (due to the locality constraint (2.2)) while

the other 28 eigenvalues define the Cartan-Killing metric of the gauge algebra.

4.2.1 The N = 4 vacuum

We first compute the Cartan-Killing metric (4.8) for the N = 4 vacuum (4.7) as a function

of the angular parameter '. This allows the following identification of the corresponding

underlying gauge group:

parameter signature of C.-K. metric gauge group

' = 2⇡ (1+, 15�, 120) [SO(1, 1)⇥ SO(6)]n T
12

0  ' < 2⇡ (7+, 21�) SO(1, 7)

(4.9)

12

gauge group

IIB sugra

D=4 maximal sugra

scalar potential

SO(6)   no ground state

SO(4)   N=4, AdS4 vacuum
=3

AdS4 � S2 � S2 � �

AdS4 × S5 × ℝ

Janus solution [D’Hoker, Estes, Gutperle] 
with a maximally supersymmetric  
consistent truncation around

C Relation to the N = 4 Janus solution

In this appendix we show that the solution discussed in Section 3.3, upon suitable redefini-

tions and an S-duality rotation, coincides with the N = 4 supersymmetric Janus solution of

[56].

Let us define the S2 ⇥ S2 sphere harmonics as

Yp

1 ⌘ 1

r
Yp , Yp

2 ⌘ 1p
1� r2

Zp , (C.1)

such that Yp

1Y
p

1 = 1 = Yp

2Y
p

2 . Then

dYp = r dYp

1 + Yp

1 dr ,

dZp =
p
1� r2 dYp

2 �
rp

1� r2
Yp

2 dr (C.2)

Let us also set

r = sin x . (C.3)

with 0  x  ⇧/2. We shall define on the surface ⌃ parametrized by ⌘, x the complex

coordinate z = ⌘� i x, with Imz = x 2 [0, ⇡2 ]. Upon these redefinitions, the ten-dimensional

IIB metric (3.33) has the form

ds2 = �3 sin2x (1 + 2 cos2x) dYp

1dY
p

1 +�3 (1 + 2 sin2x) cos2x dYp

2dY
p

2

+��1 (dxdx+ d⌘ d⌘) +
1

2
��1 ds2AdS4 , (C.4)

with the warp factor given by

� =
�
(1 + 2 sin2x)(1 + 2 cos2x)

��1/4
, (C.5)

and the AdS4 radius fixed to rAdS = 1 .

Comparing to the notation of [56], in which the metric is written as:

ds2 = f 2
4ds

2
AdS4 + f 2

1 ds
2
S
2
1
+ f 2

2 ds
2
S
2
2
+ 4⇢2 dzdz̄ , (C.6)

we can make the following identifications

f 8
4 =

1

16
��4 =

1

16
(1 + 2 sin2x)(1 + 2 cos2x) ,

f 2
1 = �3 sin2x (1 + 2 cos2x) ,

f 2
2 = �3 (1 + 2 sin2x) cos2x ,

4⇢2 = ��1 . (C.7)
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other examples of consistent truncations
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consistent truncations with less supersymmetry via DFT

S3 reduction of the bosonic string 

more general: Pauli reduction of the bosonic string on group manifold G 

example G = SO*(4), type II uplift of D=4 Minkowski vacua 

AdS3 x S3 reductions from 6D supergravity, N=(1,1) and N=(2,0) w tensor-multiplets 

[Baguet, Malek, Pope, HS, Sarioglu]



other examples of consistent truncations

A B

Henning Samtleben                                                                                                      ENS Lyon

consistent truncations with less supersymmetry in ExFT (in type II sugra)

embedding of half-maximal supergravity into ExFT

[Malek]

half-maximal supersymmetric AdS vacua induce consistent truncations around

[Emanuel’s talk]

construction and classification of supersymmetric AdS vacua

[Malek, HS, Vall Camell]

consistent truncations with less supersymmetry via DFT

S3 reduction of the bosonic string 

more general: Pauli reduction of the bosonic string on group manifold G 

example G = SO*(4), type II uplift of D=4 Minkowski vacua 

AdS3 x S3 reductions from 6D supergravity, N=(1,1) and N=(2,0) w tensor-multiplets 

