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Feynman Integrals

Integration-by-parts Identites

3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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Momentum-space Representation

2.2 Baikov
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n

◆
= 0 (2.9)

v = {pi, kj} (2.10)

{D1, . . . , DN} ! {z1, . . . , zN} (2.11)
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i=1
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(2.12)

B(z) = det(qi · qj) (2.13)

� ⌘ (d� E � L� 1)/2 (2.14)

q = {pi, kj}, i = 1, . . . , E j = 1, . . . , L (2.15)

sij = pi · pj , i, j = 1, . . . , E (2.16)

B(@C = 0) (2.17)

Z

C
d

 
h(z) B(z)�
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1

zani

!
= 0 (2.18)

h(z) arbitrary rational function
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The role of the Integration Domain is hidden

Tkachov; Chetyrkin & Tkachov
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Denominators as integration variables
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Fundamental property
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Figure 8: Massless double-box.

Let us consider the massless double-box [100, 101] in Fig. 8. The external (outgoing)
momenta are denoted pi with p
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u = z
d
2�3(s+ z)2�

d
2 (t� z)d�5

, ! =

✓
4� d

2(s+ z)
+

d� 5

z � t
+

d� 6

2z

◆
dz , (11.3)

⌫ = 2 , P = {0 , �s , t , 1}. (11.4)

Mixed Bases. We pick the two master integrals

J1 = I1,1,1,1,1,1,1;0 , J2 = I1,1,1,1,1,1,1;�1 , (11.5)

corresponding to �1 = 1 dz and �2 = z dz.
Additionally we pick the right basis as

'̂1 =
1

z
� 1

z + s
, '̂2 =

1

z + s
� 1

z � t
, (11.6)

This gives the intersection matrix C to be

C = h�i|'ji =
 �s

d�5
s+t

d�5
s((3d�14)s+2(d�5)t)

2(d�5)(d�4)
�(3d�14)s(s+t)
2(d�5)(d�4)

!
(11.7)

If we want to reduce I1,1,1,1,1,1,1;�2 corresponding to �3 = z
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us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`1 d4`2 �(4)
⇣
`1 + `2 � P12

⌘
�(+)

⇣
`21 �m2

1

⌘
�(+)

⇣
`22 �m2

2

⌘
(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
, (qi � zj⌘)

2 �m2

i = 2⌘.qi(zi � zj) (4.6)

(�1)
1

q2
1
�m2

1

1

q2
2
�m2

2

· · · 1

q2n �m2
n
=

1

q2
1
�m2

1

1

(q2 � z1⌘)2 �m2
2

· · · 1

(qn � z1⌘)2 �m2
n

+
1

(q1 � z2⌘)2 �m2
1

1

q2
2
�m2

2

· · · 1

(qn � z2⌘)2 �m2
n

+ . . . . . .

+
1

(q1 � zn⌘)2 �m2
1

1

(q2 � zn⌘)2 �m2
2

· · · 1

q2n �m2
n

(4.7)

I
dz

z(z � z1)(z � z2) · · · (z � zn)
= 0 (4.8)

(�1)

z1z2 · · · zn
=

1

z1(z1 � z2) · · · (z1 � zn)

+
1

(z2 � z1)z2 · · · (z2 � zn)
+ . . . . . .

+
1

(zn � z1)(zn � z2) · · · (zn � zn�1)zn
(4.9)

– 6 –

Pinches
+ +…+ +

Homogenous Term Non-Homog. Term

Dimension-Shift relations

�NLO =

Z

n

✓
d�Born + d�Virtual

◆
+

Z

n+1

d�Real

�NLO =

Z

n

✓
d�Born + d�Virtual +

Z

1

d�Subtractions

◆
+

Z

n+1

✓
d�Real � d�Subtractions

◆

(p2 �m2
) = (/p�m)(/p+m) (4.10)

�gµ⌫ =

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.11)

(/p+m) =

X

spin�s
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d+2

4. FOR the COLLOQUIUM
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us(p) ūs(p) (4.12)

D = 4� 2✏

Z
d4�2✏K ⌘

Z
d4k

Z
d�2✏µ ⌘

Z
d4k

Z
d⌦(✏)

Z 1

0

dµ2
(µ2

)
�1�✏

(4.13)

K↵ = k↵ + µ↵ , /K = /k + /µ , K2
= k2 � µ2 ,

�
/k, /µ

 
= 0 =

⇥
�5, /µ

⇤
, /µ = iµ�5

X

s=±
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= + +…+
d+2

Homogenous Term only
Vanishing 

Non-Homog. Term

cutting m (all) internal lines

2.2 Baikov

Z LY

i=1

ddki
⇡d/2

@

@kµj

✓
vµ
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n=1

1

Dan
n

◆
= 0 (2.9)

vµ = vµ(pi, kj) (2.10)

{D1, . . . , DN} ! {z1, . . . , zN} ⌘ z (2.11)

Ia1,...,aN ⌘ K(d, sij)

Z

C
dz B(z)�

NY

i=1

1

zani
(2.12)

B(z) = det(qi · qj) (2.13)

� ⌘ (d� E � L� 1)/2 (2.14)

q = {pi, kj}, i = 1, . . . , E j = 1, . . . , L (2.15)

sij = pi · pj , i, j = 1, . . . , E (2.16)

B(@C = 0) (2.17)

Z

C
d

 
h(z) B(z)�

NY

i=1

1

zani

!
= 0 (2.18)

h(z) arbitrary rational function

D1 = . . . , Dm = 0 () z1 = . . . , zm = 0 , m  N (2.19)
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Maximal cuts are solutions of the Homogenous Differential Equations

Maximal cuts are solutions of the Homogenous Dimensional Recurrence Relations

Remiddi & Tancredi; 
Primo & Tancredi;

Lee & Smirnov;

Larsen & Kosower;
+ CaronHuot;



A few facts :: smoking guns

A sector [topology] has a number       of Master Integrals

remarkable observation is that we can pair up h'| and |C] to obtain the integral from (2.1),
which we denote by

h'|C] ⌘
Z

C
u'. (2.8)

This integral representation, as a bilinear in h'| and |C], is suitable for establishing linear
relations between hypergeometric functions. In fact, let us assume that the number of
linearly-independent twisted cocycles is ⌫, and indicate an arbitrary basis of forms,

he1|, he2|, · · · , he⌫ |. (2.9)

A basis decomposition is achieved by expressing an arbitrary twisted cocycle, say h'|, as a
linear combination of the above ones. This goal be achieved as follows. Introduce a dual

(and auxiliary) space of twisted cocycles, whose basis is denoted by |hii for i = 1, 2, . . . , ⌫,
and consider the matrix C, whose entries are the pairing hei|hji,

Cij = hei|hji for i, j = 1, 2, . . . , ⌫ . (2.10)

This pairing is called the intersection number of hei| and |hji. We then construct the
(⌫+1)⇥ (⌫+1) matrix M, defined as,

M =

0

BBBBBB@

h'| i h'|h1i h'|h2i . . . h'|h⌫i
he1| i he1|h1i he1|h2i . . . he1|h⌫i
he2| i he2|h1i he2|h2i . . . he2|h⌫i

...
...

... . . . ...
he⌫ | i he⌫ |h1i he⌫ |h2i . . . he⌫ |h⌫i

1

CCCCCCA
⌘
 
h'| i A|

B C

!
. (2.11)

The columns of the matrix M are labelled by | i, |h1i, |h2i, . . . , |h⌫i for an arbitrary | i,
while the rows are labelled by h'|, he1|, he2|, . . . , he⌫ |. Each entry is given by a pairing
(bilinear) of the corresponding row and column. In the second equality, we expose the
structure of M as a ⌫⇥⌫ submatrix C, a column vector B and a row vector A|, respectively
with elements Bi = hei| i and Ai = h'|hii (for i = 1, 2, . . . , ⌫).

The fact that the ⌫+1 cocycles labelling the rows and columns are necessarily linearly
dependent (since the basis is ⌫-dimensional) and that each entry of M is a bilinear, implies
that the determinant of this matrix vanishes. Using the well-known identity for the
determinant of a block matrix, we find:

detM = detC

✓
h'| i �A|C�1B

◆
= 0. (2.12)

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)
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Equivalent statements about (Master) Integrals

Two integrals may give the same result if:  

ii) or have the same integrand, but the integration domain differ for a contour on which the primitive   
vanishes.

i) have the same integration domain, but the integrands differ for a term whose primitive vanishes on   
the integration boundaries.



       = number of critical points of B(z)  (=?=  Euler           )
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This pairing is called the intersection number of hei| and |hji. We then construct the
(⌫+1)⇥ (⌫+1) matrix M, defined as,

M =

0

BBBBBB@

h'| i h'|h1i h'|h2i . . . h'|h⌫i
he1| i he1|h1i he1|h2i . . . he1|h⌫i
he2| i he2|h1i he2|h2i . . . he2|h⌫i

...
...

... . . . ...
he⌫ | i he⌫ |h1i he⌫ |h2i . . . he⌫ |h⌫i

1

CCCCCCA
⌘
 
h'| i A|

B C

!
. (2.11)

The columns of the matrix M are labelled by | i, |h1i, |h2i, . . . , |h⌫i for an arbitrary | i,
while the rows are labelled by h'|, he1|, he2|, . . . , he⌫ |. Each entry is given by a pairing
(bilinear) of the corresponding row and column. In the second equality, we expose the
structure of M as a ⌫⇥⌫ submatrix C, a column vector B and a row vector A|, respectively
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The fact that the ⌫+1 cocycles labelling the rows and columns are necessarily linearly
dependent (since the basis is ⌫-dimensional) and that each entry of M is a bilinear, implies
that the determinant of this matrix vanishes. Using the well-known identity for the
determinant of a block matrix, we find:

detM = detC

✓
h'| i �A|C�1B

◆
= 0. (2.12)

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)
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The homogenous solutions of Differential Equation play a role in the construction   
of epsilon-factorised systems of differential equations

 Remiddi & Tancredi;  Tancredi & Primo;
Argeri, diVita, Schubert, Schlenck, Tancredi & PM;

 Tancredi & Primo; Bosma, Sogaard & Zhang;

'̂(z) rational function

@xI = @xh'|C] = @x

Z

C
u' =

Z

C
u

✓
@xu

u
^+@x

◆
' = h(@x + �)'|C] (2.21)

@x freely exchanged with the integral sign,

even if C = C(x), because u(@C) = 0

Z

C
d(B(z)�) = 0 , (2.22)

C = [0, 1] , B(z) = z(1� z) (2.23)

2.3 Integrals

Z

C
dz1 · · · dz9

B(z)�

zn1
1 · · · zn9

9

(2.24)

B(z), C, � depend on the graph.

N = LE +
1

2
L(L+ 1) (2.25)

�(G) (2.26)
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Is there a simple class of IBP of the form:                             with                   ?

2.2 Baikov

Z LY

i=1

ddki
⇡d/2

@

@kµj

✓
vµ

NY

n=1

1

Dan
n

◆
= 0 (2.9)

vµ = vµ(pi, kj) (2.10)

{D1, . . . , DN} ! {z1, . . . , zN} ⌘ z (2.11)

Ia1,...,aN ⌘ K(d, sij)

Z

C
dz B(z)�

NY

i=1

1

zani
(2.12)

B(z) = det(qi · qj) (2.13)

� ⌘ (d� E � L� 1)/2 (2.14)

q = {pi, kj}, i = 1, . . . , E j = 1, . . . , L (2.15)

sij = pi · pj , i, j = 1, . . . , E (2.16)

B(@C = 0) (2.17)

Z

C
d

 
h(z) B(z)�

NY

i=1

1

zani

!
= 0 (2.18)

h(z) arbitrary rational function
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A few questions :: that kept me busy for a while

About the.        Hypergeometric Function ::    

from which one can also deduce h�2| = 1/2h�1|.
Please note, that in this basis the metric term h'1|'1i is very simple, and that

h'1|'1i�1 = �/2, has � factorizing out.

This simple example contains all the relevant ingredients for the decomposition of
Feynman integrals in terms of master integrals. It corresponds to a case with 1 master
integral. We now consider two other cases, with respectively 2 and 3 master integrals, in
order to show the algorithmic procedure of the decomposition by intersection numbers.

4.2 Gauss 2F1 Hypergeometric Function

Gauss 2F1 Hypergeomeric function is defined as

�(b, c�b) 2F1(a, b, c;x) =

Z 1

0
z
b�1(1� z)c�b�1(1�xz)�a

dz (4.32)

The integration contour C is [0, 1], which is the twisted cycle. �(b, c�b) is the Euler beta
function defined in eq. (4.2). In order to use intersection theory, we re-express this integral
in terms of the pairing of the twisted cycle and the twisted cocycle:

�(b, c�b) 2F1(a, b, c;x) =

Z

C
u' = !h'|C] , (4.33)

where

u = z
b�1(1� xz)�a(1� z)�b+c�1

, (4.34)

! = d log u =
xz

2(c� a� 2) + z(ax� c+ x+ 2)� bxz + b� 1

(z � 1)z(xz � 1)
dz , (4.35)

' = dz . (4.36)

In this case, we have

⌫ = 2 , P = {0, 1, 1
x
, 1} (4.37)

indicating the existence of 2 independent integrals. Contiguity relations for Gauss Hypergeo-
metric functions can be obtained through intersection theory, via the master decomposition
formula in eq. (3.30), requiring the knowledge of the (inverse of the) matrix C. We build
this matrix for various different choices of the integral basis.

Monomial Basis. We choose the basis as {h�i|}i=1,2, we build the metric matrix C,

C =

 
h�1|�1i h�1|�2i
h�2|�1i h�1|�2i

!
(4.38)

whose entries are

h�1|�1i =
⇣
x
2(�(a� b+ 1))(b� c+ 1)� 2ax(�b+ c� 1) + a(c� 2)

⌘
/

⇣
x
2(a

� c+ 1)(a� c+ 2)(a� c+ 3)
⌘
, (4.39)
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Where is the other one?

Gauss contiguity relations
How are they derived? Can I derive them by IBP?

Can they be used to find the 2 basic integrals?

Has it a different integrand? or a different integration domain?

About IBP relations and the role of the integration domain ::

Is there a relations between the DEQ and the integral representation?

'̂(z) rational function

@xI = @xh'|C] = @x

Z

C
u' =

Z

C
u

✓
@xu

u
^+@x

◆
' = h(@x + �)'|C] (2.21)

@x freely exchanged with the integral sign,

even if C = C(x), because u(@C) = 0

Z

C
d(B(z)�) = 0 , (2.22)
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Answer:

'̂(z) rational function

@xI = @xh'|C] = @x

Z

C
u' =

Z

C
u

✓
@xu

u
^+@x

◆
' = h(@x + �)'|C] (2.21)

@x freely exchanged with the integral sign,

even if C = C(x), because u(@C) = 0

Z

C
d(B(z)�) = 0 , (2.22)

C = [0, 1] , B(z) = z(1� z) (2.23)

– 6 –



A Novel Method for Feynman Calculus

NO intermediate relation required ?

Direct decomposition into a Integral Basis?

Direct construction of system of differential equations for the Integral Basis?

Direct construction of finite difference equations for the Integral Basis?



Basics of Intersection Theory
Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Twisted cocycleremarkable observation is that we can pair up h'| and |C] to obtain the integral from (2.1),
which we denote by

h'|C] ⌘
Z

C
u'. (2.8)

This integral representation, as a bilinear in h'| and |C], is suitable for establishing linear
relations between hypergeometric functions. In fact, let us assume that the number of
linearly-independent twisted cocycles is ⌫, and indicate an arbitrary basis of forms,

he1|, he2|, · · · , he⌫ |. (2.9)

A basis decomposition is achieved by expressing an arbitrary twisted cocycle, say h'|, as a
linear combination of the above ones. This goal be achieved as follows. Introduce a dual

(and auxiliary) space of twisted cocycles, whose basis is denoted by |hii for i = 1, 2, . . . , ⌫,
and consider the matrix C, whose entries are the pairing hei|hji,

Cij = hei|hji for i, j = 1, 2, . . . , ⌫ . (2.10)

This pairing is called the intersection number of hei| and |hji. We then construct the
(⌫+1)⇥ (⌫+1) matrix M, defined as,

M =

0

BBBBBB@

h'| i h'|h1i h'|h2i . . . h'|h⌫i
he1| i he1|h1i he1|h2i . . . he1|h⌫i
he2| i he2|h1i he2|h2i . . . he2|h⌫i

...
...

... . . . ...
he⌫ | i he⌫ |h1i he⌫ |h2i . . . he⌫ |h⌫i

1

CCCCCCA
⌘
 
h'| i A|

B C

!
. (2.11)

The columns of the matrix M are labelled by | i, |h1i, |h2i, . . . , |h⌫i for an arbitrary | i,
while the rows are labelled by h'|, he1|, he2|, . . . , he⌫ |. Each entry is given by a pairing
(bilinear) of the corresponding row and column. In the second equality, we expose the
structure of M as a ⌫⇥⌫ submatrix C, a column vector B and a row vector A|, respectively
with elements Bi = hei| i and Ai = h'|hii (for i = 1, 2, . . . , ⌫).

The fact that the ⌫+1 cocycles labelling the rows and columns are necessarily linearly
dependent (since the basis is ⌫-dimensional) and that each entry of M is a bilinear, implies
that the determinant of this matrix vanishes. Using the well-known identity for the
determinant of a block matrix, we find:

detM = detC

✓
h'| i �A|C�1B

◆
= 0. (2.12)

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)
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Notation. In the following examples, for ease of notation, we drop the prime symbol 0,
and use directly K, u, !, ' and z to express the various quantities on the cut. Moreover,
in the univariate case where after the maximal cut the integrals are characterized by a
single ISP, we use the notation Ia1,a2,...,aN

��
m-cut ⌘ Ia1,...,am;am+1 , where am+1 is the power

of the remaining irreducible scalar product.

3.1 Intersection Numbers of One-Forms

In this section we specialize to the case when ' are 1-forms. Consider,

⌫ = {the number of solutions of ! = 0} , (3.20)

and define P as the set of poles of ! ,

P ⌘ { z | z is a pole of ! } . (3.21)

Note that P can also include the pole at infinity if Resz=1(!) 6= 0.3

Given two (univariate) 1-forms 'L and 'R, we define the intersection number as [74, 75]

h'L|'Ri! =
X

p2P
Resz=p

⇣
 p 'R

⌘
, (3.22)

where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,

 p =
maxX

j=min

 
(j)
p ⌧

j +O
�
⌧
max+1

�
, (3.24)

min = ordp('L) + 1 , max = �ordp('R)� 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients  (j)
p . In other words,

the Laurent expansion of  p around each p, is determined by the Laurent expansion of 'L,R

and of !. A given point p contributes only if the condition min  max is satisfied, and the
above expansion exists only if Resz=p(!) is not a non-positive integer.

3 The number ⌫ of master integrals is equal, up to a sign, to the Euler characteristic � = �⌫ of the space
CP1

\ P, on which the forms are defined, where the number of poles in P is exactly ⌫+2, provided that
all Resz=p(!) are not non-negeative integers. See also [56, 59] for discussion of Euler characteristic in the
context of Feynman integrals. Earlier considerations on possible relations between the number of MIs and
geometric properties of differential manifolds can be found in [84, 85]

– 12 –
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1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Integrals       [pairing :: cocycle + cycle]
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I =
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result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
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By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):
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Special role!



Vector spaces of differential forms

remarkable observation is that we can pair up h'| and |C] to obtain the integral from (2.1),
which we denote by

h'|C] ⌘
Z

C
u'. (2.8)

This integral representation, as a bilinear in h'| and |C], is suitable for establishing linear
relations between hypergeometric functions. In fact, let us assume that the number of
linearly-independent twisted cocycles is ⌫, and indicate an arbitrary basis of forms,

he1|, he2|, · · · , he⌫ |. (2.9)

A basis decomposition is achieved by expressing an arbitrary twisted cocycle, say h'|, as a
linear combination of the above ones. This goal be achieved as follows. Introduce a dual

(and auxiliary) space of twisted cocycles, whose basis is denoted by |hii for i = 1, 2, . . . , ⌫,
and consider the matrix C, whose entries are the pairing hei|hji,

Cij = hei|hji for i, j = 1, 2, . . . , ⌫ . (2.10)

This pairing is called the intersection number of hei| and |hji. We then construct the
(⌫+1)⇥ (⌫+1) matrix M, defined as,

M =

0

BBBBBB@

h'| i h'|h1i h'|h2i . . . h'|h⌫i
he1| i he1|h1i he1|h2i . . . he1|h⌫i
he2| i he2|h1i he2|h2i . . . he2|h⌫i

...
...

... . . . ...
he⌫ | i he⌫ |h1i he⌫ |h2i . . . he⌫ |h⌫i

1

CCCCCCA
⌘
 
h'| i A|

B C

!
. (2.11)

The columns of the matrix M are labelled by | i, |h1i, |h2i, . . . , |h⌫i for an arbitrary | i,
while the rows are labelled by h'|, he1|, he2|, . . . , he⌫ |. Each entry is given by a pairing
(bilinear) of the corresponding row and column. In the second equality, we expose the
structure of M as a ⌫⇥⌫ submatrix C, a column vector B and a row vector A|, respectively
with elements Bi = hei| i and Ai = h'|hii (for i = 1, 2, . . . , ⌫).

The fact that the ⌫+1 cocycles labelling the rows and columns are necessarily linearly
dependent (since the basis is ⌫-dimensional) and that each entry of M is a bilinear, implies
that the determinant of this matrix vanishes. Using the well-known identity for the
determinant of a block matrix, we find:

detM = detC

✓
h'| i �A|C�1B

◆
= 0. (2.12)

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)
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Given the arbitrariness of | i, we obtain the master decomposition formula

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei|, (2.14)

which provides an explicit way of projecting h'| onto a basis of hei|. Following [1], in this
paper we use (2.14) to perform the decomposition of Feynman integrals in terms of master
integrals, on the maximal cut. For example, by contracting both sides with the twisted cycle
|C] (which boils down to multiplying by u and integrating over C), we have a linear identity
between integrals: Z

C
u' =

⌫X

i,j=1

h'|hji
�
C�1

�
ji

Z

C
u ei. (2.15)

Similarly, the same idea can be used to derive linear system of differential equations
satisfied by the basis integrals hei|C] in some external variable x. It is enough to notice that

@x hei|C] = @x

Z

C
u ei =

Z

C
u (@x + �^)ei = h(@x + �^)ei|C], (2.16)

where � ⌘ @x log(u). Let us remark that even if C depends on x, the differential operator @x
commutes with the integral sign, due to the vanishing of u on the boundary of C. Therefore,
the problem reduces to projecting h(@x + �^)ei| on the right-hand side back onto a basis
using (2.14).

One should think of hei| and |hji as parameterizing a vector space of inequivalent
integrands of a hypergeometric function. In this sense C provides a metric on this space.
Naturally, the prescription (2.14) is only useful if computing invariants of the type h'L|'Ri
is efficient. We argue that this is the case. It turns out that the dual space of twisted
cocycles has a straightforward interpretation as the equivalence classes:

|'i! : ' ⇠ '+r�!⇠, (2.17)

where the only difference to (2.7) is the use of the connection r�! ⌘ d� !^ instead of r!.
The resulting bilinear:

h'L|'Ri! (2.18)

is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.

In this brief review, we only scratched the surface of the fascinating theory of hy-
pergeometric functions. We refer the interested reader to [77, 80] for review of twisted
(co)homologies and their intersection theory, as well as [1, 76, 81, 82] for some recent
applications of these ideas to physics.

In the following, we focus on Feynman integrals. In order to translate them into the
form (2.1) we make use of the Baikov representation in the standard form [55] and the
Loop-by-Loop approach developed in [62].
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paper we use (2.14) to perform the decomposition of Feynman integrals in terms of master
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|C] (which boils down to multiplying by u and integrating over C), we have a linear identity
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C
u' =
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C�1

�
ji

Z

C
u ei. (2.15)

Similarly, the same idea can be used to derive linear system of differential equations
satisfied by the basis integrals hei|C] in some external variable x. It is enough to notice that
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C
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Z

C
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is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.

