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Vector and Scalar Form Factors 

 
 
 

 

•  When studying non-leptonic meson decays to build amplitudes we 
require building blocks:  

–  ππ 
–  Kπ 

•  ππ scalar FF and Vector FF:  
 
 
 

•  Kπ scalar and Vector FFs:  
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ChPT + dispersion relations  
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Vector and Scalar Pion Form Factors 
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•  At low energy          Use of ChPT 

•  For intermediate energy region : dispersive techniques  
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On the interest of using Dispersion Relations 

•  If E > 1 GeV: ChPT not valid anymore to describe dynamics of the process                 
  Resonances appear : 

–  For ππ:  I=1: ρ(770),  ρ(1450), ρ(1700), …,  I=0: “σ(~500)”, f0(980),… 

–  For Kπ: I=1: K*(892), K*(1410), K*(1680), …,  I=0: “κ(~800)”, … 

•  With Dispersion Relation:  
–  no need for making assumptions  

of a dominance of resonances  
              directly given by the  
              parametrization, 
              phase shifts taken as inputs  

 
–  Parametrization valid in a large range  

of energy:  
         analyse several processes  
         simultanously where the same  
         quantity: FFs, amplitude appear: 
         Ex: Kl3 decays, τ → Kπντ 
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ππ  Vector and Scalar Form Factors 
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  Donoghue, Gasser, Leutwyler’90 
          Moussallam’99 

Daub, Dreiner, Hanart, Kubis, Meissner’13 
 Celis, Cirigliano, E.P.’14 

    See also Oller & Oset’98 
              Lahde & Meissner’06 

 

0.5 1.0 1.5 2.0 2.5 3.0

0.01

0.10

1

10

k
2 (GeV)

|F
2

Pich & Portoles’01 
Schneider, Kubis, Niecknig’12 
Gómez-Dumm & Roig’13 
Celis, Cirigliano, E.P.’14, etc 

ππ vector FF 



Kπ  Vector and Scalar Form Factors 
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E. Passemar RPP 2009

Advantages of the dispersive parametrization

• Very precise parametrization for the scalar form factor to go to the 
CT point

• One parameter formula describing both the slope and the curvature
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Very precise parametrization for the vector FF
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FIG. 1: Result for the scalar Kπ form factor F0(t) with the
range corresponding to a variation of the form factor at the
Callan-Treiman-point according to eq. (6).

IV. MS FROM THE SCALAR CHANNEL

The numerical analysis of the scalar channel proceeds
in complete analogy to the previous analyses [4, 6, 11]
where the detailed theoretical expressions can be found.
The central equation for the extraction of the light quark
masses from the scalar and pseudoscalar spectral func-
tions takes the form

u Ψ̂th(u) =

s0∫

0

ρph(s) e
−s/u ds+

∞∫

s0

ρth(s) e
−s/u ds , (10)

in which Ψ̂th(u) denotes the Borel-transformed theoreti-
cal 2-point correlator, providing an exponential suppres-
sion of higher-energy contributions where no experimen-
tal information is available, and u is the so-called Borel
variable. Expressions for Ψ̂th(u) up to O(α3

s) can be
found in [4, 11] and we have also included the very recent
result on the perturbative O(α4

s) contribution [12, 36].
The OPE which is employed for calculating Ψ̂th(u) is

valid only at sufficiently large u ≫ Λ2
QCD. As is well

known, for the scalar and pseudoscalar channels a break-
down of the OPE is expected to occur at a relatively large
u around 1GeV2, due to the presence of non-perturbative
vacuum effects which go beyond the local condensate ex-
pansion [37, 38]. Models of the correlation function based
on instanton configurations, such as the instanton liquid
model (ILM) [39–41], allow to penetrate into the region
of smaller u. However, as realised e.g. in [13], at suffi-
ciently large u ≈ 2GeV2, the ILM correction turns out
to be rather small, and hence we shall avoid it by choos-
ing 2GeV2 as a lower limit for the Borel variable, which
furthermore also reduces the uncertainty from higher or-
der αs corrections.
The relation between the phenomenological spectral

function and the strangeness-changing scalar form factor
is given by

ρph(s) =
3∆2

Kπ

32π2

[
σKπ(s)|FKπ

0 (s)|2+σKη′(s)|FKη′

0 (s)|2
]
,

(11)