[Baguet, Malek, Pope, HS, Sarioglu]



other applications / developments

A B
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ExFT for all finite-dimensional exceptional groups Ed(d) ,  d<9
[Abzalov, Bakhmatov,Musaev, Hohm, Wang, Berman,Blair, Malek,Rudolph][Hohm, HS]

based on the different splits external/internal coordinates
=3

{xµ, ym} ��
�
xµ, Y M

�
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ExFT embedding of massive IIA theory
[Ciceri, Guarino, Inverso] [Cassani, de Felice, Petrini, Strickland-Constable, Waldram]

— by deformations of ExFT

— by Scherk-Schwarz reduction violating the section conditions

—>  more general theme: consistent theories from reductions violating section constraints

=3
�
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3. The magic triangle

In this section we consider an instance of the ‘magic tables’ that appeared in the supergravity
literature since the discovery of maximal supergravity in eleven dimensions. As briefly recalled
in the introduction, 11-dimensional supergravity has the intriguing property of giving rise to the
exceptional symmetry groups Ed(d) in compactifications, on a d-torus, to D = 11�d dimensions.
In particular, in three dimensions (D = 3) one encounters the largest of the finite-dimensional
exceptional groups, E8(8), which is the global symmetry of (ungauged) maximal three-dimensional
supergravity whose propagating bosonic degrees of freedom are entirely encoded in the scalar fields
of a non-linear sigma model based on E8(8)/SO(16).

Irrespective of their origin in maximal supergravity one may consider such G/H coset models
coupled to (topological) three-dimensional gravity in their own right. The action reads

S =
Z

d3x
p

g
⇣

R � PµAPµ
A
⌘
, (3.1)

with the Einstein-Hilbert term for the three-dimensional metric gµn and a scalar kinetic term for the
coset currents Pµ

A ⌘ [V �1∂µV ]A, where V is a G-valued field and [·] denotes the projection onto
the non-compact part (the complement of H), labelled by indices A = 1, . . . ,dim(G)�dim(H). We
may consider the coset models of the exceptional series in D = 3, as done by Cremmer et. al. [5],
who also gave a systematic analysis of the higher dimensional origin of these models. (See also
the earlier work in [6] and the subsequent completions in [7, 8].) The various higher-dimensional
theories that these three-dimensional models can be uplifted to are indicated in the table below. The
columns are labelled by the rank of the group in D = 3, and the rows are labelled by the highest
dimension to which the three-dimensional models can be uplifted to.

11 ⇥
10 R A1 ⇥
9 A1 ⇥R R
8 A2 ⇥A1 A1 ⇥R A2 A1

7 A4 A2 ⇥R A1 ⇥R R ⇥
6 D5 A3 ⇥A1 A2

1 ⇥R R2 A2
1 R

5 E6 A5 A2
2 A2

1 ⇥R A1 ⇥R A1

4 E7 D6 A5 A3 ⇥A1 A2 ⇥R A1 ⇥R A2 R ⇥
3 E8 E7 E6 D5 A4 A2 ⇥A1 A1 ⇥R A1 R ⇥

D
r 8 7 6 5 4 3 2 1 0

Let us now discuss some features of this triangle. The first row (D = 3) displays the ‘initial
data’, the exceptional series of global symmetries under consideration. The first column (r = 8)

4

[Cremmer, Julia, Lu, Pope]  
[Keurentjes]

all embedded within E8(8) ExFT:

higher-dimensional origin of 3D coset spaces

Exceptional field theory

displays the symmetry groups in all dimensions from D = 3 to D = 11. By construction, the groups
of the first row equal the groups of the first column, for the groups in the first row were chosen in
this way. However, remarkably this symmetry extends to the entire triangle (presumably justifying
its ‘magic’) in that under the exchange of rank and dimension according to

(r,D) $ (11�D,11� r) (3.2)

the groups stay the same. This is intriguing, for a priori the corresponding theories have little to
do with each other, typically being defined in completely different dimensions. This raises the
question whether there is an overarching framework that not only explains this ‘duality’ but also
provides a theory from which the models corresponding to the different entries of the triangle can
be derived by suitable truncations.