In this brief review, we only scratched the surface of the fascinating theory of hy-
pergeometric functions. We refer the interested reader to [77, 80] for review of twisted
(co)homologies and their intersection theory, as well as [1, 76, 81, 82] for some recent
applications of these ideas to physics.

In the following, we focus on Feynman integrals. In order to translate them into the
form (2.1) we make use of the Baikov representation in the standard form [55] and the
Loop-by-Loop approach developed in [62].
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remarkable observation is that we can pair up h'| and |C] to obtain the integral from (2.1),
which we denote by

h'|C] ⌘
Z

C
u'. (2.8)

This integral representation, as a bilinear in h'| and |C], is suitable for establishing linear
relations between hypergeometric functions. In fact, let us assume that the number of
linearly-independent twisted cocycles is ⌫, and indicate an arbitrary basis of forms,

he1|, he2|, · · · , he⌫ |. (2.9)

A basis decomposition is achieved by expressing an arbitrary twisted cocycle, say h'|, as a
linear combination of the above ones. This goal be achieved as follows. Introduce a dual

(and auxiliary) space of twisted cocycles, whose basis is denoted by |hii for i = 1, 2, . . . , ⌫,
and consider the matrix C, whose entries are the pairing hei|hji,

Cij = hei|hji for i, j = 1, 2, . . . , ⌫ . (2.10)

This pairing is called the intersection number of hei| and |hji. We then construct the
(⌫+1)⇥ (⌫+1) matrix M, defined as,

M =

0

BBBBBB@

h'| i h'|h1i h'|h2i . . . h'|h⌫i
he1| i he1|h1i he1|h2i . . . he1|h⌫i
he2| i he2|h1i he2|h2i . . . he2|h⌫i

...
...

... . . . ...
he⌫ | i he⌫ |h1i he⌫ |h2i . . . he⌫ |h⌫i

1

CCCCCCA
⌘
 
h'| i A|

B C

!
. (2.11)

The columns of the matrix M are labelled by | i, |h1i, |h2i, . . . , |h⌫i for an arbitrary | i,
while the rows are labelled by h'|, he1|, he2|, . . . , he⌫ |. Each entry is given by a pairing
(bilinear) of the corresponding row and column. In the second equality, we expose the
structure of M as a ⌫⇥⌫ submatrix C, a column vector B and a row vector A|, respectively
with elements Bi = hei| i and Ai = h'|hii (for i = 1, 2, . . . , ⌫).

The fact that the ⌫+1 cocycles labelling the rows and columns are necessarily linearly
dependent (since the basis is ⌫-dimensional) and that each entry of M is a bilinear, implies
that the determinant of this matrix vanishes. Using the well-known identity for the
determinant of a block matrix, we find:

detM = detC

✓
h'| i �A|C�1B

◆
= 0. (2.12)

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)
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Given the arbitrariness of | i, we obtain the master decomposition formula

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei|, (2.14)

which provides an explicit way of projecting h'| onto a basis of hei|. Following [1], in this
paper we use (2.14) to perform the decomposition of Feynman integrals in terms of master
integrals, on the maximal cut. For example, by contracting both sides with the twisted cycle
|C] (which boils down to multiplying by u and integrating over C), we have a linear identity
between integrals: Z

C
u' =

⌫X

i,j=1

h'|hji
�
C�1

�
ji

Z

C
u ei. (2.15)

Similarly, the same idea can be used to derive linear system of differential equations
satisfied by the basis integrals hei|C] in some external variable x. It is enough to notice that

@x hei|C] = @x

Z

C
u ei =

Z

C
u (@x + �^)ei = h(@x + �^)ei|C], (2.16)

where � ⌘ @x log(u). Let us remark that even if C depends on x, the differential operator @x
commutes with the integral sign, due to the vanishing of u on the boundary of C. Therefore,
the problem reduces to projecting h(@x + �^)ei| on the right-hand side back onto a basis
using (2.14).

One should think of hei| and |hji as parameterizing a vector space of inequivalent
integrands of a hypergeometric function. In this sense C provides a metric on this space.
Naturally, the prescription (2.14) is only useful if computing invariants of the type h'L|'Ri
is efficient. We argue that this is the case. It turns out that the dual space of twisted
cocycles has a straightforward interpretation as the equivalence classes:

|'i! : ' ⇠ '+r�!⇠, (2.17)

where the only difference to (2.7) is the use of the connection r�! ⌘ d� !^ instead of r!.
The resulting bilinear:

h'L|'Ri! (2.18)

is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.

In this brief review, we only scratched the surface of the fascinating theory of hy-
pergeometric functions. We refer the interested reader to [77, 80] for review of twisted
(co)homologies and their intersection theory, as well as [1, 76, 81, 82] for some recent
applications of these ideas to physics.
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form (2.1) we make use of the Baikov representation in the standard form [55] and the
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integrands of a hypergeometric function. In this sense C provides a metric on this space.
Naturally, the prescription (2.14) is only useful if computing invariants of the type h'L|'Ri
is efficient. We argue that this is the case. It turns out that the dual space of twisted
cocycles has a straightforward interpretation as the equivalence classes:

|'i! : ' ⇠ '+r�!⇠, (2.17)

where the only difference to (2.7) is the use of the connection r�! ⌘ d� !^ instead of r!.
The resulting bilinear:

h'L|'Ri! (2.18)

is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.

In this brief review, we only scratched the surface of the fascinating theory of hy-
pergeometric functions. We refer the interested reader to [77, 80] for review of twisted
(co)homologies and their intersection theory, as well as [1, 76, 81, 82] for some recent
applications of these ideas to physics.

In the following, we focus on Feynman integrals. In order to translate them into the
form (2.1) we make use of the Baikov representation in the standard form [55] and the
Loop-by-Loop approach developed in [62].
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Proof

Master Decomposition Formula

= # of independent forms (Twisted cocycle)

The key formula!



Intersection Numbers :: 1-forms

Zeroes and Poles of 

Notation. In the following examples, for ease of notation, we drop the prime symbol 0,
and use directly K, u, !, ' and z to express the various quantities on the cut. Moreover,
in the univariate case where after the maximal cut the integrals are characterized by a
single ISP, we use the notation Ia1,a2,...,aN

��
m-cut ⌘ Ia1,...,am;am+1 , where am+1 is the power

of the remaining irreducible scalar product.

3.1 Intersection Numbers of One-Forms

In this section we specialize to the case when ' are 1-forms. Consider,

⌫ = {the number of solutions of ! = 0} , (3.20)

and define P as the set of poles of ! ,

P ⌘ { z | z is a pole of ! } . (3.21)

Note that P can also include the pole at infinity if Resz=1(!) 6= 0.3

Given two (univariate) 1-forms 'L and 'R, we define the intersection number as [74, 75]

h'L|'Ri! =
X

p2P
Resz=p

⇣
 p 'R

⌘
, (3.22)

where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,

 p =
maxX

j=min

 
(j)
p ⌧

j +O
�
⌧
max+1

�
, (3.24)

min = ordp('L) + 1 , max = �ordp('R)� 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients  (j)
p . In other words,

the Laurent expansion of  p around each p, is determined by the Laurent expansion of 'L,R

and of !. A given point p contributes only if the condition min  max is satisfied, and the
above expansion exists only if Resz=p(!) is not a non-positive integer.

3 The number ⌫ of master integrals is equal, up to a sign, to the Euler characteristic � = �⌫ of the space
CP1

\ P, on which the forms are defined, where the number of poles in P is exactly ⌫+2, provided that
all Resz=p(!) are not non-negeative integers. See also [56, 59] for discussion of Euler characteristic in the
context of Feynman integrals. Earlier considerations on possible relations between the number of MIs and
geometric properties of differential manifolds can be found in [84, 85]
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Ia1,...,aN ⌘ K(d, sij)

Z

C
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� ⌘ (d� E � L� 1)/2 (2.14)
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C
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h(z) arbitrary rational function

D1 = . . . , Dm = 0 () z1 = . . . , zm = 0 , m  N (2.19)

h'| ⌘ '̂(z) dz (2.20)
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:
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In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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The key operation!
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3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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�i d log(Bi) . (3.8)
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M
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where f is a rational function of the zi (that is 1 if all ai with i > M are 0).

3. Cut Integrals. Within the Baikov representation, the on-shell cut-conditions Di = 0

are most naturally expressed as a contour integration. Any multiple m-cut integral, with
D1 = D2 = · · · = Dm = 0, becomes

Ia1,a2,...,aN

���
m-cut

⌘ K

Z

Cm-cut

u' (3.10)

where the deformed contour is defined as

Cm-cut =  1 ^  2 ^ . . .^  m ^ C0 (3.11)

with the  i-contours denoting a small loop in the complex plane around the pole
at zi = 0. Accordingly, the integration domain of the cut-integral is given by the
geometric intersection of C with the planes zi = 0, (i = 1, 2, . . . ,m) identifying the
on-shell conditions,

C0 ⌘
m\

i=1

{zi = 0} \ C. (3.12)

In general, the domain C0 may admit a decomposition into subregions,

C0 =
[

j

Cj 0 , (3.13)

though only ⌫ of them can be independent. After integrating over the cut variables, the
left over (phase-space) integral reads as,

Ia1,a2,...,aN

���
m-cut

= K
0
Z

C0
u
0
'
0
, (3.14)

with

K
0
u
0 = (Ku)

���
z1=...=zm=0

, '
0 ⌘ '̂

0
d
N�mz0 , (3.15)

'̂
0 ⌘ f(zm+1, . . . , zN )

z
am+1
m+1 · · · zaN

N

✓
Dm(u)

u

◆ �����
z1=...=zm=0

, (3.16)

Dm ⌘
mY

i=1

@
(ai�1)
zi

(ai � 1)!
, (3.17)

d
N�mz0 ⌘ dzm+1 ^ · · · ^ dzN , (3.18)

where u
0 vanishes on the boundary C0, and f is a rational function (see eqs. (3.9)).

Therefore, also the m-cut integral keeps admitting a bilinear pairing representation,

Ia1,a2,...,aN

���
m-cut

= Iam+1,...,aN = K
0
!0h'0|C0] with !

0 ⌘ d log
�
u
0�

. (3.19)
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and on the dimensional regulator d. The integration contour C is defined such that B
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with
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2N amounts to the total number of scalar products which can be built with the loop momenta ki and
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latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
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Therefore, also the m-cut integral keeps admitting a bilinear pairing representation,

Ia1,a2,...,aN

���
m-cut

= Iam+1,...,aN = K
0
!0h'0|C0] with !

0 ⌘ d log
�
u
0�

. (3.19)
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' ⌘ '̂ d
Mz, '̂ ⌘ f(z1, . . . , zM )

z
a1
1 z

a2
2 · · · zaM

M

, d
Mz ⌘ dz1 ^ dz2 ^ · · · ^ dzM (3.9)

where f is a rational function of the zi (that is 1 if all ai with i > M are 0).

3. Cut Integrals. Within the Baikov representation, the on-shell cut-conditions Di = 0

are most naturally expressed as a contour integration. Any multiple m-cut integral, with
D1 = D2 = · · · = Dm = 0, becomes

Ia1,a2,...,aN

���
m-cut

⌘ K

Z

Cm-cut

u' (3.10)

where the deformed contour is defined as

Cm-cut =  1 ^  2 ^ . . .^  m ^ C0 (3.11)

with the  i-contours denoting a small loop in the complex plane around the pole
at zi = 0. Accordingly, the integration domain of the cut-integral is given by the
geometric intersection of C with the planes zi = 0, (i = 1, 2, . . . ,m) identifying the
on-shell conditions,

C0 ⌘
m\

i=1

{zi = 0} \ C. (3.12)

In general, the domain C0 may admit a decomposition into subregions,

C0 =
[

j

Cj 0 , (3.13)

though only ⌫ of them can be independent. After integrating over the cut variables, the
left over (phase-space) integral reads as,
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���
m-cut

= K
0
Z

C0
u
0
'
0
, (3.14)
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K
0
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0 = (Ku)

���
z1=...=zm=0

, '
0 ⌘ '̂

0
d
N�mz0 , (3.15)
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m-Cut Integrals

=

Cut Integrals 

2.2 Baikov

Z LY

i=1

ddki
⇡d/2

@

@kµj

✓
vµ

NY

n=1

1

Dan
n

◆
= 0 (2.9)

vµ = vµ(pi, kj) (2.10)

{D1, . . . , DN} ! {z1, . . . , zN} ⌘ z (2.11)

Ia1,...,aN ⌘ K(d, sij)

Z

C
dz B(z)�

NY

i=1

1

zani
(2.12)

B(z) = det(qi · qj) (2.13)

� ⌘ (d� E � L� 1)/2 (2.14)

q = {pi, kj}, i = 1, . . . , E j = 1, . . . , L (2.15)

sij = pi · pj , i, j = 1, . . . , E (2.16)

B(@C = 0) (2.17)

Z

C
d

 
h(z) B(z)�

NY

i=1

1

zani

!
= 0 (2.18)

h(z) arbitrary rational function

D1 = . . . , Dm = 0 () z1 = . . . , zm = 0 , m  N (2.19)

h'| ⌘ '̂(z) dz (2.20)
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Integrals reduction and Master Integrals

Symmetry Properties. Intersection numbers of one-forms have the following symmetry
property under the exchange of 'L and 'R,

h'L|'Ri! = �h'R|'Li�! , (3.26)

Notice that on the r.h.s. the intersection number is evaluated with respect to the form �!

(instead of !).

Logarithmic Forms. When both 'L and 'R are logarithmic, meaning that ordp('L/R) �
�1 for all points p 2 P, then the formula (3.22) simplifies to

h'L|'Ri! =
X

p2P

Resz=p('L) Resz=p('R)

Resz=p(!)
. (3.27)

Note that in this case the intersection number becomes symmetric in 'L and 'R, i.e.,

h'L|'Ri! = h'R|'Li! , (3.28)

while (3.26) still holds.

Vector Space Metric, Integral Decomposition and Master Integrals. Following
the discussion in Sec. 2, consider an ⌫-dimensional vector space, and its dual space, whose
basis are respectively represented as, hei| and |hii with i = 1, 2, . . . , ⌫. We use intersection
numbers to define a metric on this space

Cij ⌘ hei|hji , (3.29)

which gives rise to ⌫⇥⌫ matrix C. According to the master decomposition formula eq. (2.14),
any element h'| of the space can be decomposed in terms of hei|, as

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei| . (3.30)

Therefore, the pairing of h'| on the l.h.s. and hei| on the r.h.s. with the integration cycle
|C], univocally gives rise to the decomposition (on the cut) of the Feynman integral I in
terms of master integrals Ji, by means of projections built with intersection numbers, i.e.

I = Kh'|C] =
⌫X

i=1

ci Ji , (3.31)

where

Ji ⌘ K Ei , with Ei ⌘ hei|C] , (3.32)

and

ci ⌘
⌫X

j=1

h'|hji
�
C�1

�
ji

. (3.33)

The main goal of this work is to show that the decomposition formulas for Feynman
integrals obtained by intersection numbers are equivalent to the one derived by the standard
integration-by-parts identities (IBPs). Very interestingly, using intersection numbers, the
system-solving strategy inherent to the IBP-decomposition is completely bypassed [1].
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Notation. In the following examples, for ease of notation, we drop the prime symbol 0,
and use directly K, u, !, ' and z to express the various quantities on the cut. Moreover,
in the univariate case where after the maximal cut the integrals are characterized by a
single ISP, we use the notation Ia1,a2,...,aN

��
m-cut ⌘ Ia1,...,am;am+1 , where am+1 is the power

of the remaining irreducible scalar product.

3.1 Intersection Numbers of One-Forms

In this section we specialize to the case when ' are 1-forms. Consider,

⌫ = {the number of solutions of ! = 0} , (3.20)

and define P as the set of poles of ! ,

P ⌘ { z | z is a pole of ! } . (3.21)

Note that P can also include the pole at infinity if Resz=1(!) 6= 0.3

Given two (univariate) 1-forms 'L and 'R, we define the intersection number as [74, 75]

h'L|'Ri! =
X

p2P
Resz=p

⇣
 p 'R

⌘
, (3.22)

where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,

 p =
maxX

j=min

 
(j)
p ⌧

j +O
�
⌧
max+1

�
, (3.24)

min = ordp('L) + 1 , max = �ordp('R)� 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients  (j)
p . In other words,

the Laurent expansion of  p around each p, is determined by the Laurent expansion of 'L,R

and of !. A given point p contributes only if the condition min  max is satisfied, and the
above expansion exists only if Resz=p(!) is not a non-positive integer.

3 The number ⌫ of master integrals is equal, up to a sign, to the Euler characteristic � = �⌫ of the space
CP1

\ P, on which the forms are defined, where the number of poles in P is exactly ⌫+2, provided that
all Resz=p(!) are not non-negeative integers. See also [56, 59] for discussion of Euler characteristic in the
context of Feynman integrals. Earlier considerations on possible relations between the number of MIs and
geometric properties of differential manifolds can be found in [84, 85]
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Basis of Master Forms

remarkable observation is that we can pair up h'| and |C] to obtain the integral from (2.1),
which we denote by

h'|C] ⌘
Z

C
u'. (2.8)

This integral representation, as a bilinear in h'| and |C], is suitable for establishing linear
relations between hypergeometric functions. In fact, let us assume that the number of
linearly-independent twisted cocycles is ⌫, and indicate an arbitrary basis of forms,

he1|, he2|, · · · , he⌫ |. (2.9)

A basis decomposition is achieved by expressing an arbitrary twisted cocycle, say h'|, as a
linear combination of the above ones. This goal be achieved as follows. Introduce a dual

(and auxiliary) space of twisted cocycles, whose basis is denoted by |hii for i = 1, 2, . . . , ⌫,
and consider the matrix C, whose entries are the pairing hei|hji,

Cij = hei|hji for i, j = 1, 2, . . . , ⌫ . (2.10)

This pairing is called the intersection number of hei| and |hji. We then construct the
(⌫+1)⇥ (⌫+1) matrix M, defined as,

M =

0

BBBBBB@

h'| i h'|h1i h'|h2i . . . h'|h⌫i
he1| i he1|h1i he1|h2i . . . he1|h⌫i
he2| i he2|h1i he2|h2i . . . he2|h⌫i

...
...

... . . . ...
he⌫ | i he⌫ |h1i he⌫ |h2i . . . he⌫ |h⌫i

1

CCCCCCA
⌘
 
h'| i A|

B C

!
. (2.11)

The columns of the matrix M are labelled by | i, |h1i, |h2i, . . . , |h⌫i for an arbitrary | i,
while the rows are labelled by h'|, he1|, he2|, . . . , he⌫ |. Each entry is given by a pairing
(bilinear) of the corresponding row and column. In the second equality, we expose the
structure of M as a ⌫⇥⌫ submatrix C, a column vector B and a row vector A|, respectively
with elements Bi = hei| i and Ai = h'|hii (for i = 1, 2, . . . , ⌫).

The fact that the ⌫+1 cocycles labelling the rows and columns are necessarily linearly
dependent (since the basis is ⌫-dimensional) and that each entry of M is a bilinear, implies
that the determinant of this matrix vanishes. Using the well-known identity for the
determinant of a block matrix, we find:

detM = detC

✓
h'| i �A|C�1B

◆
= 0. (2.12)

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)
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Symmetry Properties. Intersection numbers of one-forms have the following symmetry
property under the exchange of 'L and 'R,

h'L|'Ri! = �h'R|'Li�! , (3.26)

Notice that on the r.h.s. the intersection number is evaluated with respect to the form �!

(instead of !).

Logarithmic Forms. When both 'L and 'R are logarithmic, meaning that ordp('L/R) �
�1 for all points p 2 P, then the formula (3.22) simplifies to

h'L|'Ri! =
X

p2P

Resz=p('L) Resz=p('R)

Resz=p(!)
. (3.27)

Note that in this case the intersection number becomes symmetric in 'L and 'R, i.e.,

h'L|'Ri! = h'R|'Li! , (3.28)

while (3.26) still holds.

Vector Space Metric, Integral Decomposition and Master Integrals. Following
the discussion in Sec. 2, consider an ⌫-dimensional vector space, and its dual space, whose
basis are respectively represented as, hei| and |hii with i = 1, 2, . . . , ⌫. We use intersection
numbers to define a metric on this space

Cij ⌘ hei|hji , (3.29)

which gives rise to ⌫⇥⌫ matrix C. According to the master decomposition formula eq. (2.14),
any element h'| of the space can be decomposed in terms of hei|, as

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei| . (3.30)

Therefore, the pairing of h'| on the l.h.s. and hei| on the r.h.s. with the integration cycle
|C], univocally gives rise to the decomposition (on the cut) of the Feynman integral I in
terms of master integrals Ji, by means of projections built with intersection numbers, i.e.

I = Kh'|C] =
⌫X

i=1

ci Ji , (3.31)

where

Ji ⌘ K Ei , with Ei ⌘ hei|C] , (3.32)

and

ci ⌘
⌫X

j=1

h'|hji
�
C�1

�
ji

. (3.33)

The main goal of this work is to show that the decomposition formulas for Feynman
integrals obtained by intersection numbers are equivalent to the one derived by the standard
integration-by-parts identities (IBPs). Very interestingly, using intersection numbers, the
system-solving strategy inherent to the IBP-decomposition is completely bypassed [1].
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Given the arbitrariness of | i, we obtain the master decomposition formula

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei|, (2.14)

which provides an explicit way of projecting h'| onto a basis of hei|. Following [1], in this
paper we use (2.14) to perform the decomposition of Feynman integrals in terms of master
integrals, on the maximal cut. For example, by contracting both sides with the twisted cycle
|C] (which boils down to multiplying by u and integrating over C), we have a linear identity
between integrals: Z

C
u' =

⌫X

i,j=1

h'|hji
�
C�1

�
ji

Z

C
u ei. (2.15)

Similarly, the same idea can be used to derive linear system of differential equations
satisfied by the basis integrals hei|C] in some external variable x. It is enough to notice that

@x hei|C] = @x

Z

C
u ei =

Z

C
u (@x + �^)ei = h(@x + �^)ei|C], (2.16)

where � ⌘ @x log(u). Let us remark that even if C depends on x, the differential operator @x
commutes with the integral sign, due to the vanishing of u on the boundary of C. Therefore,
the problem reduces to projecting h(@x + �^)ei| on the right-hand side back onto a basis
using (2.14).

One should think of hei| and |hji as parameterizing a vector space of inequivalent
integrands of a hypergeometric function. In this sense C provides a metric on this space.
Naturally, the prescription (2.14) is only useful if computing invariants of the type h'L|'Ri
is efficient. We argue that this is the case. It turns out that the dual space of twisted
cocycles has a straightforward interpretation as the equivalence classes:

|'i! : ' ⇠ '+r�!⇠, (2.17)

where the only difference to (2.7) is the use of the connection r�! ⌘ d� !^ instead of r!.
The resulting bilinear:

h'L|'Ri! (2.18)

is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.

In this brief review, we only scratched the surface of the fascinating theory of hy-
pergeometric functions. We refer the interested reader to [77, 80] for review of twisted
(co)homologies and their intersection theory, as well as [1, 76, 81, 82] for some recent
applications of these ideas to physics.

In the following, we focus on Feynman integrals. In order to translate them into the
form (2.1) we make use of the Baikov representation in the standard form [55] and the
Loop-by-Loop approach developed in [62].
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Master Integrals

Integral Decomposition

Mizera & P.M. (2018)
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Mattiazzi, Mizera & P.M. (2019)



Basis choices

Monomial Basis

dLog Basis

Orthonormal Basis

…or any arbitrary rational basis…

Reducible Integrals and Maximal Cuts. As shown, the number of independent basis
forms, and hence MIs, is given by ⌫. Therefore, for any given integral family the existence
of MIs is due to the existence of the solutions for ! = 0. It is possible to identify a few
special cases:

• Reducibility. Absence of master integrals, amounting to ⌫ = 0, can happen either
when Baikov polynomial on the maximal cut is vanishing, B = 0, or when B is linear
in the integration variable, B = z: in the former case, ! does not exist; in the latter
case, u = B

� , therefore ! = � dz/z, and ! = 0 has no solutions. In these cases, the
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Dimensional Recurrence Relation

MIs in (d+2n) dimensions

Master Decomposition Formula

Recurrence Relations for Master Forms

Recurrence Relations for Master Integrals

Solutions. The system of differential equations in eq. (3.47) can be used to deduce a
single homogeneous differential equation of order ⌫ for each hei| separately (i = 1, 2, . . . , ⌫).
For each i, the ⌫ independent solutions of such an equation can be found by building the
pairing

Pij = hei|Cj ] =
Z

Cj
u ei , i, j = 1, 2, . . . , ⌫ , (3.50)

where Cj are the independent sub-regions considered in eq. (3.13), see, e.g., [64, 68, 69]. The
⌫ ⇥ ⌫ matrix P is the resolvent matrix of the system of differential equations. For instance,
by choosing a ⌫-dimensional basis formed by hei| and its derivatives up the (⌫ � 1)th-order,
P becomes the Wronski matrix, whose determinant is the Wronskian of the differential
equation obeyed by hei|.