where σKP (s) is the two-particle phase space factor and
like in ref. [4], we have also included the Kη′ contribu-

tion FKη′

0 (s). A possible source of systematic uncertainty
may be the neglect of more than 2-particle final states,
on which we comment further below. Above the energy
s0, the spectral function is again approximated by the
theoretical expression ρth(s).
Performing the ms analysis on the basis of eqs. (10)

and (11), for the running mass in the MS scheme we find

ms(2GeV) = 87.6+8.8
− 6.8 MeV , (12)

at a central value s0 = 4.4GeV2, where ms is most stable
with respect to variations of u in the range 2GeV2 <
u < 4GeV2. This and all other input parameters whose
variation induces a shift in ms of more than 1MeV have
been collected in table I.

Parameter Value ∆ms [MeV]

F0(∆Kπ)/F0(0) 1.2346(53) +7.0
− 5.3

F0(0) 0.972(12) +1.0
− 1.1

αs(MZ) 0.119(2) −3.1
+3.8

O(α4
s)

no O(α4
s)

2×O(α4
s)

+1.8
−1.1

s0 3.9 − 5.5 GeV2 +3.2
−2.6

TABLE I: Values of the main input parameters and corre-
sponding uncertainties for ms(2GeV) in the scalar channel.

The dominant phenomenological uncertainty on ms is
due to the shape of the form factor F0(t) while the value
F0(0) only plays a minor role. On the theoretical side the
main uncertainty arises from the variation of αs and to
a smaller extent from unknown higher order corrections
which are estimated by either removing or doubling the
O(α4

s) correction. Finally, we have varied the parameter
s0 in a rather generous range. Higher order corrections in
the OPE have been included according to [4, 11]. How-
ever, they have only small influence and a variation of
the corresponding parameters induces errors on ms of
less than 1MeV in all possible cases.

V. MS FROM THE PSEUDOSCALAR
CHANNEL

In complete analogy to the scalar channel the strange
mass ms can also be extracted from the pseudoscalar
channel. The phenomenological spectral function has
been modelled along the lines of ref. [13], while our anal-
ysis parallels the one of the recent work [12].
From the pseudoscalar channel, at an s0 = 4.2GeV2

for which ms in the region 2GeV2 < u < 4GeV2 is most
stable against a variation of the Borel variable u, the
strange quark mass is found to be

ms(2GeV) = 97.2+11.3
− 8.0 MeV . (13)

Again, in table II the input parameters and their vari-
ations which produce a shift of ms larger than 1MeV

Bernard’14 

Bernard et al.’06,’10 
Bernard, Boito, E.P.’11 

Jamin, Oller, Pich’02,’06 
Jamin, Pich, Portoles’08 

Boito, Escribano, Jamin’08’10 
Moussallam’08 

Kπ vector FF 

Kπ scalar FF 

Kπ scalar FF 



Dispersion relations: challenges 
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•  At low energy          Use of ChPT 

•  For intermediate energy region : dispersive techniques 

•  Imaginary part known from unitarity and data: 
 
 
 
 
n = all possible intermediate states 
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Dispersion relations: challenges 
�

•  Unitarity           the discontinuity of the form factor is known 

•  The higher energy one goes  s=(p1+p2)2  more states one needs to include 
 Only one channel n = ππ
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1
2i

disc Fππ (s) = Im Fππ (s) = Fππ→n
n
∑ Tn→ππ( )*
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  s < 16 mπ
2( )



Dispersion relations: challenges 
�

•  Unitarity           determine the discontinuity of the form factor 
 

 
•  Only one channel n = ππ  
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1
2i

disc Fππ (s) = Im Fππ (s) = Fππ→n
n
∑ Tn→ππ( )*
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Going beyond one channel 
�

•  Unitarity          determine the discontinuity of the form factor 
 

 
•  In practice when √s < ~1.4 GeV : 2 channels in the scalar case  

 

 
 
 
 
 
 
 
 

 

  

1
2i

disc Fππ (s) = Im Fππ (s) = Fππ→n
n
∑ Tn→ππ( )*
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Form factors
•  Two channel unitarity condition (ππ, KK) (OK up to  √s ~ 1.4 GeV)

n  = ππ, KK

•  General solution:

Canonical solution falling as 1/s for large s 
(obey un-subtracted dispersion relation) 

Polynomials 
determined by 

matching to ChPT

•  Solved iteratively, using input on s-
wave I=0  meson meson scattering

  n = ππ , KK

Scattering matrix: 
 

     ππ → ππ, ππ →  
        → ππ,           
 
 

KK
KK KK KK→ 
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  Donoghue, Gasser, Leutwyler’90 
          Moussallam’99 
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Going beyond one channel 
�

•  Unitarity          determine the discontinuity of the form factor 
 

 
•  In practice when √s < ~1.4 GeV : 2 channels in the scalar case  
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disc Fππ (s) = Im Fππ (s) = Fππ→n
n
∑ Tn→ππ( )*
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FIG. 1: Result for the scalar Kπ form factor F0(t) with the
range corresponding to a variation of the form factor at the
Callan-Treiman-point according to eq. (6).

IV. MS FROM THE SCALAR CHANNEL

The numerical analysis of the scalar channel proceeds
in complete analogy to the previous analyses [4, 6, 11]
where the detailed theoretical expressions can be found.
The central equation for the extraction of the light quark
masses from the scalar and pseudoscalar spectral func-
tions takes the form

u Ψ̂th(u) =

s0∫

0

ρph(s) e
−s/u ds+

∞∫

s0

ρth(s) e
−s/u ds , (10)

in which Ψ̂th(u) denotes the Borel-transformed theoreti-
cal 2-point correlator, providing an exponential suppres-
sion of higher-energy contributions where no experimen-
tal information is available, and u is the so-called Borel
variable. Expressions for Ψ̂th(u) up to O(α3

s) can be
found in [4, 11] and we have also included the very recent
result on the perturbative O(α4

s) contribution [12, 36].
The OPE which is employed for calculating Ψ̂th(u) is

valid only at sufficiently large u ≫ Λ2
QCD. As is well

known, for the scalar and pseudoscalar channels a break-
down of the OPE is expected to occur at a relatively large
u around 1GeV2, due to the presence of non-perturbative
vacuum effects which go beyond the local condensate ex-
pansion [37, 38]. Models of the correlation function based
on instanton configurations, such as the instanton liquid
model (ILM) [39–41], allow to penetrate into the region
of smaller u. However, as realised e.g. in [13], at suffi-
ciently large u ≈ 2GeV2, the ILM correction turns out
to be rather small, and hence we shall avoid it by choos-
ing 2GeV2 as a lower limit for the Borel variable, which
furthermore also reduces the uncertainty from higher or-
der αs corrections.
The relation between the phenomenological spectral

function and the strangeness-changing scalar form factor
is given by

ρph(s) =
3∆2

Kπ

32π2

[
σKπ(s)|FKπ

0 (s)|2+σKη′(s)|FKη′

0 (s)|2
]
,

(11)

where σKP (s) is the two-particle phase space factor and
like in ref. [4], we have also included the Kη′ contribu-

tion FKη′

0 (s). A possible source of systematic uncertainty
may be the neglect of more than 2-particle final states,
on which we comment further below. Above the energy
s0, the spectral function is again approximated by the
theoretical expression ρth(s).
Performing the ms analysis on the basis of eqs. (10)

and (11), for the running mass in the MS scheme we find

ms(2GeV) = 87.6+8.8
− 6.8 MeV , (12)

at a central value s0 = 4.4GeV2, where ms is most stable
with respect to variations of u in the range 2GeV2 <
u < 4GeV2. This and all other input parameters whose
variation induces a shift in ms of more than 1MeV have
been collected in table I.

Parameter Value ∆ms [MeV]

F0(∆Kπ)/F0(0) 1.2346(53) +7.0
− 5.3

F0(0) 0.972(12) +1.0
− 1.1

αs(MZ) 0.119(2) −3.1
+3.8

O(α4
s)

no O(α4
s)

2×O(α4
s)

+1.8
−1.1

s0 3.9 − 5.5 GeV2 +3.2
−2.6

TABLE I: Values of the main input parameters and corre-
sponding uncertainties for ms(2GeV) in the scalar channel.

