
Laporta algorithm for multi-loop vs multi-scale problems
(with Philipp Maierhöfer)

Workshop: Mathtematics of Linear Relations between Feynman Integrals

Johann Usovitsch

18. March 2019

1 / 22

Outline

1 Introduction

2 Implementation - Kira

3 Examples and Challenges

4 New Feature

5 Summary and Outlook

2 / 22

Introduction Integration-by-parts Identities Applications

Integration-by-parts identities applications
Integration-by-parts (IBP)[Chetyrkin, Tkachov, 1981] and Lorentz invariance
[Gehrmann, Remiddi, 2000] identities for scalar Feynman integrals are very
important in quantum field theoretical computations (multi-loop
computations)
Reduce the number of Feynman integrals to compute, which appear
in scattering amplitude computations
Compute the integrals analytically or numerically with the method of
differential equations [Kotikov, 1991; Remiddi, 1997; Henn, 2013; Argeri et al.,

2013; Lee, 2015; Meyer, 2016] or difference equations[Laporta, 2000; Lee, 2010] (these
require basis change and IBP reductions)
Use the method of sector decomposition [Heinrich,2008] (pySecDec
[Borowka et al., 2018] and Fiesta4 [Smirnov, 2016]) or use the linear reducibility of
the integrals (HyperInt [Panzer, 2014]) to compute the Feynman integrals
analytically or numerically (these require basis change and IBP
reductions).
Application to the cappricious integrals (Mellin-Barnes integrals) is
very non trivial, see works [J.U., Ievgen Dubovyk and Tord Riemann] 3 / 22

Introduction Scalar Integrals

Scalar Integrals

k1

p1 + k1

k2

p1 + k2

k2 − k1p1 p1

I(a1, . . . , a5) =
∫

dDk1d
Dk2

[k12]a1 [(p1 + k1)2]a2 [k22]a3 [(p1 + k2)2]a4 [(k2 − k1)2]a5

Integral depends explicitly on the exponents af

Loop momenta: k1, k2, L = 2
Number of propagators: N = 5

4 / 22

Introduction IBP Identities

IBP Identities
I(a1, . . . , a5) =

∫ dDk1dDk2
[k12]a1 [(p1+k1)2]a2 [k22]a3 [(p1+k2)2]a4 [(k2−k1)2]a5

Integration-by-parts (IBP) identities:∫
dDk1 . . . d

DkL
∂

∂(ki)µ

(
(qj)µ

1
[P1]a1 . . . [PN]aN

)
=0

c1({af})I(a1, . . . , aN−1) + · · ·+ cm({af})I(a1+1, . . . , aN) =0

qj = p1, . . . , pE , k1, . . . , kL

Express all integrals with the same set of propagators but with different exponents
af as a linear combination of some basis integrals (master integrals)

Gives relations between the scalar integrals with different exponents af
Number of L(E + L) IBP equations, i = 1, . . . , L and j = 1, . . . , E + L

af = symbols: Seek for recursion relations, LiteRed [Lee, 2012]

af = integers: Sample a system of equations, Laporta algorithm [Laporta, 2000]

5 / 22

Introduction Laporta Algorithm

System of Equations the Laporta Way
Seeds:

r

linesL 2 N3 · · ·

r =
∑

f af , af > 0

integrals with
∀ af = 1

dotted propagators
some af > 1

auxiliary integrals

seed integrals

in Kira

Sectors: S =
∑N

i=1 θj × 2j−1
{
θj = 1, for each af > 0
θj = 0, else

(one way to

tell a computer whether a propagator exists in an integral)
System of equations: generate IBPs for all seeds
Auxiliary integrals come from the IBPs applied to the seeds at the
edge 6 / 22

Introduction Laporta Algorithm

Laporta Algorithm [Laporta, 2000]

Scalar integrals I(a1, . . . , a5) with integer values af

Boundary conditions to sample the IBP equations
r =

∑N
f=1 af with af > 0, f = 1, . . . , N

s = −
∑N

f=1 af with af < 0, f = 1, . . . , N
Seed integrals: r ∈ [rmin, rmax], s ∈ [smin, smax]
T topology number

Reduce only a chosen set of integrals to a fixed number of basis
integrals
Public implementations: Air [Lazopoulos, Anastasiou, 2004],
FIRE [A. V. Smirnov et al., 2008, 2013, 2014, 2019] and Reduze [Studerus, 2010] and
Reduze 2 [Studerus, von Manteuffel, 2012] and Kira [Maierhöfer, Usovitsch, Uwer, 2017]

7 / 22

Introduction Laporta Algorithm

Laporta Algorithm Challenges
The system of equations generated the Laporta way contains many
redundant equations
The coefficients are polynomials in the dimension D and all scales
{s12, s23,m1,m2, ..}
The number of equations may go up to billions and more
Solving linear system of equations generated with the Laporta
algorithm are CPU, disk and RAM expensive computations.
Make trade offs to finish the reduction, e.g.: decrease the CPU
costs but increase RAM or disk costs
Explore algorithmic improvements!