The matrix P plays an important role in the construction of canonical systems of
differential equation [9], as it was observed in [67–69], generalizing the role of Magnus
exponential matrix [31] to the case of elliptic equations. More generally, in the theory of
hypergeometric functions, P is known as twisted period matrix. It can be used, for instance,
to build the so called twisted Riemann period relations [74], a fundamental identity giving
quadratic relations between hypergeometric functions. A proper study of twisted Riemann
period relations to Feynman integrals goes beyond the scope of the current manuscript, and
it is left to future investigations.

3.3 Dimensional Recurrence Relation

Within the standard Baikov representation, the d dependence of Feynman integrals is carried
solely by the prefactor K and by the exponent � of the Baikov polynomial B. Let us write
the MIs in d+ 2n dimensions as,

J
(d+2n)
i

⌘ K(d+ 2n)E(d+2n)
i

, (3.51)

with

E
(d+2n)
i

⌘ hBn
ei|C] =

Z

C
u (Bn

ei) , i = 1, 2, . . . , ⌫ , (3.52)

and consider the decomposition of the hBn
ei| in terms of the basis hej |,

hBn
ei| = (Rn)ij hej | , n = 0, 1, . . . , ⌫ � 1 . (3.53)

This equation can be interpreted as a change of basis, from hei| with (i = 1, 2, . . . , ⌫) to
hBn

ei| with (n = 0, 1, . . . , ⌫ � 1). We can, therefore, decompose hu⌫ei| in terms of the new
basis hBn

ei|, as

hB⌫
ei| =

⌫�1X

n=0

cn hBn
ei| , (3.54)

which can be written in the suggestive fashion,
⌫X

n=0

cn hBn
ei| = 0 , (3.55)
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hypergeometric functions, P is known as twisted period matrix. It can be used, for instance,
to build the so called twisted Riemann period relations [74], a fundamental identity giving
quadratic relations between hypergeometric functions. A proper study of twisted Riemann
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3.3 Dimensional Recurrence Relation
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with c⌫ ⌘ �1. Upon the pairing with |C], it yields the recursion formula for the integral Ei,

⌫X

n=0

cnE
(d+2n)
i

= 0 , (3.56)

where the coefficients cn, computed by means of the master decomposition formula eq. (3.30),
may depend on d and on the kinematics. Finally, by a simple redefinition of the coefficients,
the dimensional recurrence relation for the MIs Ji arises,

⌫X

n=0

↵n J
(d+2n)
i

= 0 , (3.57)

with ↵n ⌘ cn/K(d+ 2n) .

4 Special Functions

One-variable integrals of the hypergeometric type considered in this paper, may always4 be
expressed in the form

I
(↵) /

Z 1

0
z
�1 (1� z)�2

↵Y

i=3

(1� xiz)
�i dz . (4.1)

For ↵ = 2, 3, 4, this integral (up to pre-factors) corresponds to the Euler beta-function, the
Gauss hypergeometric function 2F1, and the Appell F1 function repectively, and the general
case is known as the Lauricella FD functions.

In this section, we apply the ideas of intersection theory to these paradigmatic cases
with their increasing level of complexity, in order to derive contiguity relations, which for
hypergeometric functions play the same role that IBP identities play for Feynman integrals5.

4.1 Euler Beta Integrals

We start by discussing integral relations associated to a simple class of integrals such as the
Euler beta function, defined as

�(a, b) ⌘
Z 1

0
dz z

a�1 (1� z)b�1 =
�(a)�(b)

�(a+ b)
. (4.2)

4.1.1 Direct Integration

Let us consider integrals of the type

In ⌘
Z

C
u z

n
dz , u ⌘ B

�
, B ⌘ z(1� z) , C ⌘ [0, 1] . (4.3)

4If the integrand is just a product of linear terms
Q

i(z � ai)
�i with the integration path being between

two of the ai, a Möbius transform can bring it into the form discussed in the text.
5Recent applications of the theory of hypergeometric functions to the coaction of one-loop (cut)Feynman

integrals can be found in [86, 87].

– 17 –

with c⌫ ⌘ �1. Upon the pairing with |C], it yields the recursion formula for the integral Ei,

⌫X

n=0

cnE
(d+2n)
i

= 0 , (3.56)

where the coefficients cn, computed by means of the master decomposition formula eq. (3.30),
may depend on d and on the kinematics. Finally, by a simple redefinition of the coefficients,
the dimensional recurrence relation for the MIs Ji arises,

⌫X

n=0

↵n J
(d+2n)
i

= 0 , (3.57)

with ↵n ⌘ cn/K(d+ 2n) .

4 Special Functions

One-variable integrals of the hypergeometric type considered in this paper, may always4 be
expressed in the form

I
(↵) /

Z 1

0
z
�1 (1� z)�2

↵Y

i=3

(1� xiz)
�i dz . (4.1)

For ↵ = 2, 3, 4, this integral (up to pre-factors) corresponds to the Euler beta-function, the
Gauss hypergeometric function 2F1, and the Appell F1 function repectively, and the general
case is known as the Lauricella FD functions.

In this section, we apply the ideas of intersection theory to these paradigmatic cases
with their increasing level of complexity, in order to derive contiguity relations, which for
hypergeometric functions play the same role that IBP identities play for Feynman integrals5.

4.1 Euler Beta Integrals

We start by discussing integral relations associated to a simple class of integrals such as the
Euler beta function, defined as

�(a, b) ⌘
Z 1

0
dz z

a�1 (1� z)b�1 =
�(a)�(b)

�(a+ b)
. (4.2)

4.1.1 Direct Integration

Let us consider integrals of the type

In ⌘
Z

C
u z

n
dz , u ⌘ B

�
, B ⌘ z(1� z) , C ⌘ [0, 1] . (4.3)

4If the integrand is just a product of linear terms
Q

i(z � ai)
�i with the integration path being between

two of the ai, a Möbius transform can bring it into the form discussed in the text.
5Recent applications of the theory of hypergeometric functions to the coaction of one-loop (cut)Feynman

integrals can be found in [86, 87].

– 17 –

with c⌫ ⌘ �1. Upon the pairing with |C], it yields the recursion formula for the integral Ei,

⌫X

n=0

cnE
(d+2n)
i

= 0 , (3.56)

where the coefficients cn, computed by means of the master decomposition formula eq. (3.30),
may depend on d and on the kinematics. Finally, by a simple redefinition of the coefficients,
the dimensional recurrence relation for the MIs Ji arises,

⌫X

n=0

↵n J
(d+2n)
i

= 0 , (3.57)

with ↵n ⌘ cn/K(d+ 2n) .

4 Special Functions

One-variable integrals of the hypergeometric type considered in this paper, may always4 be
expressed in the form

I
(↵) /

Z 1

0
z
�1 (1� z)�2

↵Y

i=3

(1� xiz)
�i dz . (4.1)

For ↵ = 2, 3, 4, this integral (up to pre-factors) corresponds to the Euler beta-function, the
Gauss hypergeometric function 2F1, and the Appell F1 function repectively, and the general
case is known as the Lauricella FD functions.

In this section, we apply the ideas of intersection theory to these paradigmatic cases
with their increasing level of complexity, in order to derive contiguity relations, which for
hypergeometric functions play the same role that IBP identities play for Feynman integrals5.

4.1 Euler Beta Integrals

We start by discussing integral relations associated to a simple class of integrals such as the
Euler beta function, defined as

�(a, b) ⌘
Z 1

0
dz z

a�1 (1� z)b�1 =
�(a)�(b)

�(a+ b)
. (4.2)

4.1.1 Direct Integration

Let us consider integrals of the type

In ⌘
Z

C
u z

n
dz , u ⌘ B

�
, B ⌘ z(1� z) , C ⌘ [0, 1] . (4.3)

4If the integrand is just a product of linear terms
Q

i(z � ai)
�i with the integration path being between

two of the ai, a Möbius transform can bring it into the form discussed in the text.
5Recent applications of the theory of hypergeometric functions to the coaction of one-loop (cut)Feynman

integrals can be found in [86, 87].

– 17 –



System of Differential Equations

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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The C-matrix is important!



(Homogenous) Solutions
Solutions. The system of differential equations in eq. (3.47) can be used to deduce a
single homogeneous differential equation of order ⌫ for each hei| separately (i = 1, 2, . . . , ⌫).
For each i, the ⌫ independent solutions of such an equation can be found by building the
pairing

Pij = hei|Cj ] =
Z

Cj
u ei , i, j = 1, 2, . . . , ⌫ , (3.50)

where Cj are the independent sub-regions considered in eq. (3.13), see, e.g., [64, 68, 69]. The
⌫ ⇥ ⌫ matrix P is the resolvent matrix of the system of differential equations. For instance,
by choosing a ⌫-dimensional basis formed by hei| and its derivatives up the (⌫ � 1)th-order,
P becomes the Wronski matrix, whose determinant is the Wronskian of the differential
equation obeyed by hei|.

The matrix P plays an important role in the construction of canonical systems of
differential equation [9], as it was observed in [67–69], generalizing the role of Magnus
exponential matrix [31] to the case of elliptic equations. More generally, in the theory of
hypergeometric functions, P is known as twisted period matrix. It can be used, for instance,
to build the so called twisted Riemann period relations [74], a fundamental identity giving
quadratic relations between hypergeometric functions. A proper study of twisted Riemann
period relations to Feynman integrals goes beyond the scope of the current manuscript, and
it is left to future investigations.

3.3 Dimensional Recurrence Relation

Within the standard Baikov representation, the d dependence of Feynman integrals is carried
solely by the prefactor K and by the exponent � of the Baikov polynomial B. Let us write
the MIs in d+ 2n dimensions as,

J
(d+2n)
i

⌘ K(d+ 2n)E(d+2n)
i

, (3.51)

with

E
(d+2n)
i

⌘ hBn
ei|C] =

Z

C
u (Bn

ei) , i = 1, 2, . . . , ⌫ , (3.52)

and consider the decomposition of the hBn
ei| in terms of the basis hej |,

hBn
ei| = (Rn)ij hej | , n = 0, 1, . . . , ⌫ � 1 . (3.53)

This equation can be interpreted as a change of basis, from hei| with (i = 1, 2, . . . , ⌫) to
hBn

ei| with (n = 0, 1, . . . , ⌫ � 1). We can, therefore, decompose hu⌫ei| in terms of the new
basis hBn

ei|, as

hB⌫
ei| =

⌫�1X

n=0

cn hBn
ei| , (3.54)

which can be written in the suggestive fashion,
⌫X

n=0

cn hBn
ei| = 0 , (3.55)
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math :: Resolvent matrix

int. th. :: (Riemann) Twisted Period matrix
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Example :: Derivative basis

System of Differential Equations
System of DEQ for Master Integrals

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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Decomposition in 4 steps:with

u = B
�1
1 B

�2
2 · · ·B�m

m , ! ⌘ d log(u) =
mX

i=1

�i d log(Bi) . (3.8)

and where

' ⌘ '̂ d
Mz, '̂ ⌘ f(z1, . . . , zM )

z
a1
1 z

a2
2 · · · zaM

M

, d
Mz ⌘ dz1 ^ dz2 ^ · · · ^ dzM (3.9)

where f is a rational function of the zi (that is 1 if all ai with i > M are 0).

3. Cut Integrals. Within the Baikov representation, the on-shell cut-conditions Di = 0

are most naturally expressed as a contour integration. Any multiple m-cut integral, with
D1 = D2 = · · · = Dm = 0, becomes

Ia1,a2,...,aN

���
m-cut

⌘ K

Z

Cm-cut

u' (3.10)

where the deformed contour is defined as

Cm-cut =  1 ^  2 ^ . . .^  m ^ C0 (3.11)

with the  i-contours denoting a small loop in the complex plane around the pole
at zi = 0. Accordingly, the integration domain of the cut-integral is given by the
geometric intersection of C with the planes zi = 0, (i = 1, 2, . . . ,m) identifying the
on-shell conditions,

C0 ⌘
m\

i=1

{zi = 0} \ C. (3.12)

In general, the domain C0 may admit a decomposition into subregions,

C0 =
[

j

Cj 0 , (3.13)

though only ⌫ of them can be independent. After integrating over the cut variables, the
left over (phase-space) integral reads as,

Ia1,a2,...,aN

���
m-cut

= K
0
Z

C0
u
0
'
0
, (3.14)

with

K
0
u
0 = (Ku)

���
z1=...=zm=0

, '
0 ⌘ '̂

0
d
N�mz0 , (3.15)

'̂
0 ⌘ f(zm+1, . . . , zN )

z
am+1
m+1 · · · zaN

N

✓
Dm(u)

u

◆ �����
z1=...=zm=0

, (3.16)

Dm ⌘
mY

i=1

@
(ai�1)
zi

(ai � 1)!
, (3.17)

d
N�mz0 ⌘ dzm+1 ^ · · · ^ dzN , (3.18)

where u
0 vanishes on the boundary C0, and f is a rational function (see eqs. (3.9)).

Therefore, also the m-cut integral keeps admitting a bilinear pairing representation,

Ia1,a2,...,aN

���
m-cut

= Iam+1,...,aN = K
0
!0h'0|C0] with !

0 ⌘ d log
�
u
0�

. (3.19)
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Notation. In the following examples, for ease of notation, we drop the prime symbol 0,
and use directly K, u, !, ' and z to express the various quantities on the cut. Moreover,
in the univariate case where after the maximal cut the integrals are characterized by a
single ISP, we use the notation Ia1,a2,...,aN

��
m-cut ⌘ Ia1,...,am;am+1 , where am+1 is the power

of the remaining irreducible scalar product.

3.1 Intersection Numbers of One-Forms

In this section we specialize to the case when ' are 1-forms. Consider,

⌫ = {the number of solutions of ! = 0} , (3.20)

and define P as the set of poles of ! ,

P ⌘ { z | z is a pole of ! } . (3.21)

Note that P can also include the pole at infinity if Resz=1(!) 6= 0.3

Given two (univariate) 1-forms 'L and 'R, we define the intersection number as [74, 75]

h'L|'Ri! =
X

p2P
Resz=p

⇣
 p 'R

⌘
, (3.22)

where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,

 p =
maxX

j=min

 
(j)
p ⌧

j +O
�
⌧
max+1

�
, (3.24)

min = ordp('L) + 1 , max = �ordp('R)� 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients  (j)
p . In other words,

the Laurent expansion of  p around each p, is determined by the Laurent expansion of 'L,R

and of !. A given point p contributes only if the condition min  max is satisfied, and the
above expansion exists only if Resz=p(!) is not a non-positive integer.

3 The number ⌫ of master integrals is equal, up to a sign, to the Euler characteristic � = �⌫ of the space
CP1

\ P, on which the forms are defined, where the number of poles in P is exactly ⌫+2, provided that
all Resz=p(!) are not non-negeative integers. See also [56, 59] for discussion of Euler characteristic in the
context of Feynman integrals. Earlier considerations on possible relations between the number of MIs and
geometric properties of differential manifolds can be found in [84, 85]
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Reducible Integrals and Maximal Cuts. As shown, the number of independent basis
forms, and hence MIs, is given by ⌫. Therefore, for any given integral family the existence
of MIs is due to the existence of the solutions for ! = 0. It is possible to identify a few
special cases:

• Reducibility. Absence of master integrals, amounting to ⌫ = 0, can happen either
when Baikov polynomial on the maximal cut is vanishing, B = 0, or when B is linear
in the integration variable, B = z: in the former case, ! does not exist; in the latter
case, u = B

� , therefore ! = � dz/z, and ! = 0 has no solutions. In these cases, the
integral family is reducible, namely the corresponding integrals can be expressed as a
combination of the master integrals of the subtopologies.

• Maximal Cuts. Baikov polynomial B is a non-zero constant on the maximal cut.
This means that no ISP is left over to parametrize the cut integral. In other words,
the integral is fully localized by the cut-conditions. In this case, the condition ! = 0

is always satisfied, and there is ⌫ = 1 master integral.
This situation may occur, for instance, at one-loop, where maximal cuts are indeed
maximum cuts.

Choices of Bases. The bases |hii and |eii can be different from each other, but |hii = |eii
is a possible choice too. We decompose 1-form employing either a monomial basis

hei| = h�i| ⌘ z
i�1

dz , (3.34)

or a dlog-basis, of the type,

hei| = h'i| ⌘
dz

z � zi
, (3.35)

where zi are poles of !.
Alternatively, orthonormal bases for twisted cocycles can be chosen as follows. Out of

the set of poles P = {z1, z2, . . . , z⌫+1, z⌫+2} pick two special ones, say z⌫+1 and z⌫+2. Then
construct bases of ⌫ one-forms using:

hei| ⌘ d log
z � zi

z � z⌫+1
, |hii ⌘ Resz=zi(!) d log

z � zi

z � z⌫+2
(3.36)

for i = 1, 2, . . . , ⌫. With this choice, the intersection matrix C becomes the identity matrix,

Cij = �ij (3.37)

as can be shown directly using the residue prescription (3.22), and therefore the basis
decomposition formula simplifies to

h'| =
⌫X

i=1

h'|hiihei| . (3.38)
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Symmetry Properties. Intersection numbers of one-forms have the following symmetry
property under the exchange of 'L and 'R,

h'L|'Ri! = �h'R|'Li�! , (3.26)

Notice that on the r.h.s. the intersection number is evaluated with respect to the form �!

(instead of !).

Logarithmic Forms. When both 'L and 'R are logarithmic, meaning that ordp('L/R) �
�1 for all points p 2 P, then the formula (3.22) simplifies to

h'L|'Ri! =
X

p2P

Resz=p('L) Resz=p('R)

Resz=p(!)
. (3.27)

Note that in this case the intersection number becomes symmetric in 'L and 'R, i.e.,

h'L|'Ri! = h'R|'Li! , (3.28)

while (3.26) still holds.

Vector Space Metric, Integral Decomposition and Master Integrals. Following
the discussion in Sec. 2, consider an ⌫-dimensional vector space, and its dual space, whose
basis are respectively represented as, hei| and |hii with i = 1, 2, . . . , ⌫. We use intersection
numbers to define a metric on this space

Cij ⌘ hei|hji , (3.29)

which gives rise to ⌫⇥⌫ matrix C. According to the master decomposition formula eq. (2.14),
any element h'| of the space can be decomposed in terms of hei|, as

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei| . (3.30)

Therefore, the pairing of h'| on the l.h.s. and hei| on the r.h.s. with the integration cycle
|C], univocally gives rise to the decomposition (on the cut) of the Feynman integral I in
terms of master integrals Ji, by means of projections built with intersection numbers, i.e.

I = Kh'|C] =
⌫X

i=1

ci Ji , (3.31)

where

Ji ⌘ K Ei , with Ei ⌘ hei|C] , (3.32)

and

ci ⌘
⌫X

j=1

h'|hji
�
C�1

�
ji

. (3.33)

The main goal of this work is to show that the decomposition formulas for Feynman
integrals obtained by intersection numbers are equivalent to the one derived by the standard
integration-by-parts identities (IBPs). Very interestingly, using intersection numbers, the
system-solving strategy inherent to the IBP-decomposition is completely bypassed [1].
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Given the arbitrariness of | i, we obtain the master decomposition formula

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei|, (2.14)

which provides an explicit way of projecting h'| onto a basis of hei|. Following [1], in this
paper we use (2.14) to perform the decomposition of Feynman integrals in terms of master
integrals, on the maximal cut. For example, by contracting both sides with the twisted cycle
|C] (which boils down to multiplying by u and integrating over C), we have a linear identity
between integrals: Z

C
u' =

⌫X

i,j=1

h'|hji
�
C�1

�
ji

Z

C
u ei. (2.15)

Similarly, the same idea can be used to derive linear system of differential equations
satisfied by the basis integrals hei|C] in some external variable x. It is enough to notice that

@x hei|C] = @x

Z

C
u ei =

Z

C
u (@x + �^)ei = h(@x + �^)ei|C], (2.16)

where � ⌘ @x log(u). Let us remark that even if C depends on x, the differential operator @x
commutes with the integral sign, due to the vanishing of u on the boundary of C. Therefore,
the problem reduces to projecting h(@x + �^)ei| on the right-hand side back onto a basis
using (2.14).

One should think of hei| and |hji as parameterizing a vector space of inequivalent
integrands of a hypergeometric function. In this sense C provides a metric on this space.
Naturally, the prescription (2.14) is only useful if computing invariants of the type h'L|'Ri
is efficient. We argue that this is the case. It turns out that the dual space of twisted
cocycles has a straightforward interpretation as the equivalence classes:

|'i! : ' ⇠ '+r�!⇠, (2.17)

where the only difference to (2.7) is the use of the connection r�! ⌘ d� !^ instead of r!.
The resulting bilinear:

h'L|'Ri! (2.18)

is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.

In this brief review, we only scratched the surface of the fascinating theory of hy-
pergeometric functions. We refer the interested reader to [77, 80] for review of twisted
(co)homologies and their intersection theory, as well as [1, 76, 81, 82] for some recent
applications of these ideas to physics.

In the following, we focus on Feynman integrals. In order to translate them into the
form (2.1) we make use of the Baikov representation in the standard form [55] and the
Loop-by-Loop approach developed in [62].
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remarkable observation is that we can pair up h'| and |C] to obtain the integral from (2.1),
which we denote by

h'|C] ⌘
Z

C
u'. (2.8)

This integral representation, as a bilinear in h'| and |C], is suitable for establishing linear
relations between hypergeometric functions. In fact, let us assume that the number of
linearly-independent twisted cocycles is ⌫, and indicate an arbitrary basis of forms,

he1|, he2|, · · · , he⌫ |. (2.9)

A basis decomposition is achieved by expressing an arbitrary twisted cocycle, say h'|, as a
linear combination of the above ones. This goal be achieved as follows. Introduce a dual

(and auxiliary) space of twisted cocycles, whose basis is denoted by |hii for i = 1, 2, . . . , ⌫,
and consider the matrix C, whose entries are the pairing hei|hji,

Cij = hei|hji for i, j = 1, 2, . . . , ⌫ . (2.10)

This pairing is called the intersection number of hei| and |hji. We then construct the
(⌫+1)⇥ (⌫+1) matrix M, defined as,

M =

0

BBBBBB@

h'| i h'|h1i h'|h2i . . . h'|h⌫i
he1| i he1|h1i he1|h2i . . . he1|h⌫i
he2| i he2|h1i he2|h2i . . . he2|h⌫i

...
...

... . . . ...
he⌫ | i he⌫ |h1i he⌫ |h2i . . . he⌫ |h⌫i

1

CCCCCCA
⌘
 
h'| i A|

B C

!
. (2.11)

The columns of the matrix M are labelled by | i, |h1i, |h2i, . . . , |h⌫i for an arbitrary | i,
while the rows are labelled by h'|, he1|, he2|, . . . , he⌫ |. Each entry is given by a pairing
(bilinear) of the corresponding row and column. In the second equality, we expose the
structure of M as a ⌫⇥⌫ submatrix C, a column vector B and a row vector A|, respectively
with elements Bi = hei| i and Ai = h'|hii (for i = 1, 2, . . . , ⌫).