The dominant phenomenological uncertainty on ms is
due to the shape of the form factor F0(t) while the value
F0(0) only plays a minor role. On the theoretical side the
main uncertainty arises from the variation of αs and to
a smaller extent from unknown higher order corrections
which are estimated by either removing or doubling the
O(α4

s) correction. Finally, we have varied the parameter
s0 in a rather generous range. Higher order corrections in
the OPE have been included according to [4, 11]. How-
ever, they have only small influence and a variation of
the corresponding parameters induces errors on ms of
less than 1MeV in all possible cases.

V. MS FROM THE PSEUDOSCALAR
CHANNEL

In complete analogy to the scalar channel the strange
mass ms can also be extracted from the pseudoscalar
channel. The phenomenological spectral function has
been modelled along the lines of ref. [13], while our anal-
ysis parallels the one of the recent work [12].
From the pseudoscalar channel, at an s0 = 4.2GeV2

for which ms in the region 2GeV2 < u < 4GeV2 is most
stable against a variation of the Borel variable u, the
strange quark mass is found to be

ms(2GeV) = 97.2+11.3
− 8.0 MeV . (13)

Again, in table II the input parameters and their vari-
ations which produce a shift of ms larger than 1MeV
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Going in the inelastic region 
�

•  Unitarity          determine the discontinuity of the form factor 
 

 
•  In practice when √s < ~1.4 GeV : 2 channels in the scalar case  

•  For B à 3π we need to know the pion FFs up to √s ~2.5 GeV  

•  Challenge: how do we go beyond? Many channels open: σσ, ρρ (2π), nπ, 
etc 

   Need to rely on models, see talks by B. Kubis, B. Loiseau and  
        P.C. Magalhães  

 

 
 
 
 
 
 
 
 

 

  

1
2i

disc Fππ (s) = Im Fππ (s) = Fππ→n
n
∑ Tn→ππ( )*
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Going in the inelastic region 
�
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higher energies which is of less importance in the description of the form factors due to the two
subtractions in the dispersive representation. As explained before, in the latter region a rough
estimate of the phase is made, using φ0(t) = π ± π for the scalar form factor and φ1(t) = π+2π

−π

for the vector one. Let us first discuss this approximation in a bit more detail.

In Fig. 3, we show the phase of the scalar form factor as obtained from a once subtracted
dispersion relation by Jamin et al., Ref. [25], as well as the phase of the Kπ amplitude obtained
by Büttiker et al., Ref. [27]. As can be seen, in the elastic region both phases agree as they

0 2 4 6 8
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PSfrag replacements

f.f. [25]
πK amp. [27]
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Figure 3: Comparison of the Kπ scattering phases from the amplitude and the S-matrix in the
scalar channel extracted in Ref. [27] and the phase of the form factor (preferred fit 6.10K2)
obtained via a multi-channel analysis [25].

should. In the region where the inelasticity sets in both phases decrease, even rather abruptly
in the case of the phase of the amplitude, and then start to grow again. This behaviour is well
understood and has been explained in Refs. [39, 40] in the case of the scalar ππ form factor.
Even though the central value of the phase discussed in section 3.1 does not have this property,
the large uncertainty assigned to it takes it into account. Unless the form factor has a zero at
some higher energy, as it will be discussed in the next section, no other sharp drop of the phase
is expected and the phase will just in some way go to its asymptotic value π at very large t as
typically does the phase obtained by Jamin et al. in Ref. [25]. Thus φ0(t) = π ± π certainly
encompasses the physical phase of the scalar form factor.

Another source of uncertainty comes from the fact that the energies ΛS and ΛV where the
inelasticity cannot be neglected any more are not very well known. For the s-wave, ΛS was
chosen in Ref. [11] as the energy where the phase of the amplitude is experimentally found to be
different from the phase of the S-matrix, namely at s = (1.66 GeV)2 as shown in Fig. 3. In the
case of the vector form factor, the K∗(1414) resonance can be seen as an indication of the end
of the elastic region. We want to investigate here how sensitive G(t) and H(t) are to variations
of the cutoffs ΛS and ΛV within reasonable bounds. We will concentrate on G(t), an analogous
study on H(t) leads to similar conclusions. In Fig. 4, the bands represent the possible values of
G(0), Eq. (3.2), and of G(−∞), Eq. (3.5), as a function of the cut-off where G(0) has the largest
uncertainty in the whole physical region of Kℓ3-decays. For the s-wave a reasonable range of

