Challenges for Polarimetry at the ILC

Moritz Beckmann, Anthony Hartin, Jenny List

DESY - FLC

EUCARD Workshop "Spin optimization at Lepton accelerators"

Mainz, Germany February 12, 2014

Bundesministerium für Bildung und Forschung

Outline

- Introduction
 - Polarimetry in the ILC beam delivery system
 - Spin transport
- Results
 - Beamline simulation
 - Collision effects
 - Polarization measurement at the disrupted beam
 - Beamline design in view of the polarization measurement
 - Impact of the laser spot size at the downstream polarimeter

ILC Beam Delivery System (BDS)

DESY-FLC

Moritz Beckmann

DESY-FLC

EUCARD Workshop Mainz 2014

Polarimetry at the ILC

- Two Compton polarimeters per beam to measure \mathcal{P}_z
 - Upstream polarimeter undisturbed by collision effects
 - Downstream polarimeter assesses collision effects
 - 0.25 % systematic uncertainty (goal)
- What do these measurements tell us about the longitudinal polarization at the IP?
 → spin transport simulation
- Aim to understand spin transport to $0.1\,\%$

Spin Precession

- Spin precession in electromagnetic fields: T-BMT equation
- For \vec{B}_{\perp} only:

 $\vartheta_{\rm spin} = {\rm b}({\rm E}) \cdot \vartheta_{\rm orbit}$

$$b(E) = a\gamma + 1 = \frac{g-2}{2} \cdot \frac{E}{m} + 1$$

\$\approx 568 for 250 GeV-electrons

 Dipole magnets, no beam energy spread: spin vectors precess uniformly, |\$\vec{P}\$| conserved

Spin Fan-Out in Quadrupole Magnets

For illustration purposes, the second quadrupole is stronger. Two-dimensional betatron oscillations are not taken into account here.

- Different precession angles after first quadrupole \Rightarrow polarization $|\vec{\mathcal{P}}|$ decreases
- $|\vec{\mathcal{P}}|$ recovered by second quadrupole

Moritz Beckmann

DESY-FLC

EUCARD Workshop Mainz 2014

Beam-Beam Collision Effects

A. Vogel

Bunches focus each other by their electromagnetic fields:

- Spin fan-out (like in quadrupole magnets)
- **Spin flip** by emission of **beamstrahlung** (Sokolov-Ternov effect)

Spin Transport Simulation Framework

- Developed a beamline simulation (based on Bmad)
- Simulate 40 000 (macro)particles per bunch, generated from beam parameters at the beginning of the BDS
- Interfaced directly to the simulation of the collisions (Guinea-Pig++)

Results

- $\sqrt{s} = 500 \,\mathrm{GeV}$
- Beam parameters according to Reference Design Report (RDR, 2007)
- Collision effects also for beam parameters according to Technical Design Report (TDR, 2013)

Spin Transport in the BDS: Basic Configuration

UP/DP: up-/downstream polarimeter

Spin Transport in the BDS: Basic Configuration

DP: downstream-polarimeter

- Quadrupoles cause spin fan-out
- Changes in \mathcal{P}_z well below 0.1 % without collisions

Factors affecting the spin transport (without collisions)

contribution	uncertainty
	$[10^{-3}]$
Beam and polarization alignment	0.72
$(\Deltaartheta_{bunch}=50\murad,\ \Deltaartheta_{pol}=25mrad)$	
Random misalignments $(10\mu{ m m})$	0.43
Variation in beam parameters (few %)	0.03
Bunch rotation (crab cavities)	< 0.01
Detector solenoid	0.01
Synchrotron radiation	0.005
Total (quadratic sum)	0.85

Now: e⁺e⁻ beam collisions

Spin Transport after Collision

- Luminosity-weighted (•): \mathcal{P}_z of the colliding particles
- Larger angular divergence / energy spread after collision
- Large spin fan-out in extraction line quadrupoles

Spin Transport after Collision

- Extraction line design: restore luminosity-weighted P_z
 (•) at the downstream polarimeter
- Employ spin fan-out: focus beam at downstream polarimeter with half divergence angle w. r. t. the IP

Spin Transport after Collision

DP: downstream-polarimeter

$$\theta_x \gg \theta_y \Rightarrow \Delta P_z \propto \theta_x^2$$

$$\Delta P_z^{\text{lum}} \approx \frac{1}{4} \Delta P_z \propto \left(\frac{\theta_x}{2}\right)^2$$