The fact that the ⌫+1 cocycles labelling the rows and columns are necessarily linearly
dependent (since the basis is ⌫-dimensional) and that each entry of M is a bilinear, implies
that the determinant of this matrix vanishes. Using the well-known identity for the
determinant of a block matrix, we find:

detM = detC

✓
h'| i �A|C�1B

◆
= 0. (2.12)

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)
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3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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Symmetry Properties. Intersection numbers of one-forms have the following symmetry
property under the exchange of 'L and 'R,

h'L|'Ri! = �h'R|'Li�! , (3.26)

Notice that on the r.h.s. the intersection number is evaluated with respect to the form �!

(instead of !).

Logarithmic Forms. When both 'L and 'R are logarithmic, meaning that ordp('L/R) �
�1 for all points p 2 P, then the formula (3.22) simplifies to

h'L|'Ri! =
X

p2P

Resz=p('L) Resz=p('R)

Resz=p(!)
. (3.27)

Note that in this case the intersection number becomes symmetric in 'L and 'R, i.e.,

h'L|'Ri! = h'R|'Li! , (3.28)

while (3.26) still holds.
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basis are respectively represented as, hei| and |hii with i = 1, 2, . . . , ⌫. We use intersection
numbers to define a metric on this space

Cij ⌘ hei|hji , (3.29)

which gives rise to ⌫⇥⌫ matrix C. According to the master decomposition formula eq. (2.14),
any element h'| of the space can be decomposed in terms of hei|, as

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei| . (3.30)

Therefore, the pairing of h'| on the l.h.s. and hei| on the r.h.s. with the integration cycle
|C], univocally gives rise to the decomposition (on the cut) of the Feynman integral I in
terms of master integrals Ji, by means of projections built with intersection numbers, i.e.
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where

Ji ⌘ K Ei , with Ei ⌘ hei|C] , (3.32)

and
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⌫X
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�
ji

. (3.33)

The main goal of this work is to show that the decomposition formulas for Feynman
integrals obtained by intersection numbers are equivalent to the one derived by the standard
integration-by-parts identities (IBPs). Very interestingly, using intersection numbers, the
system-solving strategy inherent to the IBP-decomposition is completely bypassed [1].
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vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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Symmetry Properties. Intersection numbers of one-forms have the following symmetry
property under the exchange of 'L and 'R,

h'L|'Ri! = �h'R|'Li�! , (3.26)

Notice that on the r.h.s. the intersection number is evaluated with respect to the form �!

(instead of !).

Logarithmic Forms. When both 'L and 'R are logarithmic, meaning that ordp('L/R) �
�1 for all points p 2 P, then the formula (3.22) simplifies to

h'L|'Ri! =
X

p2P

Resz=p('L) Resz=p('R)

Resz=p(!)
. (3.27)

Note that in this case the intersection number becomes symmetric in 'L and 'R, i.e.,

h'L|'Ri! = h'R|'Li! , (3.28)

while (3.26) still holds.

Vector Space Metric, Integral Decomposition and Master Integrals. Following
the discussion in Sec. 2, consider an ⌫-dimensional vector space, and its dual space, whose
basis are respectively represented as, hei| and |hii with i = 1, 2, . . . , ⌫. We use intersection
numbers to define a metric on this space

Cij ⌘ hei|hji , (3.29)

which gives rise to ⌫⇥⌫ matrix C. According to the master decomposition formula eq. (2.14),
any element h'| of the space can be decomposed in terms of hei|, as

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei| . (3.30)

Therefore, the pairing of h'| on the l.h.s. and hei| on the r.h.s. with the integration cycle
|C], univocally gives rise to the decomposition (on the cut) of the Feynman integral I in
terms of master integrals Ji, by means of projections built with intersection numbers, i.e.

I = Kh'|C] =
⌫X

i=1

ci Ji , (3.31)

where

Ji ⌘ K Ei , with Ei ⌘ hei|C] , (3.32)

and

ci ⌘
⌫X

j=1

h'|hji
�
C�1

�
ji

. (3.33)

The main goal of this work is to show that the decomposition formulas for Feynman
integrals obtained by intersection numbers are equivalent to the one derived by the standard
integration-by-parts identities (IBPs). Very interestingly, using intersection numbers, the
system-solving strategy inherent to the IBP-decomposition is completely bypassed [1].

– 13 –

=

Master Integrals



Contiguity relations for Special Functions



Euler Beta Integrals

with c⌫ ⌘ �1. Upon the pairing with |C], it yields the recursion formula for the integral Ei,

⌫X

n=0

cnE
(d+2n)
i

= 0 , (3.56)

where the coefficients cn, computed by means of the master decomposition formula eq. (3.30),
may depend on d and on the kinematics. Finally, by a simple redefinition of the coefficients,
the dimensional recurrence relation for the MIs Ji arises,

⌫X

n=0

↵n J
(d+2n)
i

= 0 , (3.57)

with ↵n ⌘ cn/K(d+ 2n) .

4 Special Functions

One-variable integrals of the hypergeometric type considered in this paper, may always4 be
expressed in the form

I
(↵) /

Z 1

0
z
�1 (1� z)�2

↵Y

i=3

(1� xiz)
�i dz . (4.1)

For ↵ = 2, 3, 4, this integral (up to pre-factors) corresponds to the Euler beta-function, the
Gauss hypergeometric function 2F1, and the Appell F1 function repectively, and the general
case is known as the Lauricella FD functions.

In this section, we apply the ideas of intersection theory to these paradigmatic cases
with their increasing level of complexity, in order to derive contiguity relations, which for
hypergeometric functions play the same role that IBP identities play for Feynman integrals5.

4.1 Euler Beta Integrals

We start by discussing integral relations associated to a simple class of integrals such as the
Euler beta function, defined as

�(a, b) ⌘
Z 1

0
dz z

a�1 (1� z)b�1 =
�(a)�(b)

�(a+ b)
. (4.2)

4.1.1 Direct Integration

Let us consider integrals of the type

In ⌘
Z

C
u z

n
dz , u ⌘ B

�
, B ⌘ z(1� z) , C ⌘ [0, 1] . (4.3)

4If the integrand is just a product of linear terms
Q

i(z � ai)
�i with the integration path being between

two of the ai, a Möbius transform can bring it into the form discussed in the text.
5Recent applications of the theory of hypergeometric functions to the coaction of one-loop (cut)Feynman

integrals can be found in [86, 87].
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These integrals admit a closed-form expression in terms of � functions,

In =
�(1 + �)�(1 + � + n)

�(2 + 2� + n)
, (4.4)

from which it is possible to derive a relation between In and I0,

In =
�(1 + � + n)�(2 + 2�)

�(1 + �)�(2 + 2� + n)
I0 . (4.5)

For instance, when n = 1, it reads

I1 =
1

2
I0 . (4.6)

4.1.2 Integration-by-Parts Identities

Let us recover the same relation from integration by parts identities. With the choice of C
as above, the following integration-by-parts identity holds

Z

C
d(B�+1

z
n�1) = 0 . (4.7)

The action of the differential operator under the integral sign yields the following equation,

(� + n)In�1 � (1 + 2� + n)In = 0 . (4.8)

Therefore we obtain the recurrence relation

In =
(� + n)

(1 + 2� + n)
In�1 , (4.9)

which, for n = 1, gives

I1 =
1

2
I0 . (4.10)

4.1.3 Intersections

We are going to (re)derive, once more, the relations between Euler beta integrals using
intersection numbers. We consider integrals defined as,

In ⌘
Z

C
u�n+1 ⌘ !h�n+1|C] , �n+1 ⌘ z

n
dz , (4.11)

with

u = B
�

B = z(1� z) , ! = d log u = �

✓
1

z
+

1

z � 1

◆
dz , (4.12)

⌫ = 1 , P = {0, 1,1}. (4.13)
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with c⌫ ⌘ �1. Upon the pairing with |C], it yields the recursion formula for the integral Ei,

⌫X
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(d+2n)
i

= 0 , (3.56)

where the coefficients cn, computed by means of the master decomposition formula eq. (3.30),
may depend on d and on the kinematics. Finally, by a simple redefinition of the coefficients,
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4.1.2 Integration-by-Parts Identities
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C
d(B�+1

z
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The action of the differential operator under the integral sign yields the following equation,

(� + n)In�1 � (1 + 2� + n)In = 0 . (4.8)

Therefore we obtain the recurrence relation
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Monomial Basis

Monomial Basis. ⌫ = 1 implies the existence of 1 master integral, which we choose as
I0 = !h�1|C]. The goal of this calculation is to derive the relation between I1 and I0,

I1 = c1 I0 () !h�2|C] = c1 !h�1|C] (4.14)

which can be derived by decomposing h�2| in terms of h�1|,

h�2| = c1h�1| , c1 = h�2|�1ih�1|�1i�1 (4.15)

Notice that since ⌫ = 1, the intersection matrix Cij has just one element C11 = h�1|�1i.
We need to evaluate the intersection numbers h�1|�1i, and h�2|�1i.
For each pole p 2 P, we identify �i,p (the series expansion of �i around z = p), and

determine the associated function  i,p (the series expansion of  i around z = p), by solving
the following differential equation,

r!  i,p = �i,p . (4.16)

After inserting the series expansion of �i,p and an ansatz for  i,p in the above equation,
we get an equation at each order on p, which together determines the coefficients in the
ansatz for  i,p. In practice, we define ⌧ = z � p, and take the Laurent expansions of

�i,p =
X

k=min�1

�
(k)
i,p
⌧
k
, !p =

X

k=�1

!
(k)
p ⌧

k
, (known) (4.17)

and the ansatz,

 p =
maxX

k=min

↵k ⌧
k
, (↵k unknown) (4.18)

to solve the following differential equation,

d

d⌧
 p + !p  p � �i,p = 0 . (4.19)

In our case we have,

• For 'L = �1 = dz, 'R = �1 = dz:

p min max 'L,p  p

0 1 �1 d⌧ 0

1 1 �1 d⌧ 0

1 �1 1 �d⌧/⌧
2 P1

i=�1 ↵i ⌧
i

with

↵�1 =
1

2� + 1
, ↵0 = � 1

2(2� + 1)
, ↵1 = � �

2(2� � 1)(2� + 1)
. (4.20)

Therefore

h�1|�1i = Resz=1( 1�1) =
�

2(2� � 1)(2� + 1)
. (4.21)
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Master Decomposition Formula
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Intersection Numbers
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Laurent expansions

Solve:
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Notation. In the following examples, for ease of notation, we drop the prime symbol 0,
and use directly K, u, !, ' and z to express the various quantities on the cut. Moreover,
in the univariate case where after the maximal cut the integrals are characterized by a
single ISP, we use the notation Ia1,a2,...,aN

��
m-cut ⌘ Ia1,...,am;am+1 , where am+1 is the power

of the remaining irreducible scalar product.

3.1 Intersection Numbers of One-Forms

In this section we specialize to the case when ' are 1-forms. Consider,

⌫ = {the number of solutions of ! = 0} , (3.20)

and define P as the set of poles of ! ,

P ⌘ { z | z is a pole of ! } . (3.21)

Note that P can also include the pole at infinity if Resz=1(!) 6= 0.3

Given two (univariate) 1-forms 'L and 'R, we define the intersection number as [74, 75]

h'L|'Ri! =
X

p2P
Resz=p

⇣
 p 'R

⌘
, (3.22)

where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,

 p =
maxX

j=min

 
(j)
p ⌧

j +O
�
⌧
max+1

�
, (3.24)

min = ordp('L) + 1 , max = �ordp('R)� 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients  (j)
p . In other words,

the Laurent expansion of  p around each p, is determined by the Laurent expansion of 'L,R

and of !. A given point p contributes only if the condition min  max is satisfied, and the
above expansion exists only if Resz=p(!) is not a non-positive integer.

3 The number ⌫ of master integrals is equal, up to a sign, to the Euler characteristic � = �⌫ of the space
CP1

\ P, on which the forms are defined, where the number of poles in P is exactly ⌫+2, provided that
all Resz=p(!) are not non-negeative integers. See also [56, 59] for discussion of Euler characteristic in the
context of Feynman integrals. Earlier considerations on possible relations between the number of MIs and
geometric properties of differential manifolds can be found in [84, 85]
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determine the associated function  i,p (the series expansion of  i around z = p), by solving
the following differential equation,

r!  i,p = �i,p . (4.16)

After inserting the series expansion of �i,p and an ansatz for  i,p in the above equation,
we get an equation at each order on p, which together determines the coefficients in the
ansatz for  i,p. In practice, we define ⌧ = z � p, and take the Laurent expansions of
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, (known) (4.17)

and the ansatz,
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k
, (↵k unknown) (4.18)

to solve the following differential equation,
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 p + !p  p � �i,p = 0 . (4.19)

In our case we have,
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• For 'L = �2 = z dz, 'R = �1 = dz:
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Notice that in the above formulas only the p = 1 gave a non-trivial contribution. In
general, the situation depends on the form of the integrands, and in particular on on the
values of min and max, which are dictated by the Laurent series expansions around p of 'L

and 'R paired in the intersection number h'L|'Ri .
Finally, we get the decomposition of I1 in terms of I0,

I1 = c1 I0 , (4.25)

c1 = h�2|�1ih�1|�1i�1 =
1

2
, (4.26)

in agreement with eq. (4.6).

dlog-basis. Consider the master integral associated to the form

'1 = d log
z

z � 1
=

✓
1

z
� 1

z � 1

◆
dz , (4.27)

and let us decompose both h�1| and h�2| in the basis of h'1|,

h�1| = h�1|'1ih'1|'1i�1h'1|, (4.28)

h�2| = h�2|'1ih'1|'1i�1h'1|. (4.29)

We need the intersection numbers,

h'1|'1i =
2
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, h�1|'1i =

1

2� + 1
, h�2|'1i =

1

2(2� + 1)
. (4.30)

Therefore

h�1| =
�

2(2� + 1)
h'1|, h�2| =

�

4(2� + 1)
h'1| (4.31)
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Master Decomposition Formula

Monomial Basis. ⌫ = 1 implies the existence of 1 master integral, which we choose as
I0 = !h�1|C]. The goal of this calculation is to derive the relation between I1 and I0,

I1 = c1 I0 () !h�2|C] = c1 !h�1|C] (4.14)

which can be derived by decomposing h�2| in terms of h�1|,

h�2| = c1h�1| , c1 = h�2|�1ih�1|�1i�1 (4.15)

Notice that since ⌫ = 1, the intersection matrix Cij has just one element C11 = h�1|�1i.
We need to evaluate the intersection numbers h�1|�1i, and h�2|�1i.
For each pole p 2 P, we identify �i,p (the series expansion of �i around z = p), and

determine the associated function  i,p (the series expansion of  i around z = p), by solving
the following differential equation,

r!  i,p = �i,p . (4.16)

After inserting the series expansion of �i,p and an ansatz for  i,p in the above equation,
we get an equation at each order on p, which together determines the coefficients in the
ansatz for  i,p. In practice, we introduce a local coordinate ⌧ , defined as ⌧ = z� p, for finite
poles, or ⌧ = 1/z for the pole at infinity, and consider the Laurent expansions around ⌧ ! 0

of,

�i,p =
X

k=min�1

�
(k)
i,p
⌧
k
, !p =

X

k=�1

!
(k)
p ⌧

k
, (known) (4.17)

and the ansatz,

 p =
maxX

k=min

↵k ⌧
k
, (↵k unknown) (4.18)

to solve the following differential equation,
d

d⌧
 p + !p  p � �i,p = 0 . (4.19)

In our case we have,

• For 'L = �1 = dz, 'R = �1 = dz:

p min max 'L,p  p

0 1 �1 d⌧ �
1 1 �1 d⌧ �
1 �1 1 �d⌧/⌧

2 P1
i=�1 ↵i ⌧

i

with

↵�1 =
1

2� + 1
, ↵0 = � 1

2(2� + 1)
, ↵1 = � �

2(2� � 1)(2� + 1)
. (4.20)

Around p = 0, 1, the solution  p does not exist (owing to the values of min and max),
therefore

h�1|�1i = Resz=1( 1�1) =
�

2(2� � 1)(2� + 1)
. (4.21)
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• For 'L = �2 = z dz, 'R = �1 = dz:
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Also in this case, around p = 0, 1, the solution  p does not exist, therefore
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. (4.24)

Notice that in the above formulas only the p = 1 gave a non-trivial contribution. In
general, the situation depends on the form of the integrands, and in particular on on the
values of min and max, which are dictated by the Laurent series expansions around p of 'L
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Finally, we get the decomposition of I1 in terms of I0,
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in agreement with eq. (4.6).
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dLog Basis
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and 'R paired in the intersection number h'L|'Ri .
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from which one can also deduce h�2| = 1/2h�1|.
Please note, that in this basis the metric term h'1|'1i is very simple, and that

h'1|'1i�1 = �/2, has � factorizing out.

This simple example contains all the relevant ingredients for the decomposition of
Feynman integrals in terms of master integrals. It corresponds to a case with 1 master
integral. We now consider two other cases, with respectively 2 and 3 master integrals, in
order to show the algorithmic procedure of the decomposition by intersection numbers.

4.2 Gauss 2F1 Hypergeometric Function

Gauss 2F1 Hypergeomeric function is defined as

�(b, c�b) 2F1(a, b, c;x) =

Z 1

0
z
b�1(1� z)c�b�1(1�xz)�a

dz (4.32)

The integration contour C is [0, 1], which is the twisted cycle. �(b, c�b) is the Euler beta
function defined in eq. (4.2). In order to use intersection theory, we re-express this integral
in terms of the pairing of the twisted cycle and the twisted cocycle:

�(b, c�b) 2F1(a, b, c;x) =
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C
u' = !h'|C] , (4.33)

where
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' = dz . (4.36)

In this case, we have

⌫ = 2 , P = {0, 1, 1
x
, 1} (4.37)

indicating the existence of 2 independent integrals. Contiguity relations for Gauss Hypergeo-
metric functions can be obtained through intersection theory, via the master decomposition
formula in eq. (3.30), requiring the knowledge of the (inverse of the) matrix C. We build
this matrix for various different choices of the integral basis.

Monomial Basis. We choose the basis as {h�i|}i=1,2, we build the metric matrix C,

C =

 
h�1|�1i h�1|�2i
h�2|�1i h�1|�2i

!
(4.38)

whose entries are
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2(�(a� b+ 1))(b� c+ 1)� 2ax(�b+ c� 1) + a(c� 2)

⌘
/

⇣
x
2(a

� c+ 1)(a� c+ 2)(a� c+ 3)
⌘
, (4.39)
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3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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from which one can also deduce h�2| = 1/2h�1|.
Please note, that in this basis the metric term h'1|'1i is very simple, and that

h'1|'1i�1 = �/2, has � factorizing out.

This simple example contains all the relevant ingredients for the decomposition of
Feynman integrals in terms of master integrals. It corresponds to a case with 1 master
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indicating the existence of 2 independent integrals. Contiguity relations for Gauss Hypergeo-
metric functions can be obtained through intersection theory, via the master decomposition
formula in eq. (3.30), requiring the knowledge of the (inverse of the) matrix C. We build
this matrix for various different choices of the integral basis.
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dLog Basis
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from which one can also deduce h�2| = 1/2h�1|.
Please note, that in this basis the metric term h'1|'1i is very simple, and that

h'1|'1i�1 = �/2, has � factorizing out.
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from which one can also deduce h�2| = 1/2h�1|.
Please note, that in this basis the metric term h'1|'1i is very simple, and that

h'1|'1i�1 = �/2, has � factorizing out.

This simple example contains all the relevant ingredients for the decomposition of
Feynman integrals in terms of master integrals. It corresponds to a case with 1 master
integral. We now consider two other cases, with respectively 2 and 3 master integrals, in
order to show the algorithmic procedure of the decomposition by intersection numbers.

4.2 Gauss 2F1 Hypergeometric Function

Gauss 2F1 Hypergeomeric function is defined as

�(b, c�b) 2F1(a, b, c;x) =

Z 1

0
z
b�1(1� z)c�b�1(1�xz)�a

dz (4.32)

The integration contour C is [0, 1], which is the twisted cycle. �(b, c�b) is the Euler beta
function defined in eq. (4.2). In order to use intersection theory, we re-express this integral
in terms of the pairing of the twisted cycle and the twisted cocycle:

�(b, c�b) 2F1(a, b, c;x) =

Z

C
u' = !h'|C] , (4.33)

where

u = z
b�1(1� xz)�a(1� z)�b+c�1

, (4.34)

! = d log u =
xz

2(c� a� 2) + z(ax� c+ x+ 2)� bxz + b� 1

(z � 1)z(xz � 1)
dz , (4.35)

' = dz . (4.36)

In this case, we have

⌫ = 2 , P = {0, 1, 1
x
, 1} (4.37)

indicating the existence of 2 independent integrals. Contiguity relations for Gauss Hypergeo-
metric functions can be obtained through intersection theory, via the master decomposition
formula in eq. (3.30), requiring the knowledge of the (inverse of the) matrix C. We build
this matrix for various different choices of the integral basis.

Monomial Basis. We choose the basis as {h�i|}i=1,2, we build the metric matrix C,

C =

 
h�1|�1i h�1|�2i
h�2|�1i h�1|�2i

!
(4.38)

whose entries are

h�1|�1i =
⇣
x
2(�(a� b+ 1))(b� c+ 1)� 2ax(�b+ c� 1) + a(c� 2)

⌘
/

⇣
x
2(a

� c+ 1)(a� c+ 2)(a� c+ 3)
⌘
, (4.39)
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Monomial Basis
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These integrals admit a closed-form expression in terms of � functions,

In =
�(1 + �)�(1 + � + n)

�(2 + 2� + n)
, (4.4)

from which it is possible to derive a relation between In and I0,

In =
�(1 + � + n)�(2 + 2�)

�(1 + �)�(2 + 2� + n)
I0 . (4.5)

For instance, when n = 1, it reads

I1 =
1

2
I0 . (4.6)

4.1.2 Integration-by-Parts Identities

Let us recover the same relation from integration by parts identities. With the choice of C
as above, the following integration-by-parts identity holds

Z

C
d(B�+1

z
n�1) = 0 . (4.7)

The action of the differential operator under the integral sign yields the following equation,

(� + n)In�1 � (1 + 2� + n)In = 0 . (4.8)

Therefore we obtain the recurrence relation

In =
(� + n)

(1 + 2� + n)
In�1 , (4.9)

which, for n = 1, gives

I1 =
1

2
I0 . (4.10)

4.1.3 Intersections

We are going to (re)derive, once more, the relations between Euler beta integrals using
intersection numbers. We consider integrals defined as,

In ⌘
Z

C
u�n+1 ⌘ !h�n+1|C] , �n+1 ⌘ z

n
dz , (4.11)

with

u = B
�

B = z(1� z) , ! = d log u = �

✓
1

z
+

1

z � 1

◆
dz , (4.12)

⌫ = 1 , P = {0, 1,1}. (4.13)
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Metric
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integral. We now consider two other cases, with respectively 2 and 3 master integrals, in
order to show the algorithmic procedure of the decomposition by intersection numbers.

4.2 Gauss 2F1 Hypergeometric Function

Gauss 2F1 Hypergeomeric function is defined as

�(b, c�b) 2F1(a, b, c;x) =

Z 1

0
z
b�1(1� z)c�b�1(1�xz)�a

dz (4.32)

The integration contour C is [0, 1], which is the twisted cycle. �(b, c�b) is the Euler beta
function defined in eq. (4.2). In order to use intersection theory, we re-express this integral
in terms of the pairing of the twisted cycle and the twisted cocycle:

�(b, c�b) 2F1(a, b, c;x) =

Z

C
u' = !h'|C] , (4.33)

where
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! = d log u =
xz

2(c� a� 2) + z(ax� c+ x+ 2)� bxz + b� 1

(z � 1)z(xz � 1)
dz , (4.35)

' = dz . (4.36)

In this case, we have

⌫ = 2 , P = {0, 1, 1
x
, 1} (4.37)

indicating the existence of 2 independent integrals. Contiguity relations for Gauss Hypergeo-
metric functions can be obtained through intersection theory, via the master decomposition
formula in eq. (3.30), requiring the knowledge of the (inverse of the) matrix C. We build
this matrix for various different choices of the integral basis.

