Composite Dark Matter (and the Higgs)

DMI2019 Mainz

References

- M.Frigerio, A.Pomarol, F.Riva, A.Urbano, "Composite Scalar Dark Matter", JHEP 1207 (2012) 015 (arXiv:1204.2808)
- G.Cacciapaglia, T.Ma, B.Zhang, Y.Wu, "Composite Dark Matter and the Higgs", JHEP 1711 (2017) 058 (arXiv:1703.06903)
- G.Ballestreros, A.Carmona, M.Chala, "Exceptional Composite Dark Matter", EPJC 77 (2017) no.7, 468 (arXiv:1704.07388) -> see also arXiv:1201.6208
- R.Balkin, M.Ruhdorfer, E.Salvioni, A.Weiler, "Charged Composite
 Scalar Dark Matter", JHEP 1711 (2017) 094 (arXiv:1707.07685)
- C.Cai, G.Cacciapaglia, H.H.Zhang, "Vacuum alignment in a composite 2HDM", JHEP 1901 (2019) 130 (arXiv:1805.07619)

The cosels

Coset	N PNGB	Higgses	DM states	U(1) or Z2
SU(4)/Sp(4)	5	1	Singlet	Z2
SU(4)×SU(4)/ SU(4)	15	2	Doublet + Triplet + Singlets	Z2 /
SU(6)/Sp(6)	14	2	Doublet + Singlets Doublet + Triplet	U(1) Z2
SO(7)/SO(6)	6	1	Singlets	U(1)
SO(7)/G2	7	1	Triplet or Singlets	Z2

The cosels

Coset	N PNGB	Higgses	DM states	U(1) or Z2
SU(4)/Sp(4)	5	1	Singlet	Z2
SU(4)×SU(4)/ SU(4)	15	2	Doublet + Triplet + Singlets	Z2
SU(6)/Sp(6)	14	2	Doublet + Singlets Doublet + Triplet	U(1) Z2
SO(7)/SO(6)	6	1	Singlets	U(1)
SO(7)/G2	7	1	Triplet or Singlets	Z2

A composite 2HDM

$SU(3)_{ m HC}$

G.C., T.Ma 1508.07014

	SU(N)	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$
$\psi_L = \left(egin{array}{c} \psi_1 \ \psi_2 \end{array} ight)$		2	0
$\psi_R = \left(\begin{array}{c} \psi_3 \\ \psi_4 \end{array}\right)$		1 1	$\frac{1/2}{-1/2}$

 $SU(4) \times SU(4) \rightarrow SU(4)$

Triplet

Complex bi-doublet (2HDM)

 $\Pi = \frac{1}{2} \begin{pmatrix} \sigma_i \Delta^i + s/\sqrt{2} & -i\Phi_H \\ i\Phi_H^{\dagger} & \sigma_i N^i - s/\sqrt{2} \end{pmatrix}$

SU(2)R Triplet

A composite 2HDM

 $\overline{SU(3)}_{
m HC}$

G.C., T.Ma 1508.07014

Is it there a parity stabilising the pions?

 $\Sigma = e^{\frac{i}{f}\Pi} \qquad \Sigma \to P \cdot \Sigma^T \cdot P \qquad P = \begin{pmatrix} \sigma^2 & 0 \\ 0 & -\sigma^2 \end{pmatrix}$

 $\left.\begin{array}{c} s \rightarrow s \\ H_1 \rightarrow H_1 \end{array}\right\} \quad \text{Minnics the minimal case} \\ H_2 \rightarrow -H_2 \\ \Delta \rightarrow -\Delta \\ N \rightarrow -N \end{array}$

Relic density and DD: eff. Yukawas

Direct Detection

G.C., T.Ma, Y.Wu, B.Zhang 1703.06903

Thermal relic

Fixing DM relic

Relic density and DD: partial compositeness

 $(4, \bar{4})$

Direct Detection Thermal relic

G.C., S.Vatani, T.Ma, Y.Wu 1812.04005v1

	Complex	Real	$SU(4)^2/SU(4)$	$) \times SU(6)$	/SO(6)		
$SO(N_{ m HC})$	$4\times(\mathbf{Spin},\overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$N_{ m HC} = 10$	$\frac{8}{3}$	2/3	$N_{ m HC}=10$	M10
$SU(N_{ m HC})$	$4 imes ({f F}, \overline{f F})$	$6 imes \mathbf{A}_2$	$N_{ m HC}=4$	$\frac{2}{3}$	2/3	$N_{ m HC}=4$	M11
	Complex	Complex	$SU(4)^{2}/SU(4)$	\times SU(3) ²	$^{2}/\mathrm{SU}(3)$		
$SU(N_{ m HC})$	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes ({f A}_2, \overline{f A}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{ m HC}-2)}$	2/3	$N_{ m HC}=5$	M12
$SU(N_{ m HC})$	$4 imes ({f F}, \overline{f F})$	$3 imes ({f S}_2, \overline{f S}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{ m HC}+2)}$	2/3	/	
$SU(N_{ m HC})$	$4 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 imes ({f F}, \overline{f F})$	$N_{ m HC} = 5$	4	2/3	/	

Underlying models with partial compositeness

- · Same Low energy effective Lagrangian;
- Different spectrum (masses) and WZW topological anomalies.

The hot potato: flavour!

The hot potato: flavour!

scale of 100.000 TeV $(\psi\psi) \to \mathcal{O}_H$ Λ_{flavour} fermion mass generation $\dim[\mathcal{O}_H] = d_H$ Intermediate conformal effective Yukawa: region $\frac{1}{\Lambda_{a}^{d-1}} \mathcal{O}_{H} q_{L}^{c} q_{R}$ Vector resonances, $\Lambda \sim 4\pi f$ 10 Tev $m_{\rm top} \sim \left(\frac{4\pi f}{\Lambda_{\rm ff}}\right)^{d-1} 4\pi f \sin \theta$... Condensation scale f 1 TeV (extra pions) $v_{\rm SM} \sim f \sin \theta$ 100 GeV EWSB $d \sim 1.$

The hot potato: flavour!

Threshold of few flavours

Threshold of many flavours

G.C., S.Vatani, T.Ma, Y.Wu 1812.04005

At 10 TeV we replace the Higgs with composite theory. The other fermions can be added at any scale between 10 TeV and 10^9 GeV.