Bremsstrahlung polarization correlations and their application for polarimetry of electron beams

Stanislav Tashenov Physikalisches Institut of Heidelberg University

The Spin-Orbit interaction

- \star modifies the effective binding potential
- ★ causes the Fine Structure splitting

The spin-orbit interaction causes the Mott scattering asymmetry when $l \parallel s$

S

 F_2

The spin-orbit interaction causes the Mott scattering asymmetry when $l \parallel s$

Similar asymmetry is observed in the emitted bremsstrahlung photons

 $V_{so} \propto \vec{L} \cdot \vec{S}$

When the spin and the orbital momentum are not parallel, they both precess about the total orbital momentum **J**

When the spin and the orbital momentum are not parallel, they both precess about the total orbital momentum **J**

When the spin and the orbital momentum are not parallel, they both precess about the total orbital momentum **J**

The scattering plane at any moment is defined by the orbital momentum L

Precession of L corresponds to the precession of the instantaneous scattering plane

Polarization of bremsstrahlung radiation

Bremsstrahlung photon is:

- \star emitted close to the nucleus
- \star polarized within the scattering plane at that moment

Bremsstrahlung studies

at electron accelerators with polarised beams

Rayleigh and Compton polarimetry techniques (Electron energy 100 keV)

Planar segmented germanium detector

- S. Tashenov et al., PRL 107, 173201 (2011)
- S. Tashenov et al., NIM A 600 (2009) 599

Rayleigh and Compton polarimetry techniques (Electron energy 100 keV)

Experiment at the polarized electron injector of S-DALINAC accelerator in TU-Darmstadt

Polarization angle resolution 0.3 deg

S. Tashenov et al., PRL 107, 173201 (2011)

S. Tashenov et al., NIM A 600 (2009) 599

Measurement of bremsstrahlung polarization correlations (Electron energy 100 keV)

- S. Tashenov et al., Phys. Rev. Lett. 107, 173201 (2011) S. Tashenov et al., Phys. Rev. A 87, 022707 (2013)
- R. Märtin et al., Phys. Rev. Lett. 108, 264801 (2012)
- V. Yerokhin and A. Surzhykov, Phys. Rev. A 82, 062702 (2010)

Stokes parameters

Parameter	Illustration	Value	Meaning
<i>P</i> ₁	-1	+1 -1	Linear polarization within the scattering plane Linear polarization perpendicular to the scattering plane
<i>P</i> ₂	-1 +1	+1 -1	Linear polarization within the plane turned out of the scattering plane by 45° counterclockwise Linear polarization within the plane turned out of the scattering plane by 45° clockwise
<i>P</i> ₃		+1 -1	Left-handed circular polarization Right-handed circular polarization

S. Tashenov et al., Phys. Rev. A 87, 022707 (2013)

2 MeV 0 (KZ 2) q^{2} d(dkd 1) q^{-1} (KZ 2) q^{-2} d(dkd 2) q^{-2} 0.3 0.6 0.4 0.2 رع 20 ط^{ا 0.2} ا م∼^{0.1} 0.4 0.2 0.0 0.0 -0.1 0.0 -0.2 -0.2 10⁻⁴ -0.2 150 0 60 90 120 150 180 0 30 60 90 120 150 180 90 120 180 30 0 30 60 photon emission angle θ (deg) photon emission angle θ (deg) photon emission angle θ (deg)

S. Tashenov et al., Phys. Rev. A 87, 022707 (2013)

 $S = 0.72 \pm 0.14$ Transverse polarization $S = 0.75 \pm 0.09$ Longitudinal polarization

 $S = 0.75 \pm 0.04$ Mott polarimetry

Measurement of bremsstrahlung polarization correlations at 2 MeV

Experiment at Mainz Microtron MAMI

Radiation background suppression via **Compton Imaging** First-time use of the Compton Imaging in a laboratory physics experiment

Charge collection and transient detector pulses

Typical pulse pattern for 25-pixel detector and a Pulse Shape Analysis technique

Preliminary results

The polarization plane rotates by tens of degrees

Dramatically enhanced effect of the spin-orbit interaction

Currently developed large germanium spectrometers

AGATA (Europe)

GRETA (USA)

Capable of Pulse Shape Analysis, Compton imaging and polarimetry

ASTRO-H X-ray Observatory (to be launched in 2015)

The largest x-ray observatory in a decade, built by Japanese space agency with participation of NASA, ESA and a number of Universities

Soft gamma-ray detector

Narrow Field of View Compton Telescope

25-pixel planar germanium detector

Shockley-Ramo theorem

Pulse Shape Analysis: The Matrix Method

M is a matrix of signal waveforms for every potential interaction position

A. Khaplanov, PhD thesis, KTH Stockholm (2010)

Parity conservation in bremsstrahlung

Parity-forbidden correlations

$$d\sigma(0,0,0) = d\sigma(1,0,0) = d\sigma(0,0,1),$$
$$P_1(0,0,0) = P_1(1,0,0) = P_1(0,0,1),$$
$$P_2(0,0,0) = P_2(0,1,0) = 0,$$

Parity-allowed correlations

 $C_{00} = d\sigma(0,0,0),$ $C_{03} = P_1(0,0,0),$ $C_{11} = -P_2(1,0,0),$ $C_{23} = P_1(0,0,0) - P_1(0,1,0),$ $C_{31} = P_2(0,0,1),$ $C_{20} = 1 - \frac{d\sigma(0,1,0)}{d\sigma(0,0,0)}.$

COMPTEL telescope on board of the Compton Gamma Ray Observatory (1991-2000)

