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Luminosity recovery

Low power option adopted as new baseline

Damping ring half the size
Half the RF power required
Luminosity decrease

Luminosity to be recovered by travelling focus - difficult to implement

How else to recover luminosity?

A. Hartin strong field depolarisation



beam waist shifts I - EDMS study

http://ilc-edmsdirect.desy.de/ilc-edmsdirect/item.jsp?edmsid=D00000000973835,B,1,2
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final quads focus the e+e- beams to the
nominal interaction point

the beam waist shift is a shift in focus along
the z-axis

there are separate X and Y waist focal points

Y Waist focus more important for flat beams -
more particles in smaller space

Luminosity will clearly vary with the beam
waist shift

EDMS study performed -Y waist optimisation

9% gain in luminosity for optimised Y Waist
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beam waist shifts II
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Optimal waist shift

Optimal waist shift, more focussed through collision, greater disruption

Do the vertical fields (Upsilon parameter) increase?

Does the depolarisation increase?
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Strong fields at the collider Interaction Point

Υ =
e|~a|
mEcr

(k · p)

Υav ≈
5

6

Nr2
eγ

ασz(σx + σy)

ΥΥΥ > 0.1 strong field regime

Υ depends on collider bunch parameters and the pinch effect
Future linear colliders will have ”strong” IP fields
For polarised particles, beamstrahlung entails ”spin-flip”

Machine LEP2 SLC ILC CLIC
E (GeV) 94.5 46.6 500 1500
N(×1010) 334 4 1.74 0.37
σx, σy (µm) 190, 3 2.1, 0.9 0.335, 0.0027 0.045, 0.001
σz (mm) 20 1.1 0.225 0.044

Υav 0.00015 0.001 0.2 4.9
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1st order strong field depolarisation processes

Machine ILC ILC CLIC
E (GeV) 250 500 1500

Υav 0.1 0.27 4.9
Υmax 0.26 0.66 11.8
∆P 1.49% 2.64% 4.8%

Simulation with Guinea-Pig++
∆P is the final depolarisation, E is the beam energy

For gaussian beams Υmax ≈
12

5
Υav
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Depolarisation and waist shift
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1 TeV parameter set has
the strongest fields/effects

Y waist=0 is the nominal

Y waist=190 optimal

Υ about a 3% increase

∆P about a 0.02%
increase

so, depol under control?

A. Hartin strong field depolarisation



Depolarisation and field stength
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Spin Flip
Precession

∆P (precession) = 0.006
nγ

U0

∆P (spinflip) = nγ
U0

Uf

nγ = beamstr photons per particle

U0, Uf = functions ofΥ

Approximate formulae
for 1st order effects

nγ = 1.97 for ILC 1TeV

Spin flip contribution
indicates the relative
influence of quantum
non-linear effects

At Υav = 0.2 already
quantum strong field
effects dominate
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Higher order beam-beam depolarisation processes
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1st Order Effects

2nd Order Effects

Average number of photons emitted per particle: 1.72
(500 GeV) 1.97 (1 TeV) - so second order effects
possible

coupling constant a function of α and Υ

2nd order effects contain strong field propagator

How are virtual particles affected by the IP fields?

ALL collider processes are strong field processesA. Hartin strong field depolarisation



Vacuum changes due to intense fields

” In strong external fields the normal vacuum is unstable and decays into a
new vacuum that contains real particles. ”

Greiner and Muller, QED of Strong Fields

The Schwinger limit (Ecr = 1018 V/m)

Particles in future linear colliders will see E → Ecr (i.e. Υ→ 1

How do we incorporate these vacuum changes in a QFT→ phenomenology?
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What do we need to extend strong field analysis?

1st Order Effects

2nd Order Effects

We would like to account for the strong fields exactly→ non-perturbative QFT

Propagators are integrated over all momenta→ solutions in two external fields

Helicity amplitudes of second order process in two external fields

All collider processes are strong field processes

Event generation using new calculations in EM simulation of bunch collision

Experimental validation using intense lasers
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Furry Picture

Furry Picture
LInt

QED=ψ̄(i/∂−m)ψ− 1
4 (Fµν)2−eψ̄( /Aext+ /A)ψ

LFP
QED=ψ̄FP(i/∂−e /Aext−m)ψFP− 1

4 (Fµν)2−eψ̄FP /AψFP

Equations of Motion (i/∂−e /Aext−m)ψFP = 0

Wavefunction ψFP=Ep e
−ip·x up, Ep=exp

[
−

1

2(k · p) (e /Aext/k+i2e(Ae·p)−ie2Aext 2)