Idea: $|R_{22}(IP \rightarrow DP)| = 0.5 \Rightarrow P_z^{lum} = P_z^{DP}$

Further reading: SLAC-PUB-4692, SLAC-PUB-8397

Moritz Beckmann

DESY-FLC

Laser and Particle Bunch at the Downstream Polarimeter

- Without collision: entire beam exposed to laser
- After collision: center of beam exposed to laser **sample** of scattered electrons **representative?**

Downstream Measurement

Downstream polarimeter located in magnet chicane
 ⇒ particle position correlated with energy (dispersion)

- Laser spot size at Compton-IP only ~ 0.1 - $1\,\text{mm}$

Downstream Measurement

- $\Rightarrow \mathcal{P}_z$ correlated with particle position
- \Rightarrow Selective measurement, measurement bias

 Measurable longitudinal polarization := average P_z of particles within a given (laser spot) radius

Spin Transport for Different Beam Parameters

DP: downstream polarimeter

- No energy spread/loss: no discrepancy between measurement
 (□) and average P_z (□) at downstream polarimeter
- RDR \rightarrow TDR: stronger focussing \Rightarrow higher collision intensity \Rightarrow larger spin fan-out in collision and afterwards

Spin Transport for Different Beam Parameters

DP: downstream polarimeter

Extraction line design: restore $P_z^{\text{lum}}(\bullet)$ at downstream pol. (\blacksquare)

• Design (
$$|R_{22}| = 0.5$$
) assumes $D_x \ll 1$
 $D_x^{\text{RDR}} = 0.17$ $D_x^{\text{TDR}} = 0.3$

• More beamstrahlung (not accounted for by design)

Spin Transport for Different Spin Configurations

For illustration only. All angles exaggerated. Beamstrahlung effects neglected.

Spin Transport for Different Spin Configurations

DP: downstream polarimeter

TDR* with respect to TDR:

- All spin vectors parallel before collision, bunch focussed (45 µrad divergence angle)
- Mostly same behaviour in collision (▲, ●, ▼), but different value at downstream polarimeter (■)

Spin Transport for Different Beam Parameters

DP: downstream polarimeter

- Polarization varies by several % along the extraction line
- Discrepancies between P^{lum}_z and P_z at the downstream pol.
 (●, ■, □) in the range 0.1 0.4 %; discrepancies cancel partially, but only coincidentally

Conclusions

- Cross-calibration (without collisions) to precision of $< 0.1\,\%$
- Polarization vector alone not sufficient anymore to describe spin configuration of beam:
 - Spin fan-out becomes relevant due to higher measurement precision, higher energy and more intensive collisions
 - How well do we know the initial spin configuration?
 → "cradle-to-grave" simulation
- Extraction line design (restore P_z^{lum} at downstream pol.):
 - Works as foreseen for low-intensity collisions \checkmark
 - TDR beam parameters: higher intensity \rightarrow larger discrepancies
 - Beamstrahlung not taken into account; $D_{\rm x}$ no longer $\ll 1$
 - Disrupted beam lets knowledge of the laser spot size/position at the downstream polarimeter become crucial for the measurement precision
 - Larger laser-spot? Drawbacks: required laser power, low-energy tail undesired in polarimeter

Thanks for your attention!

Further reading:

• DESY-THESIS-13-053

http://www-library.desy.de/preparch/desy/thesis/desy-thesis-13-053.pdf

• Publication in preparation

Backup Slides

Differences RDR - TDR

Parameter	symbol		RDR	TDR
Bunches per train			2 625	1 312
Horizontal bunch size	σ_x	[nm]	639	474
Vertical bunch size	σ_y	[nm]	5.7	5.9
Beam energy spread (e^-/e^+)	σ_E/E	$[10^{-3}]$	1.4/1.0	1.24/0.7
e^+e^- luminosity	\mathcal{L}	$[10^{38} \mathrm{m}^{-2} \mathrm{s}^{-1}]$	2	1.47
incl. waist shift				1.8
Beamstrahlung parameter	Υ_{global}		0.048	0.062