Monomial Basis. We choose the basis as {h�i|}i=1,2, we build the metric matrix C,
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h�2|�1i h�1|�2i

!
(4.38)

whose entries are
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⌘
/

⇣
x
2(a

� c+ 1)(a� c+ 2)(a� c+ 3)
⌘
, (4.39)
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+ c+ 2) + ax(a+ 2c� 5)(�b+ c� 1)� a(c� 3)(c� 2)
⌘
/

⇣
x
3(a� c+ 1)

(a� c+ 2)(a� c+ 3)(a� c+ 4)
⌘
, (4.40)

h�2|�1i =
⇣
x
3(�(a� b))(a� b+ 1)(b� c+ 1)� ax

2(�b+ c� 1)(2a� 3b+ c)

+ ax(a+ 2c� 3)(�b+ c� 1)� a(c� 2)(c� 1)
⌘
/

⇣
x
3(a� c)(a� c+ 1)

(a� c+ 2)(a� c+ 3)
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, (4.41)
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⇣
� ax

2(a2b� a
2
c+ a

2 � 3ab2 + 7abc� 8ab� 4ac2 + 9ac� 5a� 3b2c

+ 6b2 + 4bc2 � 10bc+ 6b� c
3 + 2c2 � c) + x

4(�(a3 � 3a2b+ 3a2 + 3ab2

� 6ab+ 2a� b
3 + 3b2 � 2b))(b� c+ 1) + 2ax3(a� b+ 1)(ab� ac+ a

� 2b2 + 3bc� 2b� c
2 + c) + 2a(c� 2)x(a+ c� 2)(b� c+ 1) + a(c3 � 6c2

+ 11c� 6)
⌘
/
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x
4(a� c)(a� c+ 1)(a� c+ 2)(a� c+ 3)(a� c+ 4)

⌘
. (4.42)

Now, we can derive any functional relation using the following decomposition.

h�n| =
2X

i,j=1

h�n|�ji
�
C�1

�
ji
h�i|. (4.43)

Let us consider the decomposition of �(b + 2, c � b)2F1(a, b + 2, c + 2;x) ⌘ h�3|C] in
terms of �(b, c� b)2F1(a, b, c;x) and �(b+1, c� b)2F1(a, b+1, c+1;x). Using the eq. (4.43)
we obtain
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✓
b

x(a� c� 1)

◆
�(b, c� b)2F1(a, b, c;x)

+

✓
(b� a+ 1)x+ c

x(c� a+ 1)

◆
�(b+ 1, c� b)2F1(a, b+ 1, c+ 1;x) (4.44)

or correspondingly

2F1(a, b+ 2, c+ 2;x) =
(c+ 1)

x(b+ 1)(c� a+ 1)
⇥

⇣�
(b� a+ 1)x+ c

�
2F1(a, b+ 1, c+ 1;x)� c 2F1(a, b, c;x)

⌘
, (4.45)

as verified using Mathematica.

dlog-basis. Let us consider the following dlog-basis.
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as verified using Mathematica.
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The C matrix with entries Cij = h'i|'ji for this case is as follows

C =
1
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�1 a+b�c+1
a

!
. (4.48)

The above relations between hypergeometric functions can be obtained using the dlog-basis
as well. The C matrix in this case takes a very simple form and it is factorized. If we
consider the powers of all the factors to be equal, for example a = ��, b = �+1, c = 2(�+1),
then � factorizes out, and as a result the system of differential equations for 'i is canonical,
according to eq. (3.45).

In particular, let us introduce the prefactor

K =
(c� b� 1) (b� 1)

(c� 1) (c� 2)�(b, c� b)
, (4.49)

and consider the two integrals,

I1 = h'1|C] = 2F1(a, b� 1, c� 2;x) , (4.50)

I2 = h'2|C] =
(b� 1)(x� 1)

c� 2
2F1(a+ 1, b, c� 1;x) , (4.51)

which, for a = ��, b = �+1, c = 2(�+1), read,

I1 = 2F1(��, �, 2�;x) , I2 =
x� 1

2
2F1(1� �, 1 + �, 1 + 2�;x) . (4.52)

Following the method of Sec. 3.2, we derive the system of differential equations with respect
to x,

@xIi = AijIj , with A = �

 
0 �1

x�1
�1
x

2
x�1 � 2

x

!
, (4.53)

which is canonical, namely it is fuchsian and �-factorised. It is easily seen that the system
can be integrated up order-by-order in �, yielding a result where the coefficient at order �

n

can be expressed in terms of harmonic polylogarithms (HPLs) [88] of weight n, therefore
making explicit the relation between HPLs and the series expansion of 2F1 around � = 0.

Mixed bases. By using mixed bases, namely a monomial-basis hei| = h�i|, and a dlog-
basis |hji = |'ji , we can decompose our integrals in terms of a monomial basis, which can
be directly mapped onto eq. (4.45), without loosing the advantages of simpler expressions
due to the dlog-basis algebra. In this case, the intersection matrix becomes
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!
(4.54)

whose entries look slightly more involved than in the dlog case, but much simpler than in
the monomial case. To reproduce eq. (4.45), we also need the intersections

h�3|'1i =
a(x� 1)(c+ (2b� a+ 1)x)� b(1 + b)x2

(a� c� 1)(a� c)(1 + a� c)x2
(4.55)
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Master Decomposition Formula



Feynman Integrals Decomposition 
:: on the maximal cut :: 1-forms

On the maximal cut :: simpler integrals 

1-forms :: univariate integral representations 

Operation required :: Intersection Numbers for 1-forms



5 Four-Loop Vacuum Diagram

Figure 1: Four-loop vacuum diagram.

Let us consider the four-loop vacuum diagram from Fig. 1, first derived in ref. [95]. The
denominators read (the internal mass that is present on all the propagators, is set to unity):

D1 = k
2
1 � 1 , D2 = k

2
2 � 1 , D3 = k

2
3 � 1 ,

D4 = (k1 � k2)
2 � 1 , D5 = (k1 � k3)

2 � 1 , D6 = (k2 � k3)
2 � 1 , (5.1)

D7 = (k1 � k4)
2 � 1 , D8 = (k2 � k4)

2 � 1 , D9 = (k3 � k4)
2 � 1,

while the ISP is
z = D10 = k

2
4 . (5.2)

After applying standard Baikov representation, the corresponding integral family is charac-
terized by:

u =

✓
z

2
� 3z2

16

◆ d�5
2

, ! =
(d� 5)(3z � 4)

z(3z � 8)
dz . (5.3)

The equation ! = 0 a has 1 solution, indicating 1 master integral. Then, we define,

⌫ = 1 , P = {0, 83 ,1}. (5.4)

Using the master decomposition formula eq. (3.30), we can express any integral in terms of
the chosen master integral employing either monomial or dlog-basis.

Monomial Basis. Let us consider the decomposition of I1,1,1,1,1,1,1,1,1;�2 = h�3|C] in terms
of J1 = I1,1,1,1,1,1,1,1,1;0 = h�1|C]. We obtain the following decomposition in this case

h�n| = h�n|�1iC�1
11 h�1|. (5.5)

We build the metric matrix C, containing a single element

C = h�1|�1i =
16(d� 5)

9(d� 6)(d� 4)
, (5.6)

and the other necessary intersection number

h�3|�1i =
256(d� 5)(d� 1)

81(d� 6)(d� 4)(d� 2)
. (5.7)
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Here, the C�1 is trivial to compute as the C contains only one element. Using these in
eq. (5.5), we obtain

I1,1,1,1,1,1,1,1,1;�2 =
16(d� 1)

9(d� 2)
J1, (5.8)

in agreement with SYS.

dlog-Basis. On the other hand, we can compute the decomposition of h�3|C] in terms of
h'1|C], with:

'̂1 =
1

z
� 3

3z � 8
. (5.9)

We then compute the intersections:

h'1|'1i =
4

d� 5
, (5.10)

and
h�3|'1i =

128(d� 1)

27(d� 4)(d� 2)
. (5.11)

This gives us the following basis decomposition:

h�3| =
32(d� 5)(d� 1)

27(d� 4)(d� 2)
h'1|. (5.12)

6 Three-Loop Triple-Cross

Figure 2: Triple-cross two-point function.

Let us consider the triple-cross two-point function in Fig. 2, first derived in [96, 97]. The
incoming momentum is labelled by p, with p

2 = s. The denominators are (the internal mass
is set to unity):
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2
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2
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2
3 , D4 = (p� k1)

2 � 1 ,

D5 = (�k1 � k2 + p) 2 � 1 , D6 = (�k1 � k2 � k3 + p) 2 � 1 ,

D7 = (�k2 � k3 + p) 2 � 1 , D8 = (p� k3)
2 � 1 ;

(6.1)

We choose the ISP as:
z = D9 = k2 · p. (6.2)

Within the standard Baikov representation, the corresponding integral family is characterized
by,

u =

✓
1

4
z
2(s� 2z � 1)(s� 2z + 3)

◆ d�5
2

, (6.3)
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terized by:

u =
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The equation ! = 0 a has 1 solution, indicating 1 master integral. Then, we define,

⌫ = 1 , P = {0, 83 ,1}. (5.4)

Using the master decomposition formula eq. (3.30), we can express any integral in terms of
the chosen master integral employing either monomial or dlog-basis.

Monomial Basis. Let us consider the decomposition of I1,1,1,1,1,1,1,1,1;�2 = h�3|C] in terms
of J1 = I1,1,1,1,1,1,1,1,1;0 = h�1|C]. We obtain the following decomposition in this case

h�n| = h�n|�1iC�1
11 h�1|. (5.5)

We build the metric matrix C, containing a single element

C = h�1|�1i =
16(d� 5)

9(d� 6)(d� 4)
, (5.6)

and the other necessary intersection number

h�3|�1i =
256(d� 5)(d� 1)

81(d� 6)(d� 4)(d� 2)
. (5.7)
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Here, the C�1 is trivial to compute as the C contains only one element. Using these in
eq. (5.5), we obtain

I1,1,1,1,1,1,1,1,1;�2 =
16(d� 1)

9(d� 2)
J1, (5.8)

in agreement with SYS.

dlog-Basis. On the other hand, we can compute the decomposition of h�3|C] in terms of
h'1|C], with:

'̂1 =
1

z
� 3

3z � 8
. (5.9)

We then compute the intersections:

h'1|'1i =
4

d� 5
, (5.10)

and
h�3|'1i =

128(d� 1)

27(d� 4)(d� 2)
. (5.11)

This gives us the following basis decomposition:

h�3| =
32(d� 5)(d� 1)

27(d� 4)(d� 2)
h'1|. (5.12)
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incoming momentum is labelled by p, with p
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We choose the ISP as:
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5 Four-Loop Vacuum Diagram

Figure 1: Four-loop vacuum diagram.
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8 Two-Loop Non-Planar Triangle

Figure 4: Non-planar triangle.

In this section we discuss the two-loop non-planar triangle [72] in Fig. 4, also presented in
[1], with

D1 = k
2
1 , D2 = k

2
2 �m

2
, D3 = (p1 � k1)

2
, D4 = (p3 � k1 + k2)

2 �m
2
, (8.1)

D5 = (k1 � k2)
2 �m

2
, D6 = (p2 � k2)

2 �m
2
.

We choose the ISP z = D7 = 2(p2 + k1)2 � p
2
1 .

Consider a generic case where B is a factorized quartic polynomial (paradigmatic of elliptic
cases), of the type,

u = B
�
, B =

�
z
2 � ⌧

2
1

� �
z
2 � ⌧

2
2

�
, (8.2)

where

⌧1 = s

p
1 + (4m)2/s , ⌧2 = s , � =

d� 5

2
. (8.3)

From this we may compute

! =
2�z

�
2z2 � ⌧

2
1 � ⌧

2
2

�
�
z2 � ⌧

2
1

� �
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2
2

� dz , ⌫ = 3 , P = {�⌧1,�⌧2, ⌧2, ⌧1,1} . (8.4)

dlog-basis. Let us consider the following dlog-basis,

'1 =

✓
1

⌧1 + z
� 1

⌧2 + z

◆
dz , (8.5)

'2 =

✓
1

⌧2 + z
� 1
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◆
dz , (8.6)

'3 =

✓
1

z � ⌧2
� 1
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◆
dz , (8.7)

which gives

C =

0

B@
h'1|'1i h'1|'2i h'1|'3i
h'2|'1i h'2|'2i h'2|'3i
h'3|'1i h'3|'2i h'3|'3i

1

CA =
1

�

0

B@
2 �1 0

�1 2 �1

0 �1 2

1

CA (8.8)

with inverse matrix,

C�1 = �

0

B@

3
4

1
2

1
4

1
2 1 1

2
1
4

1
2

3
4

1

CA . (8.9)
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For instance, the projection of �1 = dz is
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� (⌧1 + ⌧2)

4� + 1
h'2|+

�⌧1

4� + 1
h'3| (8.10)

which can be verified with Reduze.

8.1 Denominator Powers Bigger Than One

Following eq. (3.15), we consider the maximal cut z1 = . . . = z6 = 0 (z7 = z) of,

I1,1,1,2,1,1;0

����
z1=...=z6=0

= K

Z
dz u '̂ , (8.11)

with

'̂ = � 4� (⌧2 + z)

(z � ⌧1) (⌧1 + z)
, (8.12)

where the expression for K is not needed. Its decomposition in terms of the dlog-basis reads,

h'| = �� (⌧1 � 2⌧2)

⌧1
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2�⌧2
⌧1

h'2|+
� (⌧1 + 2⌧2)
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h'3| (8.13)

which can be verified with Reduze.

8.2 System of Differential Equations for the dlog-basis

In the case of the the Feynman integral considered here, we define the variable

x ⌘ ⌧1

⌧2
, , ⌧1 = x ⌧2 (8.14)

To build the system of differential equations, consider

u(z) = B(z)� , (8.15)

B(z, x) = B(z)

����
⌧1=x ⌧2

(8.16)

!̂(x) = !̂
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= @z log
⇣
B(z, x)�

⌘
(8.17)

�(x) = @x log
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B(z, x)�

⌘
= � 2�⌧22x
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2
2x

2
. (8.18)

The derivative of the dlog-basis elements h�i(x)| ⌘ h(@x + �(x))'i| is given by
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dz, (8.19)

h�2(x)| =
4�⌧32x

(⌧2 � z) (⌧2 + z) (⌧2x� z) (⌧2x+ z)
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We observe that since C�1 is a constant matrix with � factored out, the system of
differential equations for the dlog-basis is canonical, being � factorized as well as Fuchsian.
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ê3 =
(d� 5)(s+ z)

z(m2
H
� s� z) + 4sm2

t

,
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Given the arbitrariness of | i, we obtain the master decomposition formula

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei|, (2.14)

which provides an explicit way of projecting h'| onto a basis of hei|. Following [1], in this
paper we use (2.14) to perform the decomposition of Feynman integrals in terms of master
integrals, on the maximal cut. For example, by contracting both sides with the twisted cycle
|C] (which boils down to multiplying by u and integrating over C), we have a linear identity
between integrals: Z

C
u' =

⌫X

i,j=1

h'|hji
�
C�1

�
ji

Z

C
u ei. (2.15)

Similarly, the same idea can be used to derive linear system of differential equations
satisfied by the basis integrals hei|C] in some external variable x. It is enough to notice that

@x hei|C] = @x

Z

C
u ei =

Z

C
u (@x + �^)ei = h(@x + �^)ei|C], (2.16)

where � ⌘ @x log(u). Let us remark that even if C depends on x, the differential operator @x
commutes with the integral sign, due to the vanishing of u on the boundary of C. Therefore,
the problem reduces to projecting h(@x + �^)ei| on the right-hand side back onto a basis
using (2.14).

One should think of hei| and |hji as parameterizing a vector space of inequivalent
integrands of a hypergeometric function. In this sense C provides a metric on this space.
Naturally, the prescription (2.14) is only useful if computing invariants of the type h'L|'Ri
is efficient. We argue that this is the case. It turns out that the dual space of twisted
cocycles has a straightforward interpretation as the equivalence classes:

|'i! : ' ⇠ '+r�!⇠, (2.17)

where the only difference to (2.7) is the use of the connection r�! ⌘ d� !^ instead of r!.
The resulting bilinear:

h'L|'Ri! (2.18)

is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.

In this brief review, we only scratched the surface of the fascinating theory of hy-
pergeometric functions. We refer the interested reader to [77, 80] for review of twisted
(co)homologies and their intersection theory, as well as [1, 76, 81, 82] for some recent
applications of these ideas to physics.

In the following, we focus on Feynman integrals. In order to translate them into the
form (2.1) we make use of the Baikov representation in the standard form [55] and the
Loop-by-Loop approach developed in [62].
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The other intersection numbers read
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Then, by means of eq. (3.30), we obtain the following final reduction:

I1,1,1,1,1,1,1;�1 = c1 J1 + c2 J2 + c3 J3 + c4 J4 , (14.72)

with
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Checks. The IBP reduction on the maximal-cut Di = 0 , i = 1, . . . , 7, and negative powers
of D8 and D9 = (k2 + p1)2 , performed with KIRA, leaves us with 6 MIs, chosen as,

J1 = I1,1,1,1,1,1,1;0,0 , J2 = I1,2,1,1,1,1,1;0,0 , J3 = I1,1,1,2,1,1,1;0,0 ,

J4 = I1,1,1,1,2,1,1;0,0 , J5 = I1,1,1,1,1,2,1;0,0 , J6 = I1,1,2,1,1,1,1;0,0 . (14.77)

Adding the IBP identities obtained by reducing, on the same hepta-cut, the 8-denominator
integral family built by allowing D8 to appear as a propagator as well, the number of MIs is
reduced to 5 - an example of an additional relation (on the maximal-cut) being:

J6 =
10� 2d
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2
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(14.78)

Moreover, by applying to J5 the self-similarity transformation,

k1 ! �k1 � p1 � p2 , k2 ! �k2 + p3 , p1 ⌧ p2 , (14.79)

(mapping the set of denominators Di = 0 , i = 1, . . . , 7 into itself), together with IBP
identities, we obtain a second relation

J5 =
s

m
2
H
+ s

J3 �
m

2
H

m
2
H
+ s

J4 (14.80)

bringing the number of master integrals on the maximal cut down from 6 to 4, as expected
from intersection theory. We verified that after using these 2 extra relations, the reduction
of I1,1,1,1,1,1,1;�1,0 (in terms of Ji, i = 1, . . . , 4) with Kira is in perfect agreement with the
eq. (14.72), and additionally we have verified ⌫ = 4 with a numerical evaluation of the
integrals on the maximal cut combined with the high-precision arithmetic PSLQ algorithm
[106] (80 digits accuracy).
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The result is in agreement with Kira.

Let us mention that no relations such as �
2 = � have been imposed; this means that

� is effectively acting as an extra mass scale. Thus, taking for instance � ! m
2
Z
/m

2
H

would
correspond to a contribution to H + Z production.

14.2 Non-Planar Contribution to H+j Production

Figure 14: Non-planar (H+j)-production.

Let us consider one of the the non-planar integral families which contributes to the H + j

production [105] at hadron colliders, depicted in Fig. 14.
The independent (incoming) momenta are: {p1 , p3 , p4} with p

2
1 = p

2
2 = p

2
3 = 0 and p

2
4 = m

2
H

.
We define the kinematic invariants as (p3 + p4)2 = s and (p1 + p4)2 = t. The denominators
are defined as:

D1 = k
2
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2
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We choose one ISP as:
z = D8 = (k1 � p3)

2
. (14.46)

We use the Loop-by-Loop form of the Baikov representation and after performing the
maximal cut as defined in eq. (3.14), we obtain
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We choose one ISP as:
z = D8 = (k1 � p3)
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. (14.46)

We use the Loop-by-Loop form of the Baikov representation and after performing the
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The result is in agreement with Kira.

Let us mention that no relations such as �
2 = � have been imposed; this means that
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correspond to a contribution to H + Z production.

14.2 Non-Planar Contribution to H+j Production

Figure 14: Non-planar (H+j)-production.

Let us consider one of the the non-planar integral families which contributes to the H + j

production [105] at hadron colliders, depicted in Fig. 14.
The independent (incoming) momenta are: {p1 , p3 , p4} with p

2
1 = p

2
2 = p

2
3 = 0 and p

2
4 = m

2
H

.
We define the kinematic invariants as (p3 + p4)2 = s and (p1 + p4)2 = t. The denominators
are defined as:

D1 = k
2
1 , D2 = (k1 + p1)

2
, D3 = (k1 � p3 � p4)

2
,

D4 = (k2 � p3)
2 �m

2
t D5 = k

2
2 �m

2
t , D6 = (k1 � k2)

2 �m
2
t ,

D7 = (k1 � k2 � p4)
2 �m

2
t .

(14.45)

We choose one ISP as:
z = D8 = (k1 � p3)

2
. (14.46)

We use the Loop-by-Loop form of the Baikov representation and after performing the
maximal cut as defined in eq. (3.14), we obtain

u =

�
�m

2
H
+ s+ t+ z

�
d�5

�
z
�
m

2
H
� s� z

�
+ 4sm2

t

� d�5
2

q
z
�
�m

2
H
+ s+ z

� , (14.47)

! =
q0 + q1 z + q2 z

2 + q3 z
3 + q4 z

4

2z
�
�m

2
H
+ s+ z

� �
�m

2
H
+ s+ t+ z

� �
z
�
�m

2
H
+ s+ z

�
� 4sm2

t

� dz , (14.48)

– 51 –

where,

q0 =4sm2
t (m

2
H � s)(m2

H � s� t) ,

q1 =8m2
t st� (d� 6)(m2

H � s)2(m2
H � s� t) + 4(2d� 13)m2

t (m
2
H � s)s ,

q2 =2(3d� 17)(m2
H � s)2 � (d� 6)(8m2

t s+ 3(m2
H � s)t) ,

q3 =2(d� 6)t� (9d� 50)(m2
H � s) ,

q4 =4d� 22 ,

(14.49)

So, we get

⌫ = 4 , (14.50)
P ={0, m2

H�s,
1
2(m

2
H�s�⇢), 1

2(m
2
H�s+⇢), m2

H�s�t, 1} , (14.51)

where,
⇢ =

q
m

4
H
� 2sm2

H
+ 16sm2

t
+ s2 . (14.52)

Mixed Bases Let us consider the decomposition of I1,1,1,1,1,1,1;�1 = h�2|C]. We define
the master integrals as: J1 = I1,1,1,1,1,1,1;0 = he1|C], J2 = I1,2,1,1,1,1,1:0 = he2|C], J3 =

I1,1,1,2,1,1,1;0 = he3|C] and J4 = I1,1,1,1,2,1,1;0 = he4|C], where

ê1 =1 ,
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Then we compute the C matrix:
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Checks. The IBP reduction on the maximal-cut Di = 0 , i = 1, . . . , 7, and negative powers
of D8 and D9 = (k2 + p1)2 , performed with KIRA, leaves us with 6 MIs, chosen as,

J1 = I1,1,1,1,1,1,1;0,0 , J2 = I1,2,1,1,1,1,1;0,0 , J3 = I1,1,1,2,1,1,1;0,0 ,

J4 = I1,1,1,1,2,1,1;0,0 , J5 = I1,1,1,1,1,2,1;0,0 , J6 = I1,1,2,1,1,1,1;0,0 . (14.77)

Adding the IBP identities obtained by reducing, on the same hepta-cut, the 8-denominator
integral family built by allowing D8 to appear as a propagator as well, the number of MIs is
reduced to 5 - an example of an additional relation (on the maximal-cut) being:
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Moreover, by applying to J5 the self-similarity transformation,

k1 ! �k1 � p1 � p2 , k2 ! �k2 + p3 , p1 ⌧ p2 , (14.79)

(mapping the set of denominators Di = 0 , i = 1, . . . , 7 into itself), together with IBP
identities, we obtain a second relation
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m
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H
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J3 �
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J4 (14.80)

bringing the number of master integrals on the maximal cut down from 6 to 4, as expected
from intersection theory. We verified that after using these 2 extra relations, the reduction
of I1,1,1,1,1,1,1;�1,0 (in terms of Ji, i = 1, . . . , 4) with Kira is in perfect agreement with the
eq. (14.72), and additionally we have verified ⌫ = 4 with a numerical evaluation of the
integrals on the maximal cut combined with the high-precision arithmetic PSLQ algorithm
[103] (80 digits accuracy).
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integrals on the maximal cut combined with the high-precision arithmetic PSLQ algorithm
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– 54 –

2 more:

c2 =
(d� 6)st

�
m

2
H
� s� t

� �
4sm2

t + t(m2
H
� s� t)

�

2(d� 5)(2d� 9)
�
m

2
H
� s� 2t

� �
2sm2

t
+ t(m2

H
� s� t)

� , (14.74)

c3 =
⇣
2sm2

t

�
m

4
H

�
2sm2

t � t(3s+ 5t)
�
+ tm

2
H

�
4sm2

t + t(s+ 3t)
�
+ 2tm6

H+

s
�
t(s+ t)(s+ 3t)� 2m2

t

�
s
2 + 6st+ 4t2

��� ⌘
/

⇣
(2d� 9)

�
m

2
H + s

�

�
m

2
H � s� 2t

�
(2sm2

t + t(m2
H � s� t))

⌘
, (14.75)

c4 =
⇣
2sm2

t

�
�t

�
�3sm2

H

�
4m2

t + s
�
+m

6
H + 2s2

�
2m2

t + s
��

� 3t3
�
m

2
H + s

�
+

t
2
�
sm

2
H + 4m4

H � s
�
8m2

t + 5s
��

+ 2sm2
t

�
s�m

2
H

� �
m

2
H + s

�� ⌘.⇣
(2d� 9)

�
m

2
H + s

� �
m

2
H � s� 2t

� �
2sm2

t + t(m2
H � s� t)

� ⌘
. (14.76)

Checks. The IBP reduction on the maximal-cut Di = 0 , i = 1, . . . , 7, and negative powers
of D8 and D9 = (k2 + p1)2 , performed with KIRA, leaves us with 6 MIs, chosen as,

J1 = I1,1,1,1,1,1,1;0,0 , J2 = I1,2,1,1,1,1,1;0,0 , J3 = I1,1,1,2,1,1,1;0,0 ,

J4 = I1,1,1,1,2,1,1;0,0 , J5 = I1,1,1,1,1,2,1;0,0 , J6 = I1,1,2,1,1,1,1;0,0 . (14.77)

Adding the IBP identities obtained by reducing, on the same hepta-cut, the 8-denominator
integral family built by allowing D8 to appear as a propagator as well, the number of MIs is
reduced to 5 - an example of an additional relation (on the maximal-cut) being:

J6 =
10� 2d

s
J1 +

(2m2
t �m

2
H
)s+m

4
H

m
2
H
s

J3 +
2m2

t

s
J4 +

s(m2
H
� 2m2

t ) + 2m2
H
m

2
t

m
2
H
s

J5 .