]

Propagator GFP=

∫
d4p

(2π)4
Ep(x)

/p+m

p2 −m2
Ēp(x′) e−ip·x up

A. Hartin strong field depolarisation



(Volkov) Solution of the FP Dirac equation
Solution of the 2nd order Dirac equation with
external 4-potential Aext

µ

[D
2

+m
2

+
e

2
σ
µν
Fµν ]ψ

FP
= 0, Dµ = ∂µ + ieA

ext
µ

ψ
FP

= e
−i[p·x+/Sp(k·x)] up

/S
p
(k·x) =

1

2(k·p)

∫ k·x
2eA

ext ·p−e2Aext 2 − e /A
ext/k

Volkov phase

Volkov spinor

Lorenz gauge with condition
A0 = 0 =⇒ ~a1 ⊥ ~a2 ⊥ ~k

a
1 x

1

f

ϕ
f

fθ
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kp
f
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a
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Orthornormality and Completeness of Volkov solutions [Ritus, Ann Phys 69 552 (1971),
Bergou and Varro, J Phys A 13 2823 (1980), Zakowicz JMathPhys 46 032304 (2005)]

∫
d4x

(2π)4
e
i[Sp(k·x)−Sq(k·x)] = δ

(4)
(q − p)

∫
d4p

(2π)4
e
i[Sp(k·x)−Sp(k·y)] = δ

(4)
(x− y)
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Volkov-type solutions

known solutions

Single plane wave field [Volkov, Z Phys 1935]

Circ/Linearly polarised field, constant field [Nikishov and Ritus, JETP 1964]

Elliptically polarised field [Lyulka, JETP 40 p815 1975]

2 collinear orthogonal fields [Lyulka 1975, Pardy 2004]

Coulomb fields + combinations [Bagrov Gitman, Exact sols of Rel wave eqns 1990]

General procedure

Klein-Gordon:
(
D2 +m2

)
φe = 0 → Volkov phase

2nd order Dirac:
(
D2 +m2 ± ie

2
Fµνσµν

)
ψe = 0 → Volkov spinor

Dirac:
(
i /D −m

)
ψe = 0 → particular solution
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Solution of the FP Dirac equation in two fields
top view

W−

p
+−

p

W
+

1
k k

2

oncoming view

b

A2 = (0, a2, 0, 0)

A1 = (0, a1, 0, 0)

k1 = (ω1, 0, k
y

1
, kz

1
)

k2 = (ω2, 0, k
y

2
, kz

2
)

Transition probabilities are covariant, so choose collinear ~k1||~k2 reference frame
external field is a superposition; rewrite as orthogonal components

Aµ = A1µ(k1 ·x) +A2µ(k2 ·x)→ A+µ +A−µ where A+ ·A− = 0

solution is a product of Volkov solutions

[
i/∂−e /A+−e /A−−m

]
ψFP = 0 =⇒ ψFP = e

−i
[
p·x+/S

p
++/S

p
−

]
ur(p)

where /S
p
+ =

∫
2eA+(φ)·p−e2A+(φ)2−e /A+(φ)/k1

2k1 ·p
dφ
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1st order Furry picture process and dressed vertex

x

kp
f f

p
i

FP Feynman diagrams only require a dressed vertex

γFP
µ (pf , pi) = e

i
[
/S
pf
+ +/S

pf
−

]
γµ e

−i
[
/S
pi
+ +/S

pi
−

]

γFP
µ (pf , pi)→

∫
dr1dr2 F -1

[
γFP
µ (pf , pi)

]
ei(r1k1+r2k2)·x

contribution r1k1, r2k2 from external field enters
into the conservation of momentum, allowing 1 vertex process

δ4(pf+kf−pi−r1k1 − r2k2)

two constant crossed fields leads to BesselK functions

Aext
µ = a1µ(k1 ·x)+a2µ(k2 ·x) : F -1

[
γFP
µ (pf , pi)

]
∝ K1

3
,
2
3

(z)

Traces are more complicated, and integration over final states needs care [Hartin and
Moortgat-Pick EPJC (2011)]

|Mfi|2

V T
=−e2

∫
dr1dr2 Tr[..r1..r2..]

d~pfd~kf

4ωf εf
δ(4)(pf+kf−pi−r1k1−r2k2)
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Beamstrahlung total transition probability