8 / 22

Implementation - Kira Implementation Details

Features of Kira Version 1.2
Kira, release notes: arXiv:1812.01491
Get Kira on gitlab at: https://gitlab.com/kira-pyred/kira.git

The equation generator is ∼ 10L faster than Kira 1.1 multi-loop
Improved parallelization - no openMP
Support for Mac OX / New build system: Meson
Get relations from higher sectors – minimize the number of master
integrals / faster symmetry and trivial sectors detection than in Kira
1.1
Start a reduction with a preferred list of master integrals
Focus the reduction only to a subset of master integrals — set all
other coefficients to zero, since Kira 1.0 and Kira 1.1
More flexible seed notation is introduced, while the old is preserved
Choose between 8 different integral integral orderings
Coefficient simplifications are based on heuristics
Algebraic reconstruction multi-scale
User defined system of equations
...

9 / 22

https://gitlab.com/kira-pyred/kira.git

Implementation - Kira Implementation Details

Example Symmetry Finder

15 minutes on one core to find all trivial sectors, sector relations /
symmetries for the complete topology + subsectors
This time we use the Pak algorithm [Pak, 2011]

New efficient loop momenta mapper

10 / 22

Implementation - Kira Implementation Details

Reduction to a Subset of Master Integrals

The idea is simple and is probably used by many others with available
public codes of FIRE and Reduze 2
Reduction to a subset of master integrals is to apply if at least two
trash collector integrals exist.
Trash collector integrals: master integrals with big coefficients in front
Good synergy with the option algebraic reconstruction and the
parallelization across multiple computer nodes
Kira provides an interface to do so since Kira 1.0
This strategy allows to increase the CPU and the RAM performance
simultaneously

11 / 22

Implementation - Kira Implementation Details

User Defined System of Equations

Case 1: Take an arbitrary linear system of equations and bring it in a
echelon row reduced form
Case 2: Generate symmetries and trivial sectors with Kira, but provide
your own linear system of equations, e.g.: system generated via
Syzygy IBP equations (source terms, IBPs without dotted
propagators) and not with the usual IBP identities
Case 3: Reduce to a UT basis

12 / 22

Implementation - Kira Implementation Details

gg→H at 3-loops: integralfamilies.yaml
integralfamilies:

- name: Xhiggs3l1_mmmmmmm00
loop_momenta: [l1, l2, l3]
top_level_sectors: [511] # important option
propagators:

- ["l1", "m^2"]
- ["l2", "m^2"]
- ["l3", "m^2"]
- ["l1 - q1", "m^2"]
- ["l2 - q1 - q2", "m^2"]
- ["l1 - l2", 0]
- ["-l2 + l3 + q1 + q2", 0]
- ["l1 - l2 + l3", "m^2"]
- ["l1 - l2 + l3 + q2", "m^2"]
- { bilinear: [["l1", "l3"], 0] }
- { bilinear: [["l2", "q1"], 0] }
- { bilinear: [["l3", "q1"], 0] } 13 / 22

Implementation - Kira Implementation Details

gg→H at 3-loops: Old v.s. New jobs.yaml Interface
jobs:

- reduce_sectors:
sector_selection: # Old
select_recursively: # Old
- [Xhiggs3l1_mmmmmmm00,511] # Old

identities: # Old
ibp: # Old
- { r: [t, 10], s: [0, 4] } # Old

reduce: # New
- {r: 10, s: 4} # New

select_integrals: # important option
select_mandatory_recursively: # important option
- {r: 10, s: 4, d: 1} # important option

Kira implicitly knows from integralfamilies.yaml that the user wants
to reduce the topology named: Xhiggs3l1_mmmmmmm00
From top_level_sectors: [511], Kira assumes that the user
wants to reduce the sector: 511

14 / 22

Examples and Challenges Multi-loop

Reduction of a gg→H at 3-loops Non-planar Topology

Algorithm Kira 1.1 (32 cores) Kira 1.2 (16 cores)

Generate system of equations 7.9 h -

Reduce numerically 3.6 h -

Generate and reduce numerically - 3.4 h

Build triangular form (thread pools) 26 h 4.8 h

Backward substitution (heuristics) 18.8 d 4.1 d

Seed specification: {r: 10, s: 4, d: 1}
Speedup comes from less calls to Fermat: 382.502.520 x 5 (Kira 1.1)
v.s. 981 (Kira 1.2)
After the numerical reduction over the finite field (integers modulo 64
Bit prime number) is finished, you know the master integrals