(14.78)
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k1 ! �k1 � p1 � p2 , k2 ! �k2 + p3 , p1 ⌧ p2 , (14.79)

(mapping the set of denominators Di = 0 , i = 1, . . . , 7 into itself), together with IBP
identities, we obtain a second relation

J5 =
s

m
2
H
+ s

J3 �
m

2
H

m
2
H
+ s

J4 (14.80)
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from intersection theory. We verified that after using these 2 extra relations, the reduction
of I1,1,1,1,1,1,1;�1,0 (in terms of Ji, i = 1, . . . , 4) with Kira is in perfect agreement with the
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Moreover, by applying to J5 the self-similarity transformation,
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bringing the number of master integrals on the maximal cut down from 6 to 4, as expected
from intersection theory. We verified that after using these 2 extra relations, the reduction
of I1,1,1,1,1,1,1;�1,0 (in terms of Ji, i = 1, . . . , 4) with Kira is in perfect agreement with the
eq. (14.72), and additionally we have verified ⌫ = 4 with a numerical evaluation of the
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Checks. The IBP reduction on the maximal-cut Di = 0 , i = 1, . . . , 7, and negative powers
of D8 and D9 = (k2 + p1)2 , performed with KIRA, leaves us with 6 MIs, chosen as,
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Adding the IBP identities obtained by reducing, on the same hepta-cut, the 8-denominator
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Moreover, by applying to J5 the self-similarity transformation,

k1 ! �k1 � p1 � p2 , k2 ! �k2 + p3 , p1 ⌧ p2 , (14.79)

(mapping the set of denominators Di = 0 , i = 1, . . . , 7 into itself), together with IBP
identities, we obtain a second relation
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bringing the number of master integrals on the maximal cut down from 6 to 4, as expected
from intersection theory. We verified that after using these 2 extra relations, the reduction
of I1,1,1,1,1,1,1;�1,0 (in terms of Ji, i = 1, . . . , 4) with Kira is in perfect agreement with the
eq. (14.72), and additionally we have verified ⌫ = 4 with a numerical evaluation of the
integrals on the maximal cut combined with the high-precision arithmetic PSLQ algorithm
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Checks. The IBP reduction on the maximal-cut Di = 0 , i = 1, . . . , 7, and negative powers
of D8 and D9 = (k2 + p1)2 , performed with KIRA, leaves us with 6 MIs, chosen as,
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Adding the IBP identities obtained by reducing, on the same hepta-cut, the 8-denominator
integral family built by allowing D8 to appear as a propagator as well, the number of MIs is
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Moreover, by applying to J5 the self-similarity transformation,

k1 ! �k1 � p1 � p2 , k2 ! �k2 + p3 , p1 ⌧ p2 , (14.79)

(mapping the set of denominators Di = 0 , i = 1, . . . , 7 into itself), together with IBP
identities, we obtain a second relation
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bringing the number of master integrals on the maximal cut down from 6 to 4, as expected
from intersection theory. We verified that after using these 2 extra relations, the reduction
of I1,1,1,1,1,1,1;�1,0 (in terms of Ji, i = 1, . . . , 4) with Kira is in perfect agreement with the
eq. (14.72), and additionally we have verified ⌫ = 4 with a numerical evaluation of the
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Checks. The IBP reduction on the maximal-cut Di = 0 , i = 1, . . . , 7, and negative powers
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Adding the IBP identities obtained by reducing, on the same hepta-cut, the 8-denominator
integral family built by allowing D8 to appear as a propagator as well, the number of MIs is
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Moreover, by applying to J5 the self-similarity transformation,

k1 ! �k1 � p1 � p2 , k2 ! �k2 + p3 , p1 ⌧ p2 , (14.79)

(mapping the set of denominators Di = 0 , i = 1, . . . , 7 into itself), together with IBP
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bringing the number of master integrals on the maximal cut down from 6 to 4, as expected
from intersection theory. We verified that after using these 2 extra relations, the reduction
of I1,1,1,1,1,1,1;�1,0 (in terms of Ji, i = 1, . . . , 4) with Kira is in perfect agreement with the
eq. (14.72), and additionally we have verified ⌫ = 4 with a numerical evaluation of the
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[103] (80 digits accuracy).

– 54 –

Higher sectors IBPs

Self similarity

c2 =
(d� 6)st

�
m

2
H
� s� t

� �
4sm2

t + t(m2
H
� s� t)

�

2(d� 5)(2d� 9)
�
m

2
H
� s� 2t

� �
2sm2

t
+ t(m2

H
� s� t)

� , (14.74)

c3 =
⇣
2sm2

t

�
m

4
H

�
2sm2

t � t(3s+ 5t)
�
+ tm

2
H

�
4sm2

t + t(s+ 3t)
�
+ 2tm6

H+

s
�
t(s+ t)(s+ 3t)� 2m2

t

�
s
2 + 6st+ 4t2

��� ⌘
/

⇣
(2d� 9)

�
m

2
H + s

�

�
m

2
H � s� 2t

�
(2sm2

t + t(m2
H � s� t))

⌘
, (14.75)

c4 =
⇣
2sm2

t

�
�t

�
�3sm2

H

�
4m2

t + s
�
+m

6
H + 2s2

�
2m2

t + s
��

� 3t3
�
m

2
H + s

�
+

t
2
�
sm

2
H + 4m4

H � s
�
8m2

t + 5s
��

+ 2sm2
t

�
s�m

2
H

� �
m

2
H + s

�� ⌘.⇣
(2d� 9)

�
m

2
H + s

� �
m

2
H � s� 2t

� �
2sm2

t + t(m2
H � s� t)

� ⌘
. (14.76)
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Moreover, by applying to J5 the self-similarity transformation,
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from intersection theory. We verified that after using these 2 extra relations, the reduction
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Checks. The IBP reduction on the maximal-cut Di = 0 , i = 1, . . . , 7, and negative powers
of D8 and D9 = (k2 + p1)2 , performed with KIRA, leaves us with 6 MIs, chosen as,
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Adding the IBP identities obtained by reducing, on the same hepta-cut, the 8-denominator
integral family built by allowing D8 to appear as a propagator as well, the number of MIs is
reduced to 5 - an example of an additional relation (on the maximal-cut) being:
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Moreover, by applying to J5 the self-similarity transformation,
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bringing the number of master integrals on the maximal cut down from 6 to 4, as expected
from intersection theory. We verified that after using these 2 extra relations, the reduction
of I1,1,1,1,1,1,1;�1,0 (in terms of Ji, i = 1, . . . , 4) with Kira is in perfect agreement with the
eq. (14.72), and additionally we have verified ⌫ = 4 with a numerical evaluation of the
integrals on the maximal cut combined with the high-precision arithmetic PSLQ algorithm
[103] (80 digits accuracy).
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Moreover, by applying to J5 the self-similarity transformation,
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bringing the number of master integrals on the maximal cut down from 6 to 4, as expected
from intersection theory. We verified that after using these 2 extra relations, the reduction
of I1,1,1,1,1,1,1;�1,0 (in terms of Ji, i = 1, . . . , 4) with Kira is in perfect agreement with the
eq. (14.72), and additionally we have verified ⌫ = 4 with a numerical evaluation of the
integrals on the maximal cut combined with the high-precision arithmetic PSLQ algorithm
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We consider the planar two-Loop triangle in Fig. 6, where the independent (incoming)
momenta are chosen to be p1 and p2 with p
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We choose the ISP z = D6 = (k1 � p1)2 �m
2.

Using the Loop-by-Loop form of Baikov representation and performing the maximal
cut as defined in eq. (3.14) we find

u =
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with the ! corresponding to ⌫ = 2 in agreement with the literature [101, 102].
Let us notice that u has a factor of z risen to an integer power, violating one of

the assumption for the applicability of intersection theory [80]. We solve this issue, by
introducing a regulating exponent ⇢, z�1 ! z

⇢�1, which we put to zero at the end of the
calculation. Additionally, we factorize the polynomial appearing in u, so that,
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We observe that introducing the regulator changed neither the number ⌫ of master integrals,
nor introduce any spurious singularity.
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Mixed Bases. We choose a monomial basis of master integrals

J1 = I1,1,1,1,1;0 , J2 = I1,1,1,1,1;�1 , (10.7)

corresponding to �1 = 1 dz and �2 = z dz. Additionally we pick the right basis of

'̂1 =
1

z
� 1

z � r1
, '̂2 =

1

z � r1
� 1

z � r2
. (10.8)

This gives the C-matrix to be
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r1
d�4

r2�r1
d�4

r1(r1�r2)
2(d�3)

(r2�r1)(r1+r2)
2(d�3)

!
, (10.9)

where we have inserted ⇢ ! 0 as in the following.
Let us perform the reduction of I1,1,1,1,1;�2 in the basis of J1 and J2. The twisted

cocycle corresponding to I1,1,1,1,1;�2 is �3 = z
2
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r1(r1 � r2)(r1 + r2)

4(d� 3)
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4(d� 3)
. (10.10)

Using eq. (3.30), we obtain the following reduction formula on the maximal cut
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2
I1,1,1,1,1;�1, (10.11)

which agrees with the reduction obtained from LiteRed.

Further Considerations. In this case, we have observed that integrals with positive
powers of z (in the sense that z

n appears in the numerator) always have zero coefficient of
J0 (and non-zero of J1).

p
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p
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p
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Figure 7: A six-denominator two loop sector.

Integrals with negative powers of z (meaning that z appears in the denominator as
an actual propagator) correspond to a penta-cut, of the six denominator triangle graph
shown in Fig. 7. This six-propagator sector has no master integrals, but for the integrals
associated with the indicated penta-cut, the coefficients of both J1 and J2 are different from
zero. As an example, let us consider, I1,1,1,1,1;1, for which the relevant cocycle is �0 =

1
z
dz.

By computing

h�0|'1i = �1 , h�0|'2i = 0 , (10.12)

the complete reduction eq. (3.30) reads,

I1,1,1,1,1;1 =
d� 4

2m2
I1,1,1,1,1;0 +

d� 3

sm2
I1,1,1,1,1;�1, (10.13)

in agreement with LiteRed.
For more discussion of this sector, see Appendix A.1.
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Integral family Sec. ⌫LBL ⌫std

7 1 1

8 3 3

9 1 1

10 2 1

11 2 2

12 3 4

13.1 2 2

13.2 3 4

13.3 3 4

14.1 4 4

14.1 4 4

14.2 4 6

Integral family Sec. ⌫LBL ⌫std

14.3 4 6

15.1 3 3

15.2 3 3

16 3 3

16 3 3

16 3 3

16 3 3

16.1 3 3

17.1 2 2

17.2 3 3

17.3 3 4

Table 1: Comparisons of the number of masters obtained by the LP criterion, from
Loop-by-Loop (⌫LBL) and standard Baikov parametrization (⌫std).

The equation ! = 0 has 1 solution (z = s/3, y = s/3) corresponding to 1 master integral, as
it was found in Sec. 7.

Likewise, for the double-box of Sec. 11, the first planar Bhabha-integral of Sec. 13.1,
and for most of the other cases (see Tab. 1) there is agreement between the numbers of
MIs obtained from the two types of Baikov parametrization. Yet, for some cases, we find
different number of master integrals in the two approaches, and in the following we discuss
some of them, in detail.
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16 Multileg and Massive Cases

(1) (2)

(3) (4)

Figure 18: Planar and non-planar pentabox with two external masses (1,2), as well as
planar and non-planar hexagon-box (3,4).

Let us now study how the polynomial u changes when we compute Feynman integrals such
as those in Sec. 15, but with massive external legs, or with more massless external legs6 as
shown in Fig. 18.

• Case (1), planar massive pentabox: the external kinematic is defined by p
2
3 = p

2
5 =

m
2 and p

2
i
= 0 for i = 1, 2, 4, with the denominators

D1 = k
2
1 , D2 = (k1 + p1)

2
, D3 = (k1 + p1 + p2)

2
, D4 = (k1 � k2)

2
,

D5 = (k2 + p1 + p2)
2
, D6 = (k2 + p1 + p2 + p3)

2
,

D7 = (k2 + p1 + p2 + p3 + p4)
2
, D8 = k

2
2 .

(16.1)

• Case (2), non-planar massive pentabox: the external kinematic is defined by
p
2
3 = p

2
5 = m

2 and p
2
i
= 0 for i = 1, 2, 4, with the denominators

D1 = k
2
1 , D2 = (k1 + p1)

2
, D3 = (k1 � k2 � p2)

2
, D4 = (k1 � k2)

2
,

D5 = (k2 + p1 + p2)
2
, D6 = (k2 + p1 + p2 + p3)

2
,

D7 = (k2 + p1 + p2 + p3 + p4)
2
, D8 = k

2
2 .

(16.2)

6We assume the number of space-time dimensions d to not be smaller than the number of independent
external momenta.
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• Case (2), non-planar massive pentabox: the external kinematic is defined by
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6We assume the number of space-time dimensions d to not be smaller than the number of independent
external momenta.
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16.1 Arbitrary Number of External Legs Case

Figure 19: Multileg generalization of the topologies portrayed in Fig. 18.

The direct generalization of the cases discussed above is portrayed in Fig. 19 .
Here, choosing the following list of denominators:

D1 = k
2
1 , D2 = (k1 + p1)

2
, D3 = (k1 + p1 + p2)

2
, D4 = (k1 � k2)

2
,

D5 = (k2 + p1 + p2)
2
, D5+j =

⇣
k2 + p1 + p2 +

jX

r=1

p2+r

⌘2 (16.16)

for a diagram with a number of external legs E equal to E = 4+ j with j > 1, and choosing
as ISP

z = D8+j = (k2 + p1)
2
. (16.17)

the Loop-by-Loop Baikov polynomials on the maximal cut have the same structure as the
previous 5 and 6 point cases, where at least one of p1 and p2 is massless:

u = z
↵i (ai + z)�i

�
bi + ei z + fi z

2
��i ; (16.18)

Therefore the reduction derived in eq. (16.14) remains valid for any number of external legs.
This result has been checked numerically with Reduze up to 8 external legs.

17 Arbitrary Loop Examples

17.1 Planar Rocket Diagram for H+j: (3+2n)-Loop Case

In this section we consider certain higher-loop topologies that contribute to the Higgs+jet
production. As done in Sec. 15, we define K as described in and around eq. (15.1).
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D7 = (k3 � p1)
2 �m

2
t , D8 = (k3 � k4)

2 �m
2
t , D9 = k

2
3 �m

2
t , (17.5)

D10 = (k4 � p1)
2
, D11 = (k4 � p1 � p2)

2
, D12 = k

2
4 , D13 = (k4 � k5)

2
,

D14 = (k5 � p1 � p2)
2
, D15 = (k5 � p1 � p2 � p3)

2
, D16 = k

2
5 .

and choosing the ISP as:
z = D17 = (k5 + p1)

2
, (17.6)

the Loop-by-Loop Baikov representation on the maximal cut gives:

u =
�
z � 2m2

H

� d
2�3

�
m

2
H + s� z

�
2� d

2
�
�2m2

H + t+ z
�
d�5

, (17.7)

K = s
d�6

t
2� d

2m
d�9
H

m
3(d�4)
t

�
4m2

t �m
2
H

� 3�d
2

�
�m

2
H + s+ t

�
2� d

2 . (17.8)

We notice that u is exactly the same as eq. (17.3), while K slightly changes from eq. (17.4).

Iterating the Loop-by-Loop procedure to topologies with higher number of loops, we observe
that the structure remains the same; thus, we can generalize that formula to the (3+2n)-loop
case (n � 0) shown in Fig. 22

Figure 22: Planar box-rocket diagram contributing to H+j production.

In fact choosing the ISP as:

z = D11+6n = (k3+2n + p1)
2
, (17.9)

the Loop-by-Loop Baikov representation on the maximal cut gives:

u =
�
z � 2m2

H

� d
2�3

�
m

2
H + s� z

�
2� d

2
�
�2m2

H + t+ z
�
d�5

, (17.10)

K = s
d�6

t
2� d

2m
(d�7)n�2
H

m
(d�4)(2n+1)
t

�
4m2

t �m
2
H

�� 1
2 (d�3)n

�
�m

2
H + s+ t

�
2� d

2 . (17.11)

And so:

! =
1

2

✓
d� 4

m
2
H
+ s� z

+
2(d� 5)

�2m2
H
+ t+ z

+
d� 6

z � 2m2
H

◆
dz, (17.12)

⌫ = 2, P = {2m2
H , 2m2

H � t, m
2
H + s, 1}, (17.13)

which are valid for all the (3+2n)-loop diagrams.
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17.2 Non-Planar Rocket Diagram for H+j: (3+2n)-Loop Case

Figure 23: Non-planar three-loop diagram contributing to the H+j production.

Let us consider the non-planar topology for the H + j production at three loop portrayed
in Fig. 23. The kinematics is such that: p

2
1 = m

2
H

, p2
i
= 0 with i = 2, 3, s = (p1 + p2)2,

t = (p2 + p3)2 and (p1 + p2 + p3)2 = 0.
The denominators are given by:

D1 = k
2
1 �m

2
t , D2 = (k1 � p1)

2 �m
2
t , D3 = (k1 � k2)

2 �m
2
t , (17.26)

D4 = (k2 � p1)
2

D5 = (k2 � k3 + p2)
2
, D6 = k

2
2, D7 = (k2 � k3)

2
, (17.27)

D8 = (k3 � p1 � p2)
2
, D9 = (k3 � p1 � p2 � p3)

2
, D10 = k

2
3, (17.28)

while the ISP is:
z = D11 = (k3 + p1)

2
. (17.29)

Using the Loop-by-Loop Baikov representation, on the maximal cut we obtain:

u =
�
z � 2m2

H

� d
2�3

�
m

2
H + s� z

� d
2�3

�
�2m2

H + t+ z
�
d�5

, (17.30)

K =
t
2� d

2m
d�4
t

�
�m

2
H
+ s+ t

�
2� d

2

sm
2
H

. (17.31)

As done for the planar diagram, we can infer the general structure for the corresponding
3 + 2n-loop integral (n � 0) shown in Fig. 24:

Figure 24: Non-planar box-rocket diagram contributing to H+j production.
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D4 = (k2 � p1)
2
, D5 = (k2 � k3)

2 �m
2
t , D6 = k

2
2 , (17.49)

D7 = (k3 � p1)
2 �m

2
t , D8 = (k3 � p1 � p2)

2 �m
2
t , D9 = (k3 � k4)

2 �m
2
t ,

D10 = k
2
3 �m

2
t , D11 = (k4 � p1 � p2)

2
, D12 = (k4 � p1 � p2 � p3)

2
, D13 = k

2
4.

While the ISP is:
z = D14 = (k4 + p1)

2
. (17.50)

The Loop-by-Loop Baikov representation, on the maximal cut gives: with

u =

�
m

2
H
+s�z

�
2� d

2
�
�2m2

H
+t+z

�
d�5

�
2sm2
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�4m2

H
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q
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H

,

(17.51)

K = s
d�7
2 t

2� d
2m

(d�7)
H

m
2(d�4)
t

�
4m2

t �m
2
H

�� 1
2 (d�3)

�
�m

2
H + s+ t

�
2� d

2 . (17.52)

We can generalize such a construction in order to describe the (2+2n)-loop diagram (n � 0),
shown in Fig. 26:

Figure 26: Planar All-loop diagram contributing to H+j production.

In fact choosing as ISP:
D8+6n = (k2+2n + p1)

2
, (17.53)

we obtain:

u =

�
m

2
H
+s�z

�
2� d

2
�
�2m2

H
+t+z

�
d�5

�
2sm2
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�4m2
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�� d�5

2

q
z � 2m2

H

,

(17.54)

K = s
d�7
2 t

2� d
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(d�7)n
H
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2(d�4)n
t

�
4m2

t �m
2
H

�� 1
2 (d�3)n

�
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H + s+ t
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2� d

2 , (17.55)

from which we can evaluate:

! =
1
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s� 4m2
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�

m
2
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�
4m2

t
� 2s

�
+ 4m2
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(s� z) + sz
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d� 4

m
2
H
+ s� z

+
2(d� 5)
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H
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H
� z

!
dz,
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D4 = (k2 � p1)
2
, D5 = (k2 � k3)

2 �m
2
t , D6 = k

2
2 , (17.77)

D7 = (k3 � p1)
2 �m

2
t , D8 = (k3 � k4 + p2)

2 �m
2
t , D9 = (k3 � k4)
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2
t ,

D10 = k
2
3 �m

2
t , D11 = (k4 � p1 � p2)

2
, D12 = (k4 � p1 � p2 � p3)

2
, D13 = k

2
4.

We choose the ISP as:
z = D14 = (k4 + p1)

2
, (17.78)

The Loop-by-Loop Baikov representation, after the maximal cut gives:

u =

�
�2m2

H
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�
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��
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H
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2� d
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s
. (17.80)

As stated above, we can generalize such Baikov polynomial in order to describe the (2+2n)-
loop diagram (n � 0) shown in Fig. 28.

Figure 28: Non planar (2+2n)-loop contribution to H+j production.

In fact choosing the ISP as:
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2
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from which we evaluate:

! =
1
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z � 2m2

H
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m

2
H
+ s� z
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+ 4sm2
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+
2(d� 5)
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(17.84)

⌫ = 4 , P = {2m2
H ,m

2
H+s , 2m2

H�t , ⇢1 , ⇢2 ,1} . (17.85)

which are valid for all the (2+2n)-loop diagrams.
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Feynman Integrals Decomposition 
:: on the maximal cut :: 2-forms

On the maximal cut :: simpler integrals 

2-forms :: two-variable integral representations 

Operation required :: Intersection Numbers for 2-forms



2-form Representations :: 2-form InterX

19 Intersection Numbers of Two-Forms

In this section we present an alternative algorithm for computing intersection numbers of
two-forms and demonstrate how to reproduce the two-loop results of Sec. 7 and 11 from this
point of view. The algorithm is an extension of Matsumoto’s method [75] to non-logarithmic
differential forms. We summarize it as follows.