We get a modification to the standard beamstrahlung transition probability

W = − e
2m

2εi

∫ ∞
0

du

(1 + u)2

[∫
dz +

1 + (1 + u)2

1 + u
X

d

dz

]
Ai(z), u =

k1,2.kf

k1,2.(pi − kf )

1 field: z =
u2/3

(k2 ·pi)2/3
, X =

(k2 ·pi)2/3

u2/3
, k2 ≡ Υ2k̂2

2 fields: z =
u2/3

[(k1 ·pi)2 + (k2 ·pi)2]1/3
, X =

(k1 ·pi)2+(k2 ·pi)2+2a1 ·a2(k1 ·pi)(k2 ·pi)
u2/3 [(k1 ·pi)2 + (k2 ·pi)2]2/3

p

k
2

i

(Υ )
2

k
11

p
f

kf

(Υ )

θ

Total intensity depends on field strength and
angles

θ depends on bunch disruption

for ultra-relativistic bunches θ small

Expt test with laser fields where θ can be large
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(e.g.) Generic two vertex Furry picture S channel

Mfi=g1g2

∫
dr1dr2ds1ds2 v̄p+γ

FPµ up− ε̄f+γ
FP
µ εf−

δ(F−I−(r1+s1)k1+(r2+s2)k2)

(I + r1k1 + r2k2)2

final states momentum F ≡ f− + f+ initial
state momentum I ≡ p− + p+

spin and polarisation sums as usual

two dressed vertices γFP

r1, r2, s1, s2 momentum contribution from two
external fields at two vertices

Phase integral not (much) more complicated
than for 1 vertex process

p

p
−

+

q

f

f−

+

|Mfi|2

V T
=(g1g2)2

∫
dr1dr2dl1dl2 Tr[..r1..r2..]

d ~f−d ~f+

4ωf−ωf+

δ(F−I−l1k1+l2k2)

(I + r1k1 + r2k2)4

The pole structure depends on r1, r2 and is not standard
need careful consideration of loops
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Experimental tests - SLAC E144 - 1990s

x

kp
f f

p
i

Collided intense laser (1018 W/cm2)
with 46.6 GeV electrons

effective momentum q = p− e2a2

2k·p
k

(
∑
n

) qi + nk → qf + kf

Compton-like scattering (HICS)

Compton edge shifted by multiphoton
effects

A. Hartin strong field depolarisation



A strong field experiment at the ILC?
The actual proposal:

That we use some part of the extraction line to interact a terawatt
LASER with the spent electron beam to do strong field physics

What we would like to measure/discover

The mass shift, multiphoton effects to higher precision

dependence of nonlinear effects on radiation angle, polarisation

Discover higher order resonances

Draw conclusions with expected primary IP effects

Issues/benefits

Ideally be at a post IP beam focus

We will have to think about possible backgrounds - situating of detectors

Should be no interference with current extraction line diagnostics

Dont need primary IP collisions

Data collection time at the level of days for basic strong field phenomena
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Reaching the critical field at the ILC
Experiment λ(µm) Elaser focus pulse I(W/cm2) Ee− (GeV) Υ

E144 (SLAC) 1 2 J 60 µm2 1.5 ps ≈ 1018 46.6 0.27

ILC (E144 laser) 1 2 J 60 µm2 1.5 ps ≈ 1018 125-500 0.72-2.9

ILC (PL 9000) 1 3 J 40 µm2 0.5 ps 6.75× 1018 125-500 1.87-7.54

e− beam

laser
Intense

θ
f θ

i

Tunable
laser

Scattered
photon

I =
Elaser

spot× pulse

Onset of detectable FP Compton
scattering effects from ν2 = 0.1

Can detect with today’s technology

The ratio of photon energies, incident,
scattered angles is what’s important

Works too for two photon pair
production, no e- beam, 2 tunable
lasers
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Possible intense LASER IP in the extraction line

e− beam

LASER

SPOT

2 microns

50 microns

At secondary focus, illuminate centre
of spent beam

analysing magnets and detector

Run parasitically with downstream
polarimeter?