In the following we will explain that precisely the E8(8) ExFT provides this framework. In this
we will use a group-theoretical argument anticipated by Keurentjes some time ago [7] that unfolds
its full force in the context of ExFT. This group-theoretical argument relies on the fact that E8(8)

can be decomposed according to

E8(8) �! SL(D�2)⇥SL(9� r)⇥UD,r , (3.3)

where UD,r is the U-duality group labelled by (D,r) in the table. In this sense, UD,r can be obtained
from E8(8) by singling out two SL(n) factors. There is, of course, no intrinsic difference between
these two factors, and since they are interchanged under the duality (3.2) we infer the symmetry
UD,r =U11�r,11�D [7], thereby explaining this equality of groups, see also [9].

More intriguingly, the E8(8) ExFT provides a unifying theory from which all entries of the table
can be obtained through truncation, following the breaking of E8(8) displayed in (3.3). Specifically,
one then decomposes the internal coordinates in the adjoint representation according to

�
Y M !

n
Y i

j , Y a
b, . . .

o
, (3.4)

where i, j = 1, . . . ,D�2 label SL(D�2) indices and a,b = 1, . . . ,9� r label SL(9� r) indices. We
displayed the coordinates in the adjoint of SL(D� 2) and SL(9� r), while the ellipsis indicates
the remaining coordinates transforming non-trivially under UD,r. In the next step one decomposes
i = (i,0), where i = 1, . . . ,D� 3 is an SL(D� 3) index, and identifies the D� 3 internal physical
coordinates as

yi ⌘ Y i
0 , (3.5)

which solves the E8(8) section constraint. Together with the three external coordinates xµ , these
describe the D-dimensional space-time on which the theory with duality group UD,r is defined.
In order to obtain this theory one, finally, truncates the E8(8) ExFT to singlets under SL(9� r).
Since it is always consistent to truncate to the singlets of a symmetry group, this yields a consistent
truncation. It would be interesting to see if these consistent truncations can be extended to gauged
supergravities, using the techniques of generalized Scherk-Schwarz compactifications [10, 11, 12]
and to see to which extent the magic of the triangle is inherited by its gauged deformations.

5

{ YM } ⟶ {Yi
j

⏟
, Ya

b⏟ } ⟶ {yi ≡ Yi
0}solution of section constraint:

together with truncation to SL(9-r) singlets
SL(9-r)SL(D-2)

magic
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however, that the vertical axis of the magic pyramid is on a di↵erent footing to
the horizontal axes in the sense that for D = 6, 10 the exceptional groups do not
appear.

Remarkably, this can be remedied in D = 6 by considering the square of tensor,
rather than vector, multiplets. This gives rise to the so-called conformal magic
pyramid, given in Figure 3 [ABD+14a]. Using the same principles for tracking the
squaring origin of scalars we find that, when squaring the maximal tensor multiplets
of the same chirality, we get G = E6(6) corresponding to a conjectured N = (4, 0)
chiral conformal gravitational theory with a gravi-gerbe field in place of the graviton
[Hul00a, Hul00b, CGR12, ABD+14a, HLL17a, Bor17, HLL17b]. Simply
following the maximal pattern D = 3, 4, 6 with E8(8), E7(7), E6(6) suggests that
there may be an exotic theory with G = F4(4) in D = 10, as suggested in Figure 3.
What this theory might be, if it exists at all, remains to be seen.

