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Algorithmic Setup
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Motivating example

Determine the IBP relations for the non-planar hexgon box

J. Boehm, A. Georgoudis, K. J. Larsen, H. Schönemann, Y. Zhang.
Complete integration-by-parts reductions of the non-planar
hexagon-box via module intersections. J. High Energ. Phys. (2018).
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Integration-by-parts identities

Baikov representation with no doubled propagators for Feynman graph of
genus L and E independent external legs, and propagators Dj∫

dD l1 · · ·
∫

dD lL
k

∏
j=1

1

D
aj
j

a1, . . . , am ≤ 1, am+1, . . . , ak ≤ 0

where m is the number of internal edges and k = LE + L(L+1)
2 .

Using the balancing condition, write the Gram matrix

S = (vi · vj )i ,j=1,...,L+E

with external and internal momenta v1, . . . , vL+E in terms of scalar
products vi · vj and change coordinate system to internal propagators zi
and ISP, and let

F = detS
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IBP Relations

Integration-by-parts identities arise from total differentials

0 =
∫

d

(
∑
i

ai (z1, . . . , zm)

z1 · · · zm
F (z)

D−L−E−1
2 dz1 · · · d̂zi · · · dzm

)

which translate into a relations

m

∑
i=1

ai (z)
∂F (z)

∂zi
+ b(z)F (z) = 0. (∗)

If one knows a full set of such relations up to a sufficiently high degree d
in z and with zi | ai (z), then any Feynman integal can be reduced to
master integrals.

So if

M1 = 〈a(z) with (∗)〉 M2 = 〈ziei | i ≤ m〉+ 〈ei | i > m〉

we have to calculate (M1 ∩M2)≤d .
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Computer Algebra
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Singular

Open Source computer algebra system for polynomial computations,
over 30 development teams worldwide, over 140 libraries.

https://www.singular.uni-kl.de/

Founded by Gert-Martin Greuel, Gerhard Pfister, Hans Schönemann.
Head of team: Wolfram Decker.
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Features

Commutative Algebra:

Gröbner bases over fields and integers, free resolutions
Local computations
Primary decomposition
Normalization
Polynomial factorization: Factory
Non-commutative features: Plural, Letterplace

Singularities:

Classification
Deformation theory

Algebraic Geometry:

Hironaka resolution of singularities
Sheaf cohomology
Rational parametrizations
tropicalizations
GIT fans
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Gröbner bases over fields and integers, free resolutions
Local computations
Primary decomposition
Normalization
Polynomial factorization: Factory
Non-commutative features: Plural, Letterplace

Singularities:

Classification
Deformation theory

Algebraic Geometry:

Hironaka resolution of singularities
Sheaf cohomology
Rational parametrizations
tropicalizations
GIT fans

Janko Boehm (TU-KL) Trends in Computer Algebra March 20, 2019 6 / 37



Features

Commutative Algebra:
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Singular Online
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The Main Computational Tool: Gröbner Bases

Division with remainder in one variable successively eliminates the highest
power.

In more than one variable we have to fix a monomial ordering (a
total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉
Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis G
of I . Then

f ∈ I ⇐⇒ NF (f ,G ) = 0
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of I . Then

f ∈ I ⇐⇒ NF (f ,G ) = 0

Janko Boehm (TU-KL) Trends in Computer Algebra March 20, 2019 7 / 37



The Main Computational Tool: Gröbner Bases
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The Main Computational Tool: Gröbner Bases

Gröbner Bases can be used for fundamental computations with ideals and
modules:

Example

eliminate variables (→ birational geometry),

determine intersections,

compute ideal quotients and saturations,

compute syzygies.

Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative
Algebra. Springer.
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Algorithmic building blocks
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Syzygies

Definition

Let R = K [x1, . . . , xn]. For a matrix G ∈ Rt×s we define the syzygy
module of G as the kernel

Syz(G ) = ker(G ) ⊂ Rs ,

and the elements are called syzygies of G . Any matrix S ∈ Rs×g with

im(S) = Syz(G ),

we call a syzygy matrix of G .
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Computing module intersections

Lemma

Let R = K [x1, . . . , xn]. Given modules M1 = 〈f1, . . . , fa〉 ⊂ Rt and
M2 = 〈g1, . . . , gb〉 ⊂ Rt , consider the matrix

G =

(
f1 . . . fa 0 . . . 0 Et

0 . . . 0 g1 . . . gb Et

)
,

with unit matrix Et

and let S = syz(G ) ∈ R (a+b+t)×c be a syzygy matrix
of G. Then the columns of the last t rows of S generate M1 ∩M2.
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Computing syzygies

Given a global monomial ordering > and G = (g1, . . . , gs) every successful
Buchberger test

NF(S(gi , gj ),G ) = 0

gives an expression

lcm(L(gi ), L(gj ))

LT (gi )︸ ︷︷ ︸
m

· gi − lcm(L(gi ), L(gj ))

LT (gj )︸ ︷︷ ︸
w

· gj − ∑s
k=1 akgk = 0

and, hence, a syzygy s(gi , gj ) := m · ei − w · ej −∑s
k=1 akek

∈ Syz(G ) ⊂ Rs

Theorem (Schreyer)

With regard to a clever choice of monomial odering >G on Rs the
s(gi , gj ) form a Gröbner basis and, hence, a generating system of Syz(G ).

xαei >G x βej :⇐⇒ L(xαgi ) > L(x βgj ) or
(
L(xαgi ) = L(x βgj ) and i < j

)
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Syzygies from Laplace expansion

Generators of M1 can be computed via Gröbner bases and Schreyer’s
algorithm.

However, a shorter, more symmetric generating system of M1 can be
obtained via a theoretical result using the Jószefiak complex, which
describes a resolution of the ideal of submaximal minors of a generic
symmetric matrix by Laplace expansion.

J. Boehm, A. Georgoudis, K. J. Larsen, M. Schulze, Y. Zhang.
Complete sets of logarithmic vector fields for integration-by-parts
identities of Feynman integrals. Phys. Rev. D (2018).

This speeds up the subsequent module intersection computation.
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Localization

Definition

Given monomial orderings >1 and >2 on the monomials in z1, . . . , zn and
c1, . . . , cr , respectively, a monomial ordering > is given by

zαcβ > zα′cβ′ :⇐⇒ zα >1 z
α′ or (zα = zα′ and cβ >2 c

β′)

We call > the block ordering (>1,>2) associated to >1and >2.

Lemma (Localization)

Let A = Q(c1, . . . , cr )[z1, . . . , zn], let B = Q[z1, . . . , zn, c1, . . . , cr ], let
v1, . . . , vl be vectors with entries in B, and define

U = 〈v1, . . . , vl 〉 ⊂ At U ′ = 〈v1, . . . , vl 〉 ⊂ Bt

Let G ⊂ Bt be a Gröbner basis of U ′ with respect to a global block
ordering (>1,>2) with blocks z1, . . . , zn > c1, . . . , cr . Then G is also a
Gröbner basis of U with respect to >1.
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Trimming of generating systems

Algorithm (Trimming)

Given a generating system g1, . . . , gl of a submodule U ⊂ At with
polynomial coefficients in Z[c1, . . . , cr ], apply iteratively:

1 Substitute the ci in the gj by pairwise different large prime numbers
pi obtaining polynomials hj ∈ Z[z1, . . . , zn].

2 Choose a large prime p different to the primes pi . Apply the canonical
map Z[z1, . . . , zn]→ Fp [z1, . . . , zn] to the hj obtaining h1, . . . , hl .

3 Choose an integer j0 ∈ {1, . . . , l}, such that hj0 has large height.

4 Compute the reduced Gröbner bases G1 of〈
hj | j = 1, . . . , l

〉
and G2 of 〈

hj | j = 1, . . . , l with j 6= j0
〉

.

5 If G1 = G2 return {gj | j = 1, . . . , l and j 6= j0} .
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pi obtaining polynomials hj ∈ Z[z1, . . . , zn].

2 Choose a large prime p different to the primes pi . Apply the canonical
map Z[z1, . . . , zn]→ Fp [z1, . . . , zn] to the hj obtaining h1, . . . , hl .

3 Choose an integer j0 ∈ {1, . . . , l}, such that hj0 has large height.

4 Compute the reduced Gröbner bases G1 of〈
hj | j = 1, . . . , l

〉
and G2 of 〈

hj | j = 1, . . . , l with j 6= j0
〉

.