Avoid damaging optical elements
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Simulation of strong field effects
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IPstrong - towards a strong field event generator

Adaptive grid

Distribute charges to grid

Poisson solver

Furry picture monte-carlo

Initialise beam

Move particles

Output events

Fortran 2003 with openMPI (Fortran
2008 has inbuilt gpu)

3D electrostatic poisson solver (MPI)

Furry picture processes replace all other
processes

output in multiple formats (stdhep, lcio)

cross-checks with existing programs
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Summary

The charge bunch fields at future linear colliders will be strong

All collider processes potentially affected

Luminosity enhancement by Y waist optimisation→ small increase in Υ,∆P

nγ = 1.72 so higher order depolarisation processes are possible

Use the Furry picture to incorporate bunch fields exactly

Need to take into account both fields

Use collinear reference frame and linear combination of 4-potentials - New
solutions obtained!

application to beamstrahlung alters transition probability

strong field propagator requires attention to the pole structure

radiative corrections and FP renormalisation required

Extension to 2nd order & helicity amplitudes in progress

opportunities to experimentally test FP effects becoming available

laser IP in extraction line at ILC would test strong field effects in situ

Need new event generator for FP monte carlo during real bunch collision
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Use the Furry picture to incorporate bunch fields exactly

Need to take into account both fields

Use collinear reference frame and linear combination of 4-potentials - New
solutions obtained!

application to beamstrahlung alters transition probability

strong field propagator requires attention to the pole structure

radiative corrections and FP renormalisation required

Extension to 2nd order & helicity amplitudes in progress

opportunities to experimentally test FP effects becoming available

laser IP in extraction line at ILC would test strong field effects in situ

Need new event generator for FP monte carlo during real bunch collision
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Backup Slides
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Collider strong field physics

” Strong field processes are physics processes calculated
simultaneously in the normal perturbation theory as well as
exactly with respect to a strong electromagnetic field. ”

” Such calculations are necessary when the external field
seen by a particle approaches or exceeds Ecr. ”
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(W.H.) Furry Picture

Separate gauge field into external
Aext
µ and quantum Aµ parts

LInt
QED=ψ̄(i/∂−m)ψ− 1

4 (Fµν)2−eψ̄( /Aext+ /A)ψ

LFP
QED=ψ̄FP(i/∂−e /Aext−m)ψFP− 1

4 (Fµν)2−eψ̄FP /AψFP

Euler-Lagrange equation→ new equations of motion requires
exact (w.r.t. Aext) solutions ψFP

(i/∂−e /Aext−m)ψFP = 0

For certain classes of external fields (plane waves, Coloumb
fields and combinations) exact solutions exist [Volkov Z Physik 94 250

(1935), Bagrov and Gitman Exact solutions of Rel wave equations (1990)]

A QFT which is non-perturbative wrt external gauge field Aext

and perturbative wrt ψFP, A
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theoretical aspects of the Furry Picture

External field makes space-time inhomogeneous so propagator
depends on separate space-time points rather than on the
difference between them [Berestetski Lifshitz Pitaevski, QED §109]

Normalised IN and OUT states can be formed and LSZ extended
to include such states [Meyer, J Math Phys 11 312 (1970)]

Vanishing field strength at t = ±∞→ stable vacuum

Vacuum can be polarised so must include tadpole diagrams
[Schweber Relativistic QFT §15g]

Operator and path integral representations for generating
functional [Fradkin, QED in an unstable vacuum]

Anomalous magnetic moment (one-loop) in a const crossed field
varies from α

2π
[Ritus, JETP 30 1181 (1970)]

∆µ

µ0
=

α

2π

∫ ∞
0

2π dx

(1 + x)3

(
x

Υ

)1/3
Gi
(
x

Υ

)1/3
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Beamstrahlung differential transition probability

f

ϕ
f

fθ

k

a
2

k

θc

p
i 2 Return to an earlier stage of the calculation

[Nikishov, Trudy FIAN 111 p152 1979]

Divergence when u =
ωf (1− cos θf )

2εi − ωf (1− cos θf )
→ 0

i.e. IR condition (ωf = 0) and backscattering
(θf = 0). Why?

dW

dωfdΩ
= − e

2m

2εi

ωf sin θf

1− cos θf

[
X +

1 + (1 + u)2

1 + u
X2 d2

dz2

]
Ai(z)2, u =

k2.kf

k2.pi − k2.kf

z =
u2/3

(k2 ·pi)2/3
, X =

(k2 ·pi)2/3

u2/3
, k2 ≡ Υ2k̂2

modification to LSZ to accommodate Furry picture, means that the field has been
acting since t = −∞. We have to limit the action

formation length can provide a limit to the action

Can formally provide a limit using light cone slices [Neville & Rohrlich, Phys Rev D,
Trudy FIAN 3(8) p1692 1971]
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Beamstrahlung radiation angle (preliminary)
examine plane of radiation orthogonal to field (x-z plane)