Figure 3. The conformal magic pyramid of U-duality groups ob-
tained from the product of two conformal theories in D = 3, 4, 6
[ABD+14a].
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Eleven-dimensional supergravity reveals large exceptional symmetries upon reduction, in accordance

with the U-duality groups of M theory, but their higher-dimensional geometric origin has remained a

mystery. In this Letter, we show that D ¼ 11 supergravity can be extended to be fully covariant under the

exceptional groups EnðnÞ, n ¼ 6, 7, 8. Motivated by a similar formulation of double field theory we

introduce an extended ‘‘exceptional spacetime.’’ We illustrate the construction by giving the explicit E6ð6Þ
covariant form: the full D ¼ 11 supergravity, in a 5þ 6 splitting of coordinates but without truncation,

embeds into an E6ð6Þcovariant 5þ 27 dimensional theory. We argue that this covariant form likewise

comprises type IIB supergravity.
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Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ[2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ[3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞT-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form

S¼
Z

d5xd27YeL;

L & R̂þ 1

24
g!"D!MMND"MMN

% 1

4
MMNF !"MF N

!" þ e%1Ltop % VðM; eÞ: (1)
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46, Allée d’Italie, F-69364 Lyon Cedex 07, France
(Received 14 August 2013; published 4 December 2013)

Eleven-dimensional supergravity reveals large exceptional symmetries upon reduction, in accordance

with the U-duality groups of M theory, but their higher-dimensional geometric origin has remained a

mystery. In this Letter, we show that D ¼ 11 supergravity can be extended to be fully covariant under the

exceptional groups EnðnÞ, n ¼ 6, 7, 8. Motivated by a similar formulation of double field theory we

introduce an extended ‘‘exceptional spacetime.’’ We illustrate the construction by giving the explicit E6ð6Þ
covariant form: the full D ¼ 11 supergravity, in a 5þ 6 splitting of coordinates but without truncation,

embeds into an E6ð6Þcovariant 5þ 27 dimensional theory. We argue that this covariant form likewise

comprises type IIB supergravity.

DOI: 10.1103/PhysRevLett.111.231601 PACS numbers: 11.25.Yb, 04.65.+e, 04.50.%h, 11.15.%q

Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ[2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ[3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞT-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form

S¼
Z

d5xd27YeL;

L & R̂þ 1

24
g!"D!MMND"MMN

% 1

4
MMNF !"MF N

!" þ e%1Ltop % VðM; eÞ: (1)

PRL 111, 231601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 DECEMBER 2013

0031-9007=13=111(23)=231601(5) 231601-1 ! 2013 American Physical Society

ExFT formally identical 

different structure of (real) solutions to the section constraint 

E6(6)/USp(8) ⟶ E6(−26)/F4

the ExFT construction mainly relies on the (complex) algebra  𝔢6

 uplift to D=6                   magic N=2 series



other applications / developments

A B

Henning Samtleben                                                                                                      ENS Lyon

different real forms: e.g.                                           :

Exceptional Form ofD ¼ 11 Supergravity

Olaf Hohm1,* and Henning Samtleben2,†

1Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-1-80333 Munich, Germany
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with the U-duality groups of M theory, but their higher-dimensional geometric origin has remained a

mystery. In this Letter, we show that D ¼ 11 supergravity can be extended to be fully covariant under the

exceptional groups EnðnÞ, n ¼ 6, 7, 8. Motivated by a similar formulation of double field theory we

introduce an extended ‘‘exceptional spacetime.’’ We illustrate the construction by giving the explicit E6ð6Þ
covariant form: the full D ¼ 11 supergravity, in a 5þ 6 splitting of coordinates but without truncation,

embeds into an E6ð6Þcovariant 5þ 27 dimensional theory. We argue that this covariant form likewise

comprises type IIB supergravity.
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Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ[2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ[3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞT-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form
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Little is known about the fundamental formulation of M
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of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
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to the continuous versionsEnðnÞðRÞ[3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
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niques from ‘‘double field theory’’ (DFT), an approach that
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manifest [4–8]. These formulations show the emergence of
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geometry and symmetriesprior to any reduction or truncation.
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history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form
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Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ[2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ[3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞT-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form
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Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ[2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ[3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞT-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞEhlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
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