9

since it already gives a very good description of the phase in the vicinity of the resonance
K∗(892) and down to threshold. We will consider the impact of a higher order polynomial in
section 4.2.2. The constants a and b are determined from the mass and the width of the K∗(892)
characterized as

ctg(δ1(s))|s=M2
K∗

= 0 and
dδ1(s)

ds

∣

∣

∣

∣

s=M2
K∗

=
1

MK∗ΓK∗

. (3.15)

Note that there exists in the literature another definition of mass and width in terms of the
position of the pole in the complex plane. The latter is process independent. The uncertainties
coming from the inputs used for MK∗ and ΓK∗ will be discussed in section 4.2.2. Another
possibility would be to determine a and b from a direct fit to the data [35]. This would, however,
lead to a function H(t) lying within the error bars discussed below. We checked that the phase
constructed in this way with no free parameters leads to values of the p-wave scattering length,
a1 = 0.0183m2

π, agreeing with other determinations [27, 37, 38].

1 2 3 4
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our model
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aM=-7.5 10-3
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Figure 2: Comparison of our model for the phase of the vector form factor, Eq. (3.12), with the
coupled channel analysis of Ref. [34]. The grey band corresponds to the assumption that above
ΛV the phase equals π+2π

−π , see text.

In p-wave scattering, inelasticity effects which imply φ1(s) ̸= δ1(s) become important at
lower energies than in the scalar case, the mass of the vector resonance K∗(1414) being an
indication of the start of the inelasticity. At high energy, following the same arguments on
the asymptotic behaviour as for the scalar case, the phase will reach its asymptotic value, π.
Therefore, similarly to what has been done for G(t), the function H(t), Eq. (3.7), is decomposed
into two parts:

H(t) = HKπ(ΛV , t) +Has(ΛV , t)± δH(t) , (3.16)
with

HKπ(ΛV , t) =
m2

π t

π

∫ s0

tKπ

δ1(t′)

t′2(t′ − t)
dt′ +

m2
π t

π

∫ ΛV

s0

δexp(t′)

t′2(t′ − t)
dt′ , (3.17)

and
Has(ΛV , t) =

m2
π t

π

∫ ∞

ΛV

π

t′2(t′ − t)
dt′ = −m2

π

t
ln
(

1− t

ΛV

)

− m2
π

ΛV
. (3.18)

In these equations, ΛV denotes the end of the elastic region. In what follows, we will use
ΛV = (1.414)2 GeV2 and we will discuss other values for ΛV in section 4.2.2. In Eq. (3.17),

7

Kπ vector phase 

Kπ scalar phase 

Bernard, Oertel, Passemar, Stern’06,’10 

Moussallam’08 

[25] Jamin, Oller, Pich’02,’06  
[27] Buettiker, Descotes, Moussallam’03 

 



Going in the inelastic region 
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since it already gives a very good description of the phase in the vicinity of the resonance
K∗(892) and down to threshold. We will consider the impact of a higher order polynomial in
section 4.2.2. The constants a and b are determined from the mass and the width of the K∗(892)
characterized as

ctg(δ1(s))|s=M2
K∗

= 0 and
dδ1(s)

ds

∣

∣

∣
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s=M2
K∗

=
1

MK∗ΓK∗

. (3.15)

Note that there exists in the literature another definition of mass and width in terms of the
position of the pole in the complex plane. The latter is process independent. The uncertainties
coming from the inputs used for MK∗ and ΓK∗ will be discussed in section 4.2.2. Another
possibility would be to determine a and b from a direct fit to the data [35]. This would, however,
lead to a function H(t) lying within the error bars discussed below. We checked that the phase
constructed in this way with no free parameters leads to values of the p-wave scattering length,
a1 = 0.0183m2

π, agreeing with other determinations [27, 37, 38].
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Figure 2: Comparison of our model for the phase of the vector form factor, Eq. (3.12), with the
coupled channel analysis of Ref. [34]. The grey band corresponds to the assumption that above
ΛV the phase equals π+2π

−π , see text.