14 mrad crossing angle, normalised radiation intensity

distribution peaked around direction of incoming electron

vanishing external field coincides with classical result

order of magnitude spread for ILC-1000

will feed into greater angular spread for pair backgrounds

f

ϕ
f

fθ

k

a
2

k

θc

p
i 2

0.0138 0.0139 0.0140 0.0141 0.0142 0.0143
Radiation_angle

0.2

0.4

0.6

0.8

1.0

Intensity

ClIC 3TeV

ILC -1000

ILC -500

1�Γ
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Vertex function in (one) external field

ΓFP=2ie2

∫
drdsdl

∫
d4k′

k′2
γFPν

/p′ +m

(qf−k′−rk)2−m2
∗
γFP
µ

/p +m

(qi−k′+sk)2−m2
∗
γFP
ν δ(qf+kf−qi−lk)

p

k
f

p
f

i

p

p’

k’

• Examine pole structure of the
vertex function

•We combine denominators using
Feynman parameters as normal,∫

d4k′

k′2[(qf−k′−rk)2−m2
∗][(qi−k′+sk)2−m2

∗]

=

∫ 1

0
dxdydz

d4k′

(k′2 −∆)3
δ(x+y+z−1)

• Numerator more complicated than the
usual case - need new tricks, but apart

from the usual divergences we end up with
additional poles in the residual

1

∆(r, s, x, y, z)

• Additional poles in the residue which match those in the tree level FP processwa
• Vertex function can be same order as tree-level diagram - must include!
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Equiv Photon Approx and Perturbation expansion

decompose external field into n equivalent photons

sum the series to desired order of accuracy

+= + + ...

Ge = G+GV̂ G+GV̂ GV̂ G+ ...

G = (p2 −m2)−1

V̂ = 2eAe · p− e2Ae 2

within certain constraints:
scalar particle
monochromatic photons

the summation can be
performed (Reiss Eberly
1966)

Can the entire summation
be performed in general ?

The alternative is the Furry/Feynman method...
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Infinite momentum frame

QED can be formulated in a Lorentz frame moving at the limit of
the speed of light (Kogut & Soper Phys Rev D 1(10) 2901 (1970))

regular coordinates (t, x, y, z) can be expressed in light cone

coordinates x± =
1

2
(t± z) ; x⊥ = (x, y)

light cone dirac matrices separate into sub-algebras whose
members anti-commute γ±γ⊥ = −γ⊥γ±

light cone scalar products are a.b = 2a+b− + 2a−b+ − a⊥.b⊥
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Strong fields at the collider IP

moving charge has longitudinal length
contraction

relativistic charge bunch produces constant
crossed plane wave field

Aµ = a1µ(k · x)

a1µ = (0,~a)

particle p sees a field strength parameter Υ

Υ =
e|~a|
mEcr

(k · p)
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Volkov-type solutions in two external fields

W−

p
+−

p

W
+

1
k k

2

both incoming bunches contribute
external fields

external field wavevectors are
generally anti-collinear

Need new Volkov-type solution

strategy is to first solve Klein-Gordon equation (D2 +m2
W )φ±e

φ±e =
1√

2εpV

∫
dr exp

[
−ib p · x− ireAe −

(r − f)2

2|z|

]

For constant crossed field Dirac equation solution proceeds from
the Klein-Gordon solution
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W boson Volkov Solution

Equation of motion for the W
boson

Wµ

(D2 +m2
W )Wν + i2eFµνWµ = 0, DµWµ = 0

with solution Wµ = EWp e−ip·x wp where

EWp =

(
gµν +

e

k · p

∫
Fµν −

e2

2(k · p)2
Ae2kµkν

)
� exp

[
− i

2(k · p)
(
2e(Ae · p)− e2Ae2

)]

similar solutions can be found for other particles that couple to Ae
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Beamstrahlung, incoherent/coherent pair production

x

kp
f f

p
i

x

p

ki

+
p
−

IP beam-beam simulators - CAIN,
Guinea-Pig

beamstrahlung & coherent pair production
calculated via quasi-classical approx

incoherent pairs calculated with
beamstrahlung photon and equivalent
photon approx (EPA)

more exactly these are 1st and 2nd order
Furry picture processes

bkgd pairs current proposed
coherent quasi-classical 1 vertex

Furry picture
incoherent EPA 2 vertex

Furry picture
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Formation length

” distance travelled by a charged particle while a radiated
photon moves one wavelength in front of it ”

A bad argument: ” If the bunch is sufficiently short we dont need to
worry about strong field effects”

classical argument that only applies to the beamstrahlung

strong field propagator integrated over all length scales
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