5 If G1 = G2 return {gj | j = 1, . . . , l and j 6= j0} .
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General structure of IBP Algorithm

Pass to cuts required for deriving complete IBP identities

On each cut, compute generating system of M1 ∩M2 using Gröbner
bases over the field of rational functions K in the external momenta
and D using localization method.

Trim generating system.

Generate a linear system of relations between integrals occuring in
IBPs in (M1 ∩M2)≤d .

Compute reduced row echelon form (RREF) over K.

Recombine cuts
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Pass to cuts

Cuts required for deriving complete IBP identities for the non-planar
hexagon-box diagram:
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Timings for module intersection for hexagon box

Runtimes for cuts of hexagon box diagrams:

cuts 157 257 258 267 358 367 368 468 1458 1467

time/s 220 40 300 740 400 700 24 800 50 200

size/MB 68 25 49 100 97 80 10 21 5 10

size/MB 10 1.4 3.1 2.8 3.7 3.6 1.6 1.6 3.6 4.1
(simplified)
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Row reduction: Dynamic reordering of integrals

Over a function field with a small number of variables, determine a
trace to a good row echelon form (REF) via a pivoting strategy aimed
at small size and sparseness. Do row and column pivoting, i.e.,
dynamic reordering of the Feynman integrals at runtime.

Compute the reduced row echelon form (RREF).

For the expressions for the target variables, change basis of free
variables to the master integrals without column pivoting.

From the results over univariate function fields with regard to the
trace, find the degrees of the rational function coefficients in the
respective variables.

Compute the coefficients via interpolation.

→ reduction of non-planar hexagon-box integrals, with degree-four
numerators, to a basis of 73 master integrals.
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Computer algebra: New tools
relevant to Feynman integral

reduction

Janko Boehm (TU-KL) Trends in Computer Algebra March 20, 2019 18 / 37



OSCAR

Next generation Open Source Computeralgebrasystem OSCAR developed
in SFB TRR 195 ”Symbolic Tools in Mathematics and Their Application”:
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direct access from Juliawill work unmodified

Libraries KernelCurrent Interpreter

written in languageSingular written in C/C++

Direct user interaction Performance
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GPI-Space

developed by Fraunhofer for Industrial Mathematics ITWM

task based workflow management system for massively parallel
computations

based on idea of separating coordination and computation.
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Philosophy and Features of GPI-Space

Separate, specialized language for coordination layer (Petri nets).

Both implementations of recurring patterns in the coordination layer,
and computational core routines can be reused.
%item Optimizations on either side can be done by the respective
experts

Complex coordination hidden from domain experts: automatic
parallelization, cost optimized data transfers, latency hiding,
adaptation to dynamic changes in the computing environment,
resilience.
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Philosophy and Features of GPI-Space

Sociable:

Legacy applications (e.g. Singular) can be used without changes as
long as they can be called as a C-library.

Arbitrary computational tools written by domain experts can be
mixed.

Virtual memory layer allows to

scale computations beyond limitations of single machine.

legacy applications to interoperate in an efficient way.

switch between low latency, low capacity memory and high latency,
high capacity memory without changing the implementation.
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Structure and Implementation of GPI-Space

Three main components:

Distributed, scalable, resilient runtime system for huge dynamic
environments: manages memory and computational resources.
Scheduler assigns activities to resources w.r.t. both the needs of the
current computations and the overall optimization goals.
Petri net based workflow engine: manages the full application state
and is responsible for automatic parallelization and dependency
tracking.
Virtual memory manager: allows algorithmic building blocks to
communicate, share partial results. Asynchronous data transfer
managed by the runtime system rather than the domain applications,
synchronisation is done in a way that tries to hide latency.
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Petri nets

Introduced by Carl Adam Petri (1926–2010) in 1962 to describe
concurrent asynchronous systems (this is how real world physics works!).
In fact he invented them already much earlier to remember chemical
reactions in school.
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Petri nets

Petri nets are a graphical way to model algorithms: Consist out of places
and transitions. By marking of places a state is described, if the
conditions of a transition are satisfied, it changes the state.

Example

•
off goes on on off goes on

•
on

Example

•

•

•

•

•

not active
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Real world examples

Clock at time t = 4:
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Real world examples
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Features of Petri nets

Graphical, so accessible not only to experts in programming.

