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Theorem:

Definition in dimensional regularization

• 𝑞𝛼: linear combination of  loop momenta and external momenta

• Taking 𝜂 → 0+ before taking 𝐷 → 4

Feynman loop integrals

Smirnov, Petukhov, 1004.4199

For a given set of  propagators, Feynman integrals form a 

finite-dimensional linear space
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Reducing/evaluating FIs analytically may not be 

possible for sufficiently complicated problems

MY philosophy

A general solution for FIs calculation, if  exists, 

should be a numerical method

Only numerical numbers are needed to compare with experimental data
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1. Systematic: can be applied to any problem 

2. Efficient: the amount of  computation is linearly dependent on the 

number of  FIs and the number of  effective digits, and it is insensitive

to the number of  mass scales involved

3. “Analytical”: knows all singularities, and can calculate coefficients of  

asymptotic expansion at any given singular point

Evaluation of FIs

Sufficient conditions for a good solution:

This talk:  A method may satisfy these conditions
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Modify Feynman loop integral by keeping 

finite 𝜂

• Take it as an analytical function of  𝜂

• Physical result is defined by

Modified FIs
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Expansion of  propagators around 𝜂 = ∞

• Analytical results are known up to 3-loop

• Numerical results are known up to 5-loop 

Vacuum MIs with equal internal masses

Expansion at infinity

• Only one region: 𝑙𝜇 ∼ 𝜂 1/2

• No external momenta in denominator, vacuum integrals

• Simple enough to deal with 

Schroder, Vuorinen, 0503209

Luthe, PhD thesis (2015)

Luthe, Maier, Marquard, Ychroder, 1701.07068

Davydychev,Tausk, NPB(1993) 

Broadhurst, 9803091

Kniehl, Pikelner, Veretin, 1705.05136

See R. Lee’s talk for the possibility of  even higher loops
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Example

Sunrise integral
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Asymptotic expansion

A new representation

• 𝐼𝐿,𝑘
bub(𝐷): 𝑘-th master vacuum integral at 𝐿-loop order

• 𝐶𝑘
𝜇0…𝜇𝑟 𝐷 : rational functions of  𝐷

• Uniqueness theorem of  analytical functions: physical FI is uniquely 

determined by this asymptotic series via analytical continuation

• A new (series) representation of  FIs

• All FIs are determined by equal-mass vacuum integrals

A new representation
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What is reduction

Relations among 𝐺 ≡ {𝑀1, 𝑀2, … ,𝑀𝑛}

Reduction

• 𝑄𝑖(𝐷,  𝑠, 𝜂): homogeneous polynomials of   𝑠, 𝜂 of  degree 𝑑𝑖

• Find relations between loop integrals

• Use them to express all loop integrals as linear combinations of  MIs

Constraints from mass dimension

• Only 1 degree of  freedom in {𝑑𝑖}, chosen as 𝑑max ≡ Max {𝑑𝑖}



13/29

Find relations

Decomposition of  𝑄𝑖(𝐷,  𝑠, 𝜂)

Linear equations: 

Relations among 𝐺 ≡ {𝑀1, 𝑀2, … ,𝑀𝑛} with a fixed 

𝑑max are fully determined

• With enough constraints ⇒ 𝑄𝑖
𝜆0…𝜆𝑟(𝐷)

• With finite field technique, only integers in a finite field are involved, 

equations can be efficiently solved

⇒
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Reduction

With 𝐺 = 𝐺1 ∪ 𝐺2, satisfy

• 𝐺1 is more complicated than 𝐺2

• 𝐺1can be reduced to 𝐺2

Algorithm

1. Set 𝑑max = 0

2. Find out all reduction relations among 𝐺 with fixed 𝑑max

3. If  obtained relations are enough to determine 𝐺1 by 𝐺2, stop; 

else, 𝑑max = 𝑑max + 1 and go to step 2

Search for simplest relations

Conditions for 𝐺1 and 𝐺2

1. Relations among 𝐺1and 𝐺2 are not too complicated: easy to find

2. #𝐺1 is not too large: numerically diagonalize relations easily
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Reduction scheme with only dots

FIs:  𝜈 = 𝜈1, … , 𝜈𝑁 , 𝜈𝑖 ≥ 0

• 𝟎± ≡ 𝐈𝐝𝐞𝐧𝐭𝐢𝐭𝐲, 𝐦± ≡ 𝐦− 𝟏 ±𝟏±

• 𝟏+ 5,1,0,3 = { 6,1,0,3 , 5,2,0,3 , (5,1,0,4)}

• 𝟏− 5,1,0,3 = { 4,1,0,3 , 5,0,0,3 , (5,1,0,2)}

1-loop: 𝐺1 = 𝟏+  𝜈, 𝐺2 = 𝟏−𝟏+  𝜈 Duplancic and Nizic, 0303184

Multi-loop:

𝐺1 = 𝐦+  𝜈, 𝐺2 = {𝟏−𝐦+, 𝟏−(𝐦 − 𝟏)+, … , 𝟏−𝟏+}  𝜈

• 𝑚 = 2,3 in examples, #𝐺1 is not too large, include dozens of  integrals

• Relations among 𝐺1and 𝐺2 are not too complicated, see examples

A step-by-step reduction is realized!
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2-loop 𝑔 + 𝑔 → 𝐻 +𝐻 and 𝑔 + 𝑔 → 𝑔 + 𝑔 + 𝑔

Examples

• Relations can be obtained by a single-core laptop in a few hours

• Diagonalizing at each phase space point (floating number): 0.01 second

• Results checked numerically by FIRE 

Difficulty:

• More legs > less legs

• Nonplanar > Planar 

• 𝐦+  𝑒 > 𝐦+  𝜈
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Reduction of numerators

Method similar to the reduction of  

denominators, work in progress   
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Set up and solve DEs of  MIs

Singularity structure

Solve it numerically: a well-studied 

mathematic problem

Step1: Asymptotic expansion at 𝜂 = ∞
Step2: Taylor expansion at analytical points

Step3: Asymptotic expansion at 𝜂 = 0

with known  𝐼(𝐷;∞)

Analytical continuation
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• 168 master integrals

• Traditional method sector decomposition: 𝑂(104) CPU core-hour

• Our method: a few minutes

2-loop non-planar sector for Q +  Q → 𝑔 + 𝑔

Example

Feng, Jia, Sang, 1707.05758 

MIs can be thought as special functions, and DEs 

tell us  how to evaluate these special functions
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Remarks: generality

We can find out any existing relation 

between FIs

As 𝜂 presents in all FIs, our method 

can be used for any problem

• Relations due to IBP, LI, symmetries, accidental relations, non-linear 

relations …
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Remarks: efficiency of reduction 

Cost of  setting up analytical reduction relations: 

linear in the number of  target FIs

• Set up one reduction relation for each FI

• Each reduction relation can be obtained in a short time

• The cost for each relation is insensitive to the number of  scales: 

two-loop 𝑔𝑔 → 𝑡  𝑡𝐻 is similar to 5𝑔

Cost of  numerically diagonalizing reduction 

relations: linear in the number of  target FIs

• Reduction relations are block-diagonalized

• # of  equations equals to # of  target FIs

• Do it at each phase space point (floating numbers)
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Remarks: efficiency of evaluating MIs

Our strategy is to numerically solve DEs 

w.r.t. 𝜂 and kinematic variables

• Increase the efficiency

• Determine analytical structure

• Cost is linearly dependent on the required number of  effective digits
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Remarks: infrared divergences

 IR divergences come out as 𝜂 → 0+

No IR divergence when 𝜂 is finite

• 𝜂 plays the role as an IR regulator

• 𝜖 becomes the IR regulator after taking this limit
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Remarks: number of MIs

DEs w.r.t. 𝜂 provide constraints as 𝜂 → 0+

Number of  MIs at finite 𝜂 is larger than the 

number of  MIs at 𝜂 → 0+

• Number of  MIs at 𝜂 → 0+ can be minimized 

• It is not a problem become the number is still small, 

and much smaller than the number of  target FIs
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Remarks: effect of 𝜼

Do reduction relations become more 

complicated with 𝜂?

• No! Just the opposite!

• The mass dimension of  reductions relations becomes smaller 
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• Asymptotic expansion of  FIs at 𝐷 → ∞

• According our test: calculation of  the series is expensive

• We still try hard to see if  it is possible to improve the speed

Quantities present in all Feynman integrals:

Remarks: series representations

• Space-time dimension 𝐷 → 4 and Feynman prescription 𝜂 → 0+

Baikov’s series representation:

• Asymptotic expansion of  FIs at 𝜂 → ∞

• Calculation is cheaper, due to all coefficients are polynomials 

Our series representation:

See also S. Laporta’s talk for the idea of  “numerical representation” 

Baikov 0507053
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 A new (series) representation for Feynman integrals, 

translates loop integration to the problem of  

performing analytical continuations

 Two–loop examples: our method is correct and 

efficient 

Summary

 A general strategy to do reduction

 A general strategy to evaluate MIs
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 A package to do systematic reduction within our 

method

Future plan

 A package to calculate MIs within our method 

Thank you!

• Can be thought as a multi-loop version of  “looptools”

• Express all FIs as linear combinations of  MIs