Let us consider an integral of the form
Z

C
u(x, y)�(x, y) with u = B

�1
1 B

�2
2 · · ·B�m

m , (19.1)

where �i are generic coefficients, �(x, y) is a two-form �(x, y) = �̂ dx^dy, and C is an
integration cycle such that u vanishes on its boundaries. From here we define the one-form:

! = d log u =
mX

i=1

�i

✓
@xBi

Bi

dx+
@yBi

Bi

dy

◆
. (19.2)

As before, we also define the connection r! ⌘ d+ !^. Poles of ! form hypersurfaces Hi.
For example, associated to each factor Bi in (19.1) we have:

Hi ⌘ {(x, y) | Bi(x, y) = 0}. (19.3)

It is important to remember that all the differential forms are defined on the complex
projective plane CP2, and by choosing coordinates (x, y) 2 C2 we committed ourselves to
one particular chart on this space, which does not cover the points at infinity. In order to
find all hypersurfaces, including those at infinity, it is necessary to cover the full space with
other charts, e.g., (x̂, ŷ) = (x, 1/y), (1/x, y), (1/x, 1/y). We find that they do not contribute
to the cases of our interest.

The above hypersurfaces, in general, intersect at points Pij (we assume that all inter-
sections are transverse),

Pij ⌘ Hi \Hj for i 6= j. (19.4)

It is possible that Pij contains more than one intersection point. If more than two distinct
hypersurfaces intersect at one point, i.e., Hi \ Hj \ Hk 6= ?, there is a need for a local
blowup near such a point. It is not relevant to the cases we study.

19.1 General Algorithm

The algorithm for computing the intersection number h�L|�Ri! consists of three steps.

1. Hypersurfaces. In the small neighbourhood of each hypersurface Hi construct the
one-form  i satisfying the equation:

r! i = �L locally near Hi. (19.5)
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In this section we present an alternative algorithm for computing intersection numbers of
two-forms and demonstrate how to reproduce the two-loop results of Sec. 7 and 11 from this
point of view. The algorithm is an extension of Matsumoto’s method [75] to non-logarithmic
differential forms. We summarize it as follows.

Let us consider an integral of the form
Z

C
u(x, y)�(x, y) with u = B

�1
1 B

�2
2 · · ·B�m

m , (19.1)

where �i are generic coefficients, �(x, y) is a two-form �(x, y) = �̂ dx^dy, and C is an
integration cycle such that u vanishes on its boundaries. From here we define the one-form:

! = d log u =
mX

i=1

�i

✓
@xBi

Bi

dx+
@yBi

Bi

dy

◆
. (19.2)

As before, we also define the connection r! ⌘ d+ !^. Poles of ! form hypersurfaces Hi.
For example, associated to each factor Bi in (19.1) we have:

Hi ⌘ {(x, y) | Bi(x, y) = 0}. (19.3)
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to the cases of our interest.
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Let us pick coordinates: normal to the hyperplane, z?
i
= Bi, and along the hyperplane z

k
i
,

in such a way that they are orthonormal, i.e., dx ^ dy = dz
?
i
^ dz

k
i

with a unit Jacobian.
Treating z

k
i

as a constant, we write an ansatz in terms of a Laurent expansion:

 i =

 maxX

k=min

 
(k)
i

(z?i )
k +O((z?i )

k+1)

!
dz

k
i
. (19.6)

The expansion start at the order min = ord
z
?
i
(�L) + 1 and it is enough to expand until

max = �ord
z
?
i
(�R)� 1. By comparing both sides of (19.5) at each order in z

?
i

we can

solve for the coefficients  (k)
i

.

2. Intersections of Hypersurfaces. In the small neighbourhood of each point in Pij

construct the function  ij satisfying the equation:

r! ij =  i �  j locally near Pij . (19.7)

The right-hand side is known as an expansion in variables z
?
i

and z
?
j

from the previous
step. Hence we change the coordinates to (z?

i
, z

?
j
) and write an ansatz for  ij :

 ij =
maxiX

k=mini

maxjX

l=minj

 
(k,l)
ij

(z?i )
k(z?j )

l + O((z?i )
k+1

, (z?j )
l+1), (19.8)

where

mini = ord
z
?
i
( i� j) + 1, maxi = �ord

z
?
i
(�R)� 1 (19.9)

minj = ord
z
?
j
( i� j) + 1, maxj = �ord

z
?
j
(�R)� 1. (19.10)

Once again, it can be solved order by order for each of the coefficients  (k,l)
ij

.

3. Intersection Numbers of Two-Forms. Finally, the intersection number h�L|�Ri! is
computed as a sum over all intersection points Pij using the double-residue formula:

h�L|�Ri! ⌘
X

Pij

Res
z
?
i =0Resz?j =0

⇣
 ij �R

⌘
. (19.11)

In order to perform the residue computation we express �R as a two-form in the new
coordinates (z?

i
, z

?
j
). Recall that upon such a change one picks up a Jacobian:

�̂R(x, y) dx^dy =
�̂R(z?i , z

?
j
) dz?

i
^dz?

j

|@(z?
i
, z

?
j
)/@(x, y)|

. (19.12)

A given point Pij can only contribute to this sum if mini  maxi and minj  maxj from
(19.9–19.10) holds.
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A given point Pij can only contribute to this sum if mini  maxi and minj  maxj from
(19.9–19.10) holds.
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7 Two-Loop Massless Sunrise

Figure 3: Massless sunrise.

Let us consider the massless sunrise diagram at two loops, Fig. 3. The incoming momentum
is p, where p

2 = s. The denominators are defined as

D1 = k
2
1, D2 = (k1 � k2)

2
, D3 = (k2 � p)2. (7.1)

Introducing the ISP as z = D4 = k
2
2, we obtain:

u = z
d
2�2(z � s)d�3

, ! =

✓
d� 3

z � s
+

d� 4

2z

◆
dz , (7.2)

⌫ = 1, P = {0, s,1}. (7.3)

Now, any integral can be expressed in terms of the chosen master integral either by using a
monomial or a dlog-basis. Here, for illustration, we choose the monomial basis only.

Monomial Basis. We choose the basis as {h�i|}i=1 and the chosen master integral
becomes

J1 = I1,1,1;0 = h�1|C] . (7.4)

Let us consider the decomposition of I1,1,1;�1 = h�2|C] in terms of J1. The decomposition
formula in this case reads

h�n| = h�n|�1iC�1
11 h�1|. (7.5)

We build the metric matrix C, which has a single entry in this case.

C = h�1|�1i =
4(d� 3)s2

3(3d� 10)(3d� 8)
. (7.6)

In this case the C�1 is trivial to compute as the C contains only one element. The other
necessary intersection number is the following.

h�2|�1i =
4(d� 3)s3

9(3d� 10)(3d� 8)
. (7.7)

Using these in eq. (7.5) we obtain the following reduction formula on the maximal cut

I1,1,1;�1 =
s

3
I1,1,1;0, (7.8)

which agrees with the LiteRed.
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11 Massless Double-Box

Figure 8: Massless double-box.

Let us consider the massless double-box [100, 101] in Fig. 8. The external (outgoing)
momenta are denoted pi with p

2
i
= 0 for i = 1, 2, 3, 4. We define the kinematic invariants to

be s = (p1 + p2)2, and t = (p2 + p3)2.
The denominators are given by:

D1 = k
2
1 , D2 = (k1 � p1)

2
, D3 = (k1 � p1 � p2)

2
, D4 = (k1 � k2)

2
,

D5 = (k2 � p1 � p2)
2
, D6 = (k2 � p1 � p2 � p3)

2
, D7 = k

2
2 . (11.1)

The leftover ISP is:
z = D8 = (k2 � p1)

2
. (11.2)

The Loop-by-Loop Baikov representation, after a hepta-cut, gives,

u = z
d
2�3(s+ z)2�

d
2 (t� z)d�5

, ! =

✓
4� d

2(s+ z)
+

d� 5

z � t
+

d� 6

2z

◆
dz , (11.3)

⌫ = 2 , P = {0 , �s , t , 1}. (11.4)

Mixed Bases. We pick the two master integrals

J1 = I1,1,1,1,1,1,1;0 , J2 = I1,1,1,1,1,1,1;�1 , (11.5)

corresponding to �1 = 1 dz and �2 = z dz.
Additionally we pick the right basis as

'̂1 =
1

z
� 1

z + s
, '̂2 =

1

z + s
� 1

z � t
, (11.6)

This gives the intersection matrix C to be

C = h�i|'ji =
 �s

d�5
s+t

d�5
s((3d�14)s+2(d�5)t)

2(d�5)(d�4)
�(3d�14)s(s+t)
2(d�5)(d�4)

!
(11.7)

If we want to reduce I1,1,1,1,1,1,1;�2 corresponding to �3 = z
2
dz, we also need the

intersections

h�3|'1i =
s(4(d� 5)t2 � 3(d� 4)(3d� 14)s2 � 4(d� 5)(2d� 9)st)

4(d� 5)(d� 4)(d� 3)
, (11.8)
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Intersection in 
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in agreement with Reduze in the two loop case.

18 Iterated One-Forms

We consider cases of maximally cut integrals of 2-forms depending on two variables (two
ISPs), and we show in a few examples, how they can be decomposed by applying the
univariate intersection numbers, in one variable at a time.

In particular, we deal with integrals of the form

In,m ⌘ K

Z

C1

Z

C2
u z

n

1 z
m

2 dz1^ dz2, (18.1)
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u = u(z1, z2) , (18.2)
! = !̂1dz1 + !̂2dz2 , !̂1 ⌘ @z1 log u, !̂2 ⌘ @z2 log u. (18.3)

As in the previous sections, the prefactor K does not play any role in the decomposition
formulas, and therefore it is left implicit in the following.

Intersections in z1. We rewrite u as,

u = uz1 , (18.4)

with

!̂z1 ⌘ @z1 log uz1 = @z1 log u = !̂1 . (18.5)

In this fashion,

In,m =

Z

C2
Jn z

m

2 dz2 , (18.6)

Jn =

Z

C1
uz1 z

n

1 dz1 ⌘ !1h�n+1|C1] . (18.7)

For the cases at hand, we assume that the Jn integral family admits ⌫1 = 1 master
integral, say J0, defined as,

J0 =

Z

C1
uz1 dz1 ⌘ !1h�1|C1] , (18.8)

which is a function of z2, i.e., J0 = J0(z2). Then, Jn can be decomposed in terms of J0, as

Jn = cnJ0 , !1h�n+1| = cn !1h�1| , (18.9)

where the coefficient cn can be obtained by intersection in z1, using the master formula
eq. (3.30),

cn = h�n+1|�1i!1 h�1|�1i�1
!1

, (18.10)

and which may depend on z2, i.e., cn = cn(z2).

Intersections in z2. After performing all intersections in z1, In,m reads,

In,m =

Z

C2
cnJ0 z

m

2 dz2 =

Z

C2
uz2  n,m ⌘ !z2

h n,m|C2] , (18.11)

where

 n,m ⌘ cn z
m

2 dz2 , uz2 ⌘ J0 , !̂z2 = @z2 log uz2 . (18.12)

Let us stress that !̂z2 6= !̂2, while, by construction, !̂z1 = !̂1.
Under the assumption that ⌫1 = 1, the number ⌫2 of solutions of !̂z2 = 0 corresponds to
the total number ⌫ of MIs. Finally, we define a monomial basis for the z2-intersection,
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in agreement with Reduze in the two loop case.

18 Iterated One-Forms

We consider cases of maximally cut integrals of 2-forms depending on two variables (two
ISPs), and we show in a few examples, how they can be decomposed by applying the
univariate intersection numbers, in one variable at a time.

In particular, we deal with integrals of the form
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1 z
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2 dz1^ dz2, (18.1)
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As in the previous sections, the prefactor K does not play any role in the decomposition
formulas, and therefore it is left implicit in the following.
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and which may depend on z2, i.e., cn = cn(z2).
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Let us stress that !̂z2 6= !̂2, while, by construction, !̂z1 = !̂1.
Under the assumption that ⌫1 = 1, the number ⌫2 of solutions of !̂z2 = 0 corresponds to
the total number ⌫ of MIs. Finally, we define a monomial basis for the z2-intersection,
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For the cases at hand, we assume that the Jn integral family admits ⌫1 = 1 master
integral, say J0, defined as,

J0 =

Z

C1
uz1 dz1 ⌘ !1h�1|C1] , (18.8)

which is a function of z2, i.e., J0 = J0(z2). Then, Jn can be decomposed in terms of J0, as

Jn = cnJ0 , !1h�n+1| = cn !1h�1| , (18.9)

where the coefficient cn can be obtained by intersection in z1, using the master formula
eq. (3.30),

cn = h�n+1|�1i!1 h�1|�1i�1
!1

, (18.10)

and which may depend on z2, i.e., cn = cn(z2).

Intersections in z2. After performing all intersections in z1, In,m reads,

In,m =

Z

C2
cnJ0 z

m

2 dz2 =

Z

C2
uz2  n,m ⌘ !z2

h n,m|C2] , (18.11)

where

 n,m ⌘ cn z
m

2 dz2 , uz2 ⌘ J0 , !̂z2 = @z2 log uz2 . (18.12)

Let us stress that !̂z2 6= !̂2, while, by construction, !̂z1 = !̂1.
Under the assumption that ⌫1 = 1, the number ⌫2 of solutions of !̂z2 = 0 corresponds to
the total number ⌫ of MIs. Finally, we define a monomial basis for the z2-intersection,
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k�1
2 dz2, and complete the decomposition of In,m, by applying the reduction by

intersections in z2 to !z2
h n,m|,

!z2
h n,m| =

⌫2X

i,j=1

h n,m|�ji!z2
(C�1

!z2
)ji !z2

h�i| , (18.13)

where all intersection numbers are computed with !z2 .
The above equation corresponds to the decomposition of In,m in terms of ⌫2 master integrals
I0,i with i = 0, 1, . . . , ⌫2�1,

In,m =
⌫2�1X

i=0

cn,m,i I0,i , (18.14)

where

cn,m,i = h n,m|�ji!z2
(C�1

!z2
)ji . (18.15)

We apply the iterative intersections method to the two-loop sunrise and massless planar
doublebox diagrams.

18.1 Two-Loop Massless Sunrise

In the standard Baikov approach, the sunrise type integrals considered in Sec.7, on the
maximal-cut, depend on two ISPs. The corresponding two-fold Baikov representation was
studied in [67]. Accordingly, we consider the following integral family,

In,m ⌘
Z

C1

Z

C2
u z

n

1 z
m

2 dz1 ^ dz2 , C1, C2 = [0,1] (18.16)

u = (z1z2(1 + z1 + z2))
�
, (18.17)

with

! = !̂1dz1 + !̂2dz2, !̂1 =
� (2z1 + z2 + 1)

z1 (z1 + z2 + 1)
, !̂2 =

� (z1 + 2z2 + 1)

z2 (z1 + z2 + 1)
. (18.18)

We observe that by setting � = (d� 4)/2, these integrals correspond to one introduced in
Sec. 7 for s = �1.

18.1.1 Iterated Intersections

We rewrite In,m iteratively, as,

In,m ⌘
Z

C2
dz2z

m

2 Jn , (18.19)

Jn ⌘
Z

C1
dz1 uz1 z

n

1 , (18.20)

uz1 = (z1z2(1 + z1 + z2))
�
. (18.21)
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What can we do with 1-form InterX Numbers?

If the integral representation has 1 ISPs, Then we can get:

 the coefficients of the top sector :: maximal-cut

If the integral representation has 0 ISPs, Then we can get:

 the coefficients of the top sector :: maximal-cut

 the coefficients of the level-1 subsectors :: next-to-maximal-cut



What can we do with 2-form InterX Numbers?

If the integral representation has 2 ISPs, Then we can get:

 the coefficients of the top sector :: maximal-cut

If the integral representation has 1 ISPs, Then we can get:

 the coefficients of the top sector :: maximal-cut

 the coefficients of the level-1 subsectors :: next-to-maximal-cut

If the integral representation has 0 ISPs, Then we can get:

 the coefficients of the top sector :: maximal-cut

 the coefficients of the level-1 subsectors :: next-to-maximal-cut

 the coefficients of the level-2 subsectors :: next-to-next-to-maximal-cut



Feynman Integrals Decomposition 
:: n-forms ::

No cut 

n-forms :: n-variable integral representations 

Operation required :: Intersection Numbers for n-forms

Intersection Numbers for n-forms :: n steps down in the decomposition

Frellesvig, Gasparotto, Laporta, Mandal,  
Mattiazzi, Mizera & P.M.  

(in progress)



(other) Parametric Representations:

Gamma Function :: 1-variate InterX

1.4 Consequence

If the intersection of eq.(1.11) and eq.(1.15) is non-empty, then there exists some terms in

 L which can contribute the residue sum. In this case, writing

min := nL + 1 (1.16)

max := �nR � 1 (1.17)

we have

min  max, (1.18)

and it suffices to consider

 ̃L :=
maxX

j=min
cjz

j
(1.19)

to determine the residue.

1.4.1 Orders

For a meromorphic function f , if there is an integer n s.t.

(z � z0)
nf(z) (1.20)

is holomorphic at z = z0 and non-zero around z0, then this n is called the order of f at z0.

The nL, nR are essentially orders of  L, R at a point p 2 P .

1.4.2 No intersection

If the intersection of eq.(1.11) and eq.(1.15) is empty,

nL + 1 > �nR + 1 (1.21)

happens, then there is no-term which contributes to residue. So such a point p 2 P does

not affect on the intersection number, and we can neglect that p 2 P from the sum in

eq.(1.1).

2 Examples

2.1 � function

Let us first recall (s � 0),1

�(s) =

Z 1

x=0
xs�1e�xdx. (2.1)

1We can extend s into all the complex plane but negative integers by analytic continuation.
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Frellesvig, Gasparotto, Mandal, Mattiazzi,  
Mizera, Ossola, Sameshima & P.M.  

(in progress)

2.1.1 u and  

Let us choose

C := [0,1] (2.2)

u(x) := xs�1e�x
(2.3)

�0 = �̂dx = 1dx (2.4)

in

I(0) =

Z

C
u�0 (2.5)

= h�0|C] . (2.6)

2.1.2 One form !

Under this setting, the one-form is

! := d lnu (2.7)

= d ln
�
xs�1e�x

�
(2.8)

=

✓
s� 1

x
� 1

◆
dx (2.9)

Let us determine the solution set

{x|!(x) = 0}. (2.10)

x = s� 1 leads !(x) = 0 and this is the unique solution, and we have

⌫ = 1 (2.11)

i.e., there is a master integral.

! is singular at x = 0. To see the behavior of ! around x = 1, set

y :=
1

x
(2.12)

and

! = ((s� 1)y � 1)
�dy

y2
(2.13)

Thus ! is also singular at y = 0, and we have

P = {0,1} (2.14)

as a set of all the singular points of !.
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2.1.3 The coefficient for the first two

Let us investigate a relation between

I(0) := h�0|C] (2.15)

I(1) := h�1|C] (2.16)

i.e., between h�1| , h�0|, where

�0 = 1dx (2.17)

�1 = xdx (2.18)

Since this system essentially one-dimensional, we do have

h�1| = h�1|�0i h�0|�0i�1 h�0| (2.19)

as the Beta function example in [1].

2.1.4 Intersection numbers

h�0|�0i Let us first start

h�0|�0i := Res|x=0  0(x)�0(x) + Res|x=1  0(x)�0(x) (2.20)

Since both orders are 1,

�0 = dx ) nL = nR = 0 (2.21)

we have

min = nL + 1 = 1 > max = �nR � 1 = �1. (2.22)

So there is no term in  0 which can contribute the residue.

At infinity, we set y = 1
x and

�L = �R =
�dy

y2
) nL = nR = �2 (2.23)

So

min = nL + 1 = �1  max = �nR � 1 = 1, (2.24)

and it suffices to take

 ̂ =
a

y
+ b+ cy (2.25)

around y = 0.

The differential equation becomes a set of linear relations among the above unknown
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(%i1) f(y) := a/y + b + c*y;
a

(%o1) f(y) := - + b + c y
y

(%i2) omega: (1- (s-1)*y)/y^2;
1 - (s - 1) y

(%o2) -------------
2

y
(%i3) deq: expand( diff(f(y),y,1) + omega * f(y) = -1/y^2 );

b s c b a s b a 1
(%o3) (- ---) + - + - - --- + -- + -- - c s + 2 c = - --

y y y 2 2 3 2
y y y y

(%i4) makelist (coeff(deq,y,i),i,-3,0);
(%o4) [a = 0, b - a s = - 1, (- b s) + c + b = 0, 2 c - c s = 0]
(%i5) leq: makelist (coeff(deq,y,i),i,-3,-1);
(%o5) [a = 0, b - a s = - 1, (- b s) + c + b = 0]
(%i6) solve(leq, [a,b,c]);
(%o6) [[a = 0, b = - 1, c = 1 - s]]

So every unknown is fully determined, and

h�0|�0i = s� 1 (2.34)

h�1|�0i Similar to h�0|�0i case, we can neglect the contribution from p = 0 point, since

�L = �1 = xdx ) nL = 1, nR = 0,min = 1 + 1 = 2 > max = �0� 1 = �1. (2.35)

Around x = 1, we have

�L =
�dy

y3
, nL = �3 (2.36)

�R =
�dy

y2
, nL = �2 (2.37)

and

min = �3 + 1 = �2  max = �(�2)� 1 = 1. (2.38)

Therefore, it suffices to consider

 ̄ =
a

y2
+

b

y
+ c+ dy. (2.39)

The differential equation falls down into a set of linear equations, and We can easily perform

using CAS, say with Maxima,
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(%i1) f(y) := a/y^2 + b/y + c + d*y;
a b

(%o1) f(y) := -- + - + c + d y
2 y

y
(%i2) omega: (1- (s-1)*y)/y^2;

1 - (s - 1) y
(%o2) -------------

2
y

(%i3) deq: expand( diff(f(y),y,1) + omega * f(y) = -1/y^3 );
c s d c b s c a s b a a 1

(%o3) (- ---) + - + - - --- + -- - --- + -- - -- + -- - d s + 2 d = - --
y y y 2 2 3 3 3 4 3

y y y y y y y
(%i4) leq: makelist (coeff(deq,y,i),i,-4,-1);
(%o4) [a = 0, (- a s) + b - a = - 1, c - b s = 0, (- c s) + d + c = 0]
(%i5) linsolve(leq, [a,b,c,d]);

2
(%o5) [a = 0, b = - 1, c = - s, d = s - s ]

Therefore

h�1|�0i = �d = s(s� 1). (2.40)

Thus, we can finally evaluate the unknown coefficient between h�1| and h�0|, and

h�1| = h�1|�0i h�0|�0i�1 h�0| (2.41)

=
s(s� 1)

s� 1
h�0| (2.42)

= s h�0| . (2.43)
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'̂(z) rational function

@xI = @xh'|C] = @x

Z

C
u' =

Z

C
u

✓
@xu

u
^+@x

◆
' = h(@x + �)'|C] (2.21)

@x freely exchanged with the integral sign,

even if C = C(x), because u(@C) = 0

Z

C
d(B(z)�) = 0 , (2.22)

C = [0, 1] , B(z) = z(1� z) (2.23)

2.3 Integrals

Z

C
dz1 ^ · · · ^ dz9

B(z)�

zn1
1 · · · zn9

9

(2.24)

B(z), C, � depend on the graph.

N = LE +
1

2
L(L+ 1) (2.25)

�(G) (N �M) ISPs (2.26)

I(n) :=

Z

C
u�n := h�n|C] , �n := xn dx (2.27)
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Schwinger Parameterization

Lee-Pomeransky Parameterization

Master Decomposition Formula



Other parametric Representations:

Gamma Function :: 1-variate InterX

Frellesvig, Gasparotto, Mandal, Mattiazzi,  
Mizera, Ossola, Sameshima & P.M.  