In p-wave scattering, inelasticity effects which imply φ1(s) ̸= δ1(s) become important at
lower energies than in the scalar case, the mass of the vector resonance K∗(1414) being an
indication of the start of the inelasticity. At high energy, following the same arguments on
the asymptotic behaviour as for the scalar case, the phase will reach its asymptotic value, π.
Therefore, similarly to what has been done for G(t), the function H(t), Eq. (3.7), is decomposed
into two parts:

H(t) = HKπ(ΛV , t) +Has(ΛV , t)± δH(t) , (3.16)
with

HKπ(ΛV , t) =
m2

π t

π

∫ s0

tKπ

δ1(t′)

t′2(t′ − t)
dt′ +

m2
π t

π

∫ ΛV

s0

δexp(t′)

t′2(t′ − t)
dt′ , (3.17)

and
Has(ΛV , t) =

m2
π t

π

∫ ∞

ΛV

π

t′2(t′ − t)
dt′ = −m2

π

t
ln
(

1− t

ΛV

)

− m2
π

ΛV
. (3.18)

In these equations, ΛV denotes the end of the elastic region. In what follows, we will use
ΛV = (1.414)2 GeV2 and we will discuss other values for ΛV in section 4.2.2. In Eq. (3.17),

7

Kπ vector phase 

Kπ scalar phase 

Bernard, Oertel, Passemar, Stern’06,’10 

Moussallam’08 

Buettiker, Descotes, Moussallam’03 
Kπ scattering phase 

 

E. Passemar RPP 2009

• Elastic up to ~1.5 GeV

• 2 subtractions rapid convergence of G(t)

1 1
2 2, ,

, ,:  ( ) ( ) ( ) ( )s s
K K Kt t t t tπ π ππ π ππ π ππ π πφ φ δ δφ φ δ δφ φ δ δφ φ δ δ< Λ = = ± ∆< Λ = = ± ∆< Λ = = ± ∆< Λ = = ± ∆

   : ( ) ( )ast t tφ φ π πφ φ π πφ φ π πφ φ π π> Λ = = ±> Λ = = ±> Λ = = ±> Λ = = ±

• Phase used

SΛΛΛΛ 2 22.25 GeV 2.77 GeVS< Λ << Λ << Λ << Λ <

Kπ scattering data

[Buettiker, Descotes, Moussallam ’02] [Watson’s theorem]

Experimental inputs 
for
[Aston et al]+
Roy Steiner equations

1 GeV 2.5 GeVE< << << << <

Asymptotic
value

f0(s) = O(1/s)
-s→ ∞→ ∞→ ∞→ ∞

ϕ(s) → π
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•  At low energy          Use of ChPT 

•  For intermediate energy region : dispersive techniques 

•  Imaginary part known from unitarity and data: 
 
 
 
 

•  One does not go to infinity          cut the integral at some point and make 
some assumptions on high energy behaviour: uncertainty needs to be 
quantified  

 

 
 

 

 

 

 
 
 
  

F (s) = Pn−1(s)+
sn

π
ds'
s'n
Im F (s')"# $%
s'− s − iε( )4Mπ

2

∞

∫

polynomial 

24ths mπ≡

  

1
2i

disc Fππ (s) = Im Fππ (s) = Fππ→n
n
∑ Tn→ππ( )*
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What do we know at the amplitude level?

Aλ(s, t, u) analytic continuation of scattering amplitudes

Q2 = s + t + u − 3M2
π

Aµ

Aijmn
λ (s, t, u) ∝

∑

I

∑

l

√
2l + 1al

I,λ(s)d
l
λ0(θπ)P

ijmn
I

P
ijmn
I : isospin projection, θπ = 2-pion angle

Bose symmetry restricts I + l
!
= even

transverse amplitude: p- and d-wave dominating

Building amplitudes starting from low energies 

17 

•  Following the example of η à 3π 
      use τ → πππντ   for 3π amplitude 
 
•  Analytical continuation of the amplitude  

and decomposition 
�

                   
 
 
•  Idea: Use crossing 
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√
2l + 1al

I,λ(s)d
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λ0(θπ)P

ijmn
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P
ijmn
I : isospin projection, θπ = 2-pion angle

Bose symmetry restricts I + l
!
= even

transverse amplitude: p- and d-wave dominating

Wigner function 

a1 properties in hadronic tau decays Ina Lorenz

two-by-two scattering element ⟨π(p1)π(p2)|π(−p3)Aµ(Qµ)