15 / 22

Examples and Challenges Multi-scale

Algebraic Coefficient Simplification
p2

1 = 0 p1− k1 p1− k1+ k2 q2
2 = 0

p2
2 = 0k2− p2q1− k1

m1

q2
1 = m2

1

k1

p1−q2− k1+ k2

m2 k2

Type T
m2

2= 3
14 m2

1
Kira TKira T

m2
2= 3

14 m2
1

FIRE 6

default 22 min 4 h -

B 6.7 min 1 h 2.5 h

default: select_mandatory_recursively: [{r: 7, s: 4}]
B: select_mandatory_list: [1,1,1,1,1,1,1,-4,0] [1,1,1,1,1,1,1,-1,-3]
[1,1,1,1,1,1,1,-2,-2] [1,1,1,1,1,1,1,-3,-1] [1,1,1,1,1,1,1,0,-4]
FIRE 6 [A. V. Smirnov, F. S. Chukharev (2019)] in C++ and using the
same Fermat executable as in Kira.
Kira is used with the option -integral_ordering=2 (same master
integral basis as in FIRE 6)

16 / 22

New Feature

Algebraic Reconstruction

Backward substitution gives: I({ai}) =
M∑
j
CjMj , Mj master integral

Cj =
∑N

i=1 ci,
N ≈ O(102)− (105)
Naiv sum gives a snow ball effect: Intermediate sum grows to more
complicated terms then the final result.
One solution since Kira 1.0 is to constantly sort the terms ci and the
intermediate sums in their string length. Extremely powerful!

Second solution since Kira 1.2 is the algebraic reconstruction

Sample
∑N

i=1 ci by setting at least one parameter { s
m2

1
, t

m2
1
,

m2
i6=1

m2
1
, . . . }

to integer numbers
Interpolate the final result from these samples

17 / 22

New Feature

Implementation Part 1

Dependence on at least 2 parameters, e.g.: {D,x}, x = s
m2

1

Sample once C(D,x) for numeric value in D
Get C(x) rational function
Get the degree of the polynomials (numerator and denominator) of
C(x) in x: dN and dD

Interpolate the numerator and denominator in x individually with
Newtonian approach
Use C(x) later as a reference point to eliminate sign and numeric
prefactor ambiguities
Original work in this field is based on, see arXiv: 1805.01873
1712.09737 1511.01071 by Yang Zhang and his collaborators

18 / 22

New Feature

Implementation Part 2

Sample C(D,x) max(dN + 2, dD + 2) for numeric values xj in x
Get multiple functions C(D,x)→ {C(D,xj)}
Test that all numerators and denominators have the same number of
terms, if not, resample

Interpolate the numerator and the denominator of C(D,x) individually,
e.g. use the Newtonian interpolation formula

C(D,x) =
dN +1,dD+1∑

i=1
ai

i−1∏
j=1

(x− xj)

a1 = C(D,x1)
a2 = C(D,x2)−a1

x2−x1

a3 = (C(D,x3)−a1
x3−x1

− a2) 1
x3−x2

. . .
adN +1 = ((C(D,xdN +1)−a1

xdN +1−x1
− a2) 1

xdN +1−x2
− · · · − adN

) 1
xdN +1−xdN

19 / 22

New Feature

Implementation Part 3
To activate the algebraic reconstruction use:
algebraic_reconstruct: true
Kira decides based on heuristics to use the algebraic reconstruction
algorithm or not
Heuristics are: number of terms in a sum, length of the biggest
coefficients
All implementation details are “hidden under the hood” — await
improvements and more benchmarks (code is public)
At present algebraic reconstruction kicks in only for the coefficients
during the backward substitution
Next Kira version will include the algebraic reconstruction of the
whole reduction
Possible usage: Treat coefficients of the master integrals individually

20 / 22

New Feature

Challenges
We experience that Kira is very RAM hungry for 5 loop computations,
because we generate all possible IBPs for all possible seeds
Numerical solver is going to use more disk less RAM, which will
reduce the speed performance during the initiation of the reduction
problem
Use of Syzygy equations to generate IBP equations without dots
Use of algebraic reconstruction to the complete reduction process
Algebraic reconstruction will receive more and more improvements
Fusion of two algorithms for coefficient simplification
More Sophisticated interpolation of polynomials than the Newton
algorithm
Getting rid of the external calls to the program Fermat, e.g. use it as
a library

21 / 22

Summary and Outlook

Summary and Outlook

Kira version 1.2 is available: https://gitlab.com/kira-pyred/kira.git
and includes:
Fast equation generator
Improved parallelization
New flexible seed notation, while the old is preserved
New feature: Algebraic reconstruction
Todo list:
Algebraic reconstruction for the whole system, parallelization across
different machines.
Kira is an all-rounder competitive in all disciplines: multi-loop,
multi-scale and user defined system of equations reductions

22 / 22

https://gitlab.com/kira-pyred/kira.git

	Introduction
	Implementation - Kira
	Examples and Challenges
	New Feature
	Summary and Outlook