(in progress)

Schwinger Parameterization

Lee-Pomeransky Parameterization

Eric’s Example :: 2-variate InterX
An integral family is defined by a set of denominators D1, . . . , DN that are
quadratic (or linear) forms in loop momenta ¸1, . . . , ¸L:

I(a1, . . . , aN ; d) =
A LŸ

k=1

⁄ dd¸k
ifid/2

B
1

Da1

1
· · · DaN

N

Example

I(a1, a2; d) =
⁄ dd¸

ifid/2

1
(¸2)a1((¸ + p)2)a2

k2 = ℓ+ p

k1 = ℓ

p −p

A family is also described by a matrix �, vectors Qi and a scalar J such that

Nÿ

k=1

xkDk = ≠
Lÿ

i ,j=1

�ij(¸i · ¸j) +
Lÿ

i=1

2(Qi · ¸i) + J

Associated polynomials: U := det �, F := U
!
Q

|�≠1
Q + J

"

In terms of Ê := a1 + . . . + aN ≠ L
d
2

and G := U + F (Lee-Pomeransky),

I(a) =
�(d

2
)

�(d
2

≠ Ê)

A NŸ

k=1

⁄ Œ

0

x
ak≠1

k dxk
�(ak)

B

G≠d/2

Example

I(a1, a2)=
�(d

2
)

�(d ≠ a1 ≠ a2)

⁄ Œ

0

x
a1≠1

1
dx1

�(a1)

⁄ Œ

0

x
a2≠1

2
dx2

�(a2)
1

x1 + x2¸ ˚˙ ˝
U

≠p
2
x1x2¸ ˚˙ ˝

F

2≠ d
2

The (twisted) Mellin transform of a function f : N
+ ≠æ is

M{f } (a) :=
A NŸ

k=1

⁄ Œ

0

x
ak≠1

k dxk
�(ai)

B

f (x1, . . . , xN),

whenever this integral exists. The Feynman integral is a special case:

I(a) =
�(d

2
)

�(d
2

≠ Ê)
ÂI(a) for ÂI(a) = M

Ó
G≠d/2

Ô
(a).



To Conclude:



Amplitudes Decomposition:  
                                            the algebraic way

Basis: {i j k}

Scalar product/Projection: 
to extract the components

a = ax i  +  ay j  +  az k

ax = a.i   ay = a.j    az = a.k



Summary :: 
Novel Algebraic Property Unvealed 

The algebra of Feynman Integrals is controlled by Intersection Numbers

(toward a) Novel Decomposition Method

Exploiting the geometric properties of the integrands, dictated by graph polynomials

Interesting novel results also for math

NO intermediate relation required !

Direct decomposition into a Integral Basis

Direct construction of system of differential equations for the Integral Basis

Direct construction of finite difference equations for the Integral Basis

Analytic solution :: Integral representation (graph polynomials) + Algebra

Intersection numbers beyond dLog-forms

Intersection Numbers ~ Scalar Product/Projection between Feynman Integrals



Outlook :: 
Complete Decomposition (involving subsectors)

Multivariate Intersection Numbers

Novel Integral Representations

Intersection Numbers for n-forms and D-module Theory

Intersection Numbers in Mellin space ?

from which one can also deduce h�2| = 1/2h�1|.
Please note, that in this basis the metric term h'1|'1i is very simple, and that

h'1|'1i�1 = �/2, has � factorizing out.

This simple example contains all the relevant ingredients for the decomposition of
Feynman integrals in terms of master integrals. It corresponds to a case with 1 master
integral. We now consider two other cases, with respectively 2 and 3 master integrals, in
order to show the algorithmic procedure of the decomposition by intersection numbers.

4.2 Gauss 2F1 Hypergeometric Function

Gauss 2F1 Hypergeomeric function is defined as

�(b, c�b) 2F1(a, b, c;x) =

Z 1

0
z
b�1(1� z)c�b�1(1�xz)�a

dz (4.32)

The integration contour C is [0, 1], which is the twisted cycle. �(b, c�b) is the Euler beta
function defined in eq. (4.2). In order to use intersection theory, we re-express this integral
in terms of the pairing of the twisted cycle and the twisted cocycle:

�(b, c�b) 2F1(a, b, c;x) =

Z

C
u' = !h'|C] , (4.33)

where

u = z
b�1(1� xz)�a(1� z)�b+c�1

, (4.34)

! = d log u =
xz

2(c� a� 2) + z(ax� c+ x+ 2)� bxz + b� 1

(z � 1)z(xz � 1)
dz , (4.35)

' = dz . (4.36)

In this case, we have

⌫ = 2 , P = {0, 1, 1
x
, 1} (4.37)

indicating the existence of 2 independent integrals. Contiguity relations for Gauss Hypergeo-
metric functions can be obtained through intersection theory, via the master decomposition
formula in eq. (3.30), requiring the knowledge of the (inverse of the) matrix C. We build
this matrix for various different choices of the integral basis.

Monomial Basis. We choose the basis as {h�i|}i=1,2, we build the metric matrix C,

C =

 
h�1|�1i h�1|�2i
h�2|�1i h�1|�2i

!
(4.38)

whose entries are

h�1|�1i =
⇣
x
2(�(a� b+ 1))(b� c+ 1)� 2ax(�b+ c� 1) + a(c� 2)

⌘
/

⇣
x
2(a

� c+ 1)(a� c+ 2)(a� c+ 3)
⌘
, (4.39)
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Compatibility between dimensional regularization and multivaluedness   
:: arbitrary denominator powers

Total Volume Integrals (super-space) :: Vacuum Graphs ::    
:: Schlaefli Differential Equations :: Bernstein-Sato Ideal

Volume of Symplex and Iterated Integral Representations Kohno

 critical points of      =?=  Euler           
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u' =

Z

C
u

✓
@xu

u
^+@x

◆
' = h(@x + �)'|C] (2.21)

@x freely exchanged with the integral sign,

even if C = C(x), because u(@C) = 0

Z

C
d(B(z)�) = 0 , (2.22)

C = [0, 1] , B(z) = z(1� z) (2.23)

2.3 Integrals

Z

C
dz1 · · · dz9

B(z)�

zn1
1 · · · zn9

9

(2.24)

B(z), C, � depend on the graph.

N = LE +
1

2
L(L+ 1) (2.25)

�(G) (2.26)
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The unreasonable effectiveness of  mathematics
E. Wigner

© 1992 Nature  Publishing Group

of this work is what Wigner called "the 
unreasonable effectiveness of mathemat-
ics". Wigner was referring to the mys-
terious phenomenon in which areas of 
pure mathematics, originally constructed 
without regard to application. are sud-
denly discovered to be exactly what is 
required to describe the structure of the 
physical world . Thus , Riemann's general 
formulation of the geometry of curved 
spaces was essential to Einstein 's under-
standing of gravity; Heisenberg found 
that the symbolic arrays which in quan-
tum mechanics represent observable 
quantities we re the matrices that had 
been invented decades earlier ; and now 
recondite aspects of the distribution of 
prime numbers might well provide the 
link between quantum mechanics and 
newtonian chaos. 

Such connections raise many ques-
tions. Is mathematical truth inve nted by 
mathematicians. or does it already exist 
in the world , to be discovered when our 
minds become sophisticated enough? If 
discovered, where is it beforehand? 
What is its relation to the matter whose 
behaviour it describes so we ll ? Is there 
any inapplicable mathematics? 

Barrow does not answer these ques-
tions, but gives a careful and perceptive 
account of their background and the 
philosophies they have stimulated . He 
starts , appropriately enough, with an 
anthropological and historical analysis of 
counting and calculation , focusing on the 
tricky question of whether such skills are 
innate, and would inevitably develop in 
any human society , or whether they 
arose 'accidentally' in one (or several) 
societies, and diffused to the others. The 
latter is, he thinks, more plausible. Cen-
tral here are the inventions (discover-
ies?) of place values and of zero, by the 
Babylonians and Hindus 5,000 years 
ago , leading via the mediaeval Arabs to 
the decimal syste m we use today. 

Because mathematics is the most pre-
cise embodiment of systematic thought, 
it was natural to try to prove that it has a 
solid foundati on in logic and is perfectly 
consistent. The story of these attempts 
has often been told. How Frege, Russell 
and Whitehead tried to 'derive ' 
mathematics from logic almost a century 
ago, and how this attempt was compli-
cated by the irritating paradoxes of self-
referential sets ('If the barber shaves 
everyone who does not shave himself. 
wha shaves the barber?') . How Hilbert 
took up the challenge by trying to prove 
the consistency of mathematics from 
within, by formalizing its symbols and 
deductive steps. !low "all the noonday 
brightness of this confident picture of the 
fo rmalists' little mathematical wo1ld was 
suddenly extinguished" by Godel's proof 
in 1931 that the set-theory paradoxes 
make it impossible for a sufficiently 
complicated system to be proved consis-
NATURE · VOL 360 · 26 NOVEMBER 1992 

tent from within. These ideas are central 
to modern notions of randomness as the 
inability to compress informatio n, and 
may have implicati ons for our a ttempts 
(in my view doomed) to find a compact 
encoding of the physical universe as a 
' theory of everything'. Barrow's account 
of these matters is lucid and engaging. 

After pointing out that " formalism is 
lacking in two crucial respects" (it does 
not explain the usefulness of mathe-
matics and its relation to the minds of 
mathematicians), Barrow turns to inven-
tionism. This "amounts to the claim that 
mathematics is a branch of 
psycho logy". It makes "mathe matical 
truth dependent upon time and his-
tory" , and "one cannot help but fee l that 
humanity is not really clever enough to 
have 'invented' mathematics" . 

A chapter is devoted to Brouwer's 
programme of intuitionism. whe re the 
natural numbers are regarded as unargu-
ably "given ' , and the aim is to build the 
rest of mathematics "by step-by-step 
deductions using a finite number of 
steps" . This bro ught him into collision 
with Hilbert , who believed that such a 
philosophy, which disallowed infinite 
processes such as arguing by reductio ad 
absurdum, would fatally impoverish and 
weaken mathematics. Hilbert's attempt 
to enforce political correctness and to 
expel Brouwer from the editorial board 
of Marhematische Annalen provoked 
an absurd and bitter controversy that 
Einstein called the "war of the frogs 
and mice". 

Finally , Barrow explores the Platonic 
position that mathematical abstractions 
ex ist "in a rea lm of non-spati al, non-
mental , timeless entities" . He concludes, 
albeit somewhat uneasily: "Our ability to 
create and apprehend mathematical 
structures in the world is merely a con-
seque nce of our own oneness with the 
wo rld" . 

I admit to finding some of Barrow's 
arguments hard to follow not because of 
their content but because of his habit of 
using very long sentences unado rned by 
punctuation whose verbs are hard to find 
and whose meanings therefore hard to 
unravel. Worse, some sentences are in-
complete, and there are many spelling 
mistakes. Quota tions abound . Some are 
witty and apposite, but why propagate 
Spiro Agnew's abysmal "An intellectual 
is a man who doesn' t know how to park 
a bike ''? 

These arc, however, minor criticisms , 
and I warmly recommend Barrow's 
brave attempt to gather up the many 
loose threads of this elusive subject- a 
subject so central to our scie ntific culture 
- and to grasp the whole of it. 0 

Michael Berry is in the Department of 
Physics, University of Bristol, Bristol BSB 
1TL UK. 

AUTUMN BOOKS 

Einstein as 
lover 
Joseph Schwartz 

Albert Einstein and Mileva Marie: The 
Love Letters. Edited and with an intro-
duction by Jurgen Renn and Robert 
Schulmann. Translated by Shawn 
Smith. Princeton University Press: 
1992. Pp. 107. $14.95, £12.50. 

TillS elegantly published volume of let-
te rs between the young Einstein and the 
young Marie is a spin-off from the first 
two volumes of a planned 35 volumes 
containing some 43,000 documents lying 
in the Einstein archive. A lovely intro-
duction by Ji.irgen Renn and Ro bert 
Schulmann , coeditors of the project, 
draws our attention to the unique 
personality of Marie and her central 
contribution to the Einstein success 
sto ry. The meticulo us scholarship of the 
notes is wonderful , particularly the inclu-
sio n of the dates of virtually a ll the 
characters in this first act of the Einstein 
drama. And the letters themselves are a 
treat , a window into the early dev-
elopment of the man who became the 
most ce lebrated scientist in history. But 
what, when all is said and done , does 
this correspondence te ll us? 

The Einstein we see here is bubblingly 
optimistic, reassuring, high-spirited , con-
fident about life . For the first time we 
have an Einstein with sexuality: "Oh my! 
That Jo hnnie boy!/So crazy with desire/ 
Whil e thinking of his Dollie/His pillow 
catches fire " (letters 19); "How beautiful 
it was the last time you let me press your 
dea r little person against me in that most 
natural way" (le tter 33) . Albert is happy 
in his sexual relationship with Marie and 
the letters show it . 

There is a not entirely happy story 
here , however, about two lovers, one 
who thrives, the other who gets in-
creasingly submerged by life . We meet 
them both as students of physics. She , a 
late entrant from the distant provinces of 
undeveloped Serbi a, is three-and-a-half 
yea rs his senior. He is youthful, exuber-
ant. No obstacle is too great. She , while 
available for emotional and sexual in-
vo lvement , is unhappy, feeling that her 
provincial backgro und has irreversibly 
limited her chance in physics. While 
E instein is absorbing with great fascina-
ti on the nuts and bolts of doing physics, 
Marie is distant , o bserving wistfully the 
spectacle of he r university lecture rs: 
"human beings are so clever and 
have accomplished so much as I 
have observed once again here in the 
case of the Heidelberg professors" 
(letter 1) . 

As we journey with these lovers over a 
377 
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Intersections in z1. We define

!̂z1 = @z1 log (uz1) =
� (2z1 + z2 + 1)

z1 (z1 + z2 + 1)
= !̂1 , (18.22)

with ⌫1 = 1. The decomposition of J1 in terms of J0 reads

J1 = c1 J0 , () !1h�2|C1] = c1 !1h�1|C1] (18.23)

c1 = h�2|�1i!1h�1|�1i�1
!1

= �1

2
(1 + z2) (18.24)

Intersections in z2.
!̂z2 = @z2 log(J0) =

� + 3�z2 + z2

z2 (z2 + 1)
, (18.25)

In this case, ⌫2 = 1, therefore the problem has just 1 master integral, which we chose to be
!z2

h�1| = dz2. After defining

 1,0 = c1 dz2 = �1

2
(1 + z2)dz2 , (18.26)

using eq. (18.15), we finally get

I1,0 = c1,0,0 I0,0 , (18.27)

c1,0,0 = h 1,0|�1i!1h�1|�1i�1
!1

= �1

3
. (18.28)

which is the expected result, in agreement with eq. (7.8) for s = �1.

18.2 Two-Loop Massless Double-Box

In the standard Baikov approach, the massless double-box type integrals considered in
Sec. 11, on the maximal-cut, depend on two ISPs. The corresponding two-fold Baikov
representation was studied in [67]. Accordingly, we consider the following integral family,

In,m ⌘
Z

C1

Z

C2
u z

n

1 z
m

2 dz1 ^ dz2 , C1, C2 = [0,1] (18.29)

u = (z1z2(1 + a(z1 + z2) + bz1z2))
�
, (18.30)

with

! = !̂1dz1 + !̂2dz2 (18.31)

!̂1 =
� (a (2z1 + z2) + 2bz1z2 + 1)

z1 (a (z1 + z2) + bz1z2 + 1)
, !̂2 =

� (2z2 (a+ bz1) + az1 + 1)

z2 (a (z1 + z2) + bz1z2 + 1)
. (18.32)

This family, with � = (d � 6)/2, appears in the maximal cut of the two-loop double-box
introduced in Sec. 11 (for a = �1/t and b = �1/(st)).
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11 Massless Double-Box

Figure 8: Massless double-box.

Let us consider the massless double-box [100, 101] in Fig. 8. The external (outgoing)
momenta are denoted pi with p

2
i
= 0 for i = 1, 2, 3, 4. We define the kinematic invariants to

be s = (p1 + p2)2, and t = (p2 + p3)2.
The denominators are given by:

D1 = k
2
1 , D2 = (k1 � p1)

2
, D3 = (k1 � p1 � p2)

2
, D4 = (k1 � k2)

2
,

D5 = (k2 � p1 � p2)
2
, D6 = (k2 � p1 � p2 � p3)

2
, D7 = k

2
2 . (11.1)

The leftover ISP is:
z = D8 = (k2 � p1)

2
. (11.2)

The Loop-by-Loop Baikov representation, after a hepta-cut, gives,

u = z
d
2�3(s+ z)2�

d
2 (t� z)d�5

, ! =

✓
4� d

2(s+ z)
+

d� 5

z � t
+

d� 6

2z

◆
dz , (11.3)

⌫ = 2 , P = {0 , �s , t , 1}. (11.4)

Mixed Bases. We pick the two master integrals

J1 = I1,1,1,1,1,1,1;0 , J2 = I1,1,1,1,1,1,1;�1 , (11.5)

corresponding to �1 = 1 dz and �2 = z dz.
Additionally we pick the right basis as

'̂1 =
1

z
� 1

z + s
, '̂2 =

1

z + s
� 1

z � t
, (11.6)

This gives the intersection matrix C to be

C = h�i|'ji =
 �s

d�5
s+t

d�5
s((3d�14)s+2(d�5)t)

2(d�5)(d�4)
�(3d�14)s(s+t)
2(d�5)(d�4)

!
(11.7)

If we want to reduce I1,1,1,1,1,1,1;�2 corresponding to �3 = z
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, (18.25)

In this case, ⌫2 = 1, therefore the problem has just 1 master integral, which we chose to be
!z2

h�1| = dz2. After defining

 1,0 = c1 dz2 = �1

2
(1 + z2)dz2 , (18.26)

using eq. (18.15), we finally get

I1,0 = c1,0,0 I0,0 , (18.27)

c1,0,0 = h 1,0|�1i!1h�1|�1i�1
!1

= �1

3
. (18.28)

which is the expected result, in agreement with eq. (7.8) for s = �1.

18.2 Two-Loop Massless Double-Box

In the standard Baikov approach, the massless double-box type integrals considered in
Sec. 11, on the maximal-cut, depend on two ISPs. The corresponding two-fold Baikov
representation was studied in [67]. Accordingly, we consider the following integral family,
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z2 (a (z1 + z2) + bz1z2 + 1)
. (18.32)

This family, with � = (d � 6)/2, appears in the maximal cut of the two-loop double-box
introduced in Sec. 11 (for a = �1/t and b = �1/(st)).
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18.2.1 Iterated Intersections

Rewrite In,m iteratively, as,

In,m ⌘
Z

C2
dz2z

m

2 Jn , (18.33)

Jn ⌘
Z

C1
dz1 uz1 z

n

1 , (18.34)

uz1 = (z1z2(1 + a(z1 + z2) + bz1z2))
�
, (18.35)

We consider the decomposition of two integrals, namely I1,0, and I2,0.

Intersections in z1. We define

!̂z1 = @z1 log (uz1) =
� (a (2z1 + z2) + 2bz1z2 + 1)

z1 (a (z1 + z2) + bz1z2 + 1)
= !̂1 , (18.36)

with ⌫1 = 1.
The decomposition of J1 in terms of J0 reads

J1 = c1 J0 , () !1h�2|C1] = c1 !1h�1|C1] , (18.37)

c1 = h�2|�1i!1h�1|�1i�1
!1

= � az2 + 1

2 (a+ bz2)
, (18.38)

and the decomposition of J2 in terms of J0 reads

J2 = c2 J0 , () !1h�3|C1] = c2 !1h�1|C1] , (18.39)

c2 = h�3|�1i!1h�1|�1i�1
!1

=
(� + 2) (az2 + 1) 2

2(2� + 3) (a+ bz2) 2
. (18.40)

Intersections in z2.

!̂z2 = @z2 log(J0) =
a
2 (3�z2 + z2) + a

�
2b�z22 + �

�
� bz2

z2 (az2 + 1) (a+ bz2)
. (18.41)

In this case, ⌫2 = 2, therefore the problem has 2 master integrals, which we choose to be
!z2

h�1| = dz2 and !z2
h�2| = z2 dz2.

After defining

 1,0 = c1 dz2 ,  2,0 = c2 dz2 , (18.42)

we obtain the decompositions of I1,0 and I2,0 in terms of the master integrals I0,0 and I0,1,

I1,0 = c1,0,0 I0,0 + c1,0,1 I0,1 , (18.43)
I2,0 = c2,0,0 I0,0 + c2,0,1 I0,1 , (18.44)

where the coefficients are computed using eq. (18.15),

c1,0,0 = 0 , c1,0,1 = 1 , (18.45)

c2,0,0 = � � + 1

b(2� + 3)
, c2,0,1 = �3a2� + 3a2 + b

ab(2� + 3)
, (18.46)

in agreement with Reduze.
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'̂(z) rational function

@xI = @xh'|C] = @x

Z

C
u' =

Z

C
u

✓
@xu

u
^+@x

◆
' = h(@x + �)'|C] (2.21)

@x freely exchanged with the integral sign,

even if C = C(x), because u(@C) = 0

Z

C
d(B(z)�) = 0 , (2.22)

C = [0, 1] , B(z) = z(1� z) (2.23)

2.3 Integrals

Z

C
dz1 ^ · · · ^ dz9

B(z)�

zn1
1 · · · zn9

9

(2.24)

B(z), C, � depend on the graph.

N = LE +
1

2
L(L+ 1) (2.25)

�(G) (N �M) ISPs (2.26)

I(n) :=

Z

C
u�n := h�n|C] , �n := xn dx (2.27)

() I(1) = sI(0) (2.28)

!1h�1| = 1dz1 (2.29)
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!z2
h�k| ⌘ z

k�1
2 dz2, and complete the decomposition of In,m, by applying the reduction by

intersections in z2 to !z2
h n,m|,

!z2
h n,m| =

⌫2X

i,j=1

h n,m|�ji!z2
(C�1

!z2
)ji !z2

h�i| , (18.13)

where all intersection numbers are computed with !z2 .
The above equation corresponds to the decomposition of In,m in terms of ⌫2 master integrals
I0,i with i = 0, 1, . . . , ⌫2�1,

In,m =
⌫2�1X

i=0

cn,m,i I0,i , (18.14)

where

cn,m,i = h n,m|�ji!z2
(C�1

!z2
)ji . (18.15)

We apply the iterative intersections method to the two-loop sunrise and massless planar
doublebox diagrams.

18.1 Two-Loop Massless Sunrise

In the standard Baikov approach, the sunrise type integrals considered in Sec.7, on the
maximal-cut, depend on two ISPs. The corresponding two-fold Baikov representation was
studied in [67]. Accordingly, we consider the following integral family,

In,m ⌘
Z

C1

Z

C2
u z

n

1 z
m

2 dz1 ^ dz2 , C1, C2 = [0,1] (18.16)

u = (z1z2(1 + z1 + z2))
�
, (18.17)

with

! = !̂1dz1 + !̂2dz2, !̂1 =
� (2z1 + z2 + 1)

z1 (z1 + z2 + 1)
, !̂2 =

� (z1 + 2z2 + 1)

z2 (z1 + z2 + 1)
. (18.18)

We observe that by setting � = (d� 4)/2, these integrals correspond to one introduced in
Sec. 7 for s = �1.

18.1.1 Iterated Intersections

We rewrite In,m iteratively, as,

In,m ⌘
Z

C2
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m

2 Jn , (18.19)
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Z

C1
dz1 uz1 z

n

1 , (18.20)

uz1 = (z1z2(1 + z1 + z2))
�
. (18.21)
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In this case, ⌫2 = 2, therefore the problem has 2 master integrals, which we choose to be
!z2

h�1| = dz2 and !z2
h�2| = z2 dz2.

After defining

 1,0 = c1 dz2 ,  2,0 = c2 dz2 , (18.42)

we obtain the decompositions of I1,0 and I2,0 in terms of the master integrals I0,0 and I0,1,

I1,0 = c1,0,0 I0,0 + c1,0,1 I0,1 , (18.43)
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