Thomas-Bargmann-Michel-Telegdi (T-BMT) Equation

$$rac{d}{dt}ec{S} = \left(ec{\Omega}_B + ec{\Omega}_E
ight) imes ec{S}$$

$$egin{aligned} ec{\Omega}_B &= - \; rac{q}{m\gamma} \left((1 + a\gamma) \, ec{B} - rac{a \, ec{p} \cdot ec{B}}{(\gamma + 1) \, m^2 c^2} \, ec{p}
ight) \ &= - \; rac{q}{m\gamma} igg((1 + a\gamma) \, ec{B}_ot \, + \, (1 + a) \, ec{B}_ot igg) \end{aligned}$$

$$ec{\Omega}_{\textit{E}} = rac{q}{m\gamma} \cdot rac{1}{mc^2} \left(\textit{a} + rac{1}{1+\gamma}
ight) ec{p} imes ec{E}$$

Moritz Beckmann

DESY-FLC

EUCARD Workshop Mainz 2014

Compton Scattering

Polarimeter Chicane (upstream)

- Constant magnetic field
- Dispersion (depending on beam energy): 1-11 cm
- Scattering for every bunch per bunch train
- Energy spectrum is polarization-dependent
- Energy distribution \rightarrow spatial distribution
- Cherenkov gas detector counts electrons per channel

Polarimeter Chicane (downstream)

- Constant magnetic field
- Dispersion (depending on beam energy): 1-11 cm
- Scattering for 3 bunches per bunch train
- Energy spectrum is polarization-dependent
- Energy distribution \rightarrow spatial distribution
- Cherenkov gas detector counts electrons per channel

DESY-FLC

EUCARD Workshop Mainz 2014

Polarimeter Detector

Compton Polarimeters: Systematic Errors

Goal: relative systematic error on measurement $<0.25\,\%$ (SLD polarimeter: $0.5\,\%)$

- Detector linearity: contribution of $\sim 0.1 0.2\,\%$ (goal)
- Laser polarization: $\sim 0.1\,\%$ \checkmark
- Analyzing power: $\sim 0.1\%$ (UP: \checkmark , DP: ?)
 - Detector alignment: can be determined from data (√)
 0.5 mm precision sufficient
 - Alignment of magnets negligible compared to detector √ Field inhomogeneities? to be investigated
 - Disrupted electron beam at downstream polarimeter:
 - Dependence on laser-spot size and position: ??
 - Beam energy spread no concern for small laser-spot sizes thanks to dispersion \checkmark

Polarization Measurement at the IP

Blondel scheme:

$$|\mathcal{P}_{z}^{\mathsf{lumi}}(e^{\pm})| = \sqrt{\frac{(\sigma_{-+} + \sigma_{+-} - \sigma_{--} - \sigma_{++})(\pm \sigma_{-+} \mp \sigma_{+-} + \sigma_{--} - \sigma_{++})}{(\sigma_{-+} + \sigma_{+-} + \sigma_{--} + \sigma_{++})(\pm \sigma_{-+} \mp \sigma_{+-} - \sigma_{--} + \sigma_{++})}}$$

Moritz Beckmann

Polarization Measurement at the IP

Polarization Measurement at the IP

Quadrupole Magnet

Black arrows: magnetic field lines Blue arrows: forces on an incoming electron beam

Moritz Beckmann

DESY-FLC

EUCARD Workshop Mainz 2014

Bunch Rotation at the IP

- Collision under crossing angle of 14 mrad
- Maximize luminosity: rotate bunches using crab cavities
- Time-dependent transverse deflection of particles

Downstream Pol.: Dispersion w/o Collision

Downstream Pol.: Dispersion after Collision

Moritz Beckmann

DESY-FLC

EUCARD Workshop Mainz 2014

Downstream Measurement

Longitudinal polarization vs. energy at the downstream polarimeter, after collision

43 / 26

44 / 26

Why Polarization?

Electroweak processes: cross sections depend on \mathcal{P}_z e. g. W^+W^- pair production

Polarized beams

- provide new observables
- can be used to enhance/suppress processes

The International Linear Collider (ILC)

- e^+e^- collider as complement to LHC
- $\sqrt{s} \leq$ 500 GeV, upgradable to 1 TeV
- Longitudinally polarized beams: $|\mathcal{P}_z(e^-)| = 80\%$ $|\mathcal{P}_z(e^+)| = 30 \text{ to } 60\%$