Hierarchial, building blocks can again be Petri nets.
Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).
Well suited for concurrent environments:

Locality of dependencies, no global events.

•

•

We can optimize locally to add parallelism (e.g. by term rewriting).
State based, describes at any time the full state of the application.
Reversible, can compute backwards, can recompute in case of a loss of
a result.
Can add resources to running computations without any
synchronization.
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Features of Petri nets
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Features of Petri nets

Task parallelism:
Transitions f and g can fire in parallel:

i s

f

g

l

r

j

Data parallelism:
If the input holds multiple tokens, several instances of f can fire in
parallel (similarly for g).
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Extensions to Petri nets in GPI-Space

Real world transitions take time:

Remove tokens from predecessor.
During computation transition holds tokens.
Put tokens on sucessor.

Any state reached in this way can also be reached in the abstract
Petri net.

Tokens can be complex data structures.

Expression language for small computations.

Janko Boehm (TU-KL) Trends in Computer Algebra March 20, 2019 32 / 37



Extensions to Petri nets in GPI-Space

Real world transitions take time:

Remove tokens from predecessor.
During computation transition holds tokens.
Put tokens on sucessor.

Any state reached in this way can also be reached in the abstract
Petri net.

Tokens can be complex data structures.

Expression language for small computations.

Janko Boehm (TU-KL) Trends in Computer Algebra March 20, 2019 32 / 37



Extensions to Petri nets in GPI-Space

Real world transitions take time:

Remove tokens from predecessor.
During computation transition holds tokens.
Put tokens on sucessor.

Any state reached in this way can also be reached in the abstract
Petri net.

Tokens can be complex data structures.

Expression language for small computations.

Janko Boehm (TU-KL) Trends in Computer Algebra March 20, 2019 32 / 37



Extensions to Petri nets in GPI-Space

Real world transitions take time:

Remove tokens from predecessor.
During computation transition holds tokens.
Put tokens on sucessor.

Any state reached in this way can also be reached in the abstract
Petri net.

Tokens can be complex data structures.

Expression language for small computations.

Janko Boehm (TU-KL) Trends in Computer Algebra March 20, 2019 32 / 37



Singular and GPI-Space

Singular calls GPI-Space.

GPI-Space uses libsingular on the workers.

Singular

GPI-Space

Singular Singular Singular ... Singular

J. Boehm, A. Frühbis-Krüger, F.-J. Pfreundt, M. Rahn, L. Ristau.
Towards Massively Parallel Computations in Algebraic Geometry.
arXiv:1808.09727 (2018)
Janko Boehm (TU-KL) Trends in Computer Algebra March 20, 2019 33 / 37
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Massively parallel structures in algebraic geometry

Key concept in modern algebraic geometry:

Description of schemes and sheaves in terms of coverings by charts.

Global properties are related to local ones in the individual charts.

Use this natural parallel structure algorithmically?

Computational basis of most algorithms is Buchberger’s Algorithm.

Buchberger’s Algorithm has doubly exponential worst case complexity
[Mayr, Meyer 1982], much faster in many practical examples of
interest → unpredictable for parallelization (can parallelize individual
computations via modular and linear algebra methods).

→ Single local computation may dominate the run-time.

Solution: Model algorithm in a parallel way s.t. it automatically finds
a good cover.
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Massively parallel structures in algebraic geometry

Modular methods and interpolation:

Error tolerant rational reconstruction and general reconstruction scheme
for algebraic geometry:

J. Boehm, W. Decker, C. Fieker, G. Pfister. The use of bad primes in
rational reconstruction, Math. Comp. 84 (2015).

Applications: Groebner bases over Q, number fields, rational function
fields, normalization, adjoint ideals, . . .

Combinatorial structures in algebraic geometry:

Graph expansion in Gröbner fans, tropical geometry, . . .
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Applications: Singular and GPI-Space

Determining smoothness for algebraic varieties.

Computing GIT-fans in geometric invariant theory.

Computing tropical varieties.
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Timings and Scaling in GPI-Space

Symmetric GIT-fan algorithm relevant in geometric invariant theory:
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Using the Singular task model with 1 core 16 days, 16 cores 1 day.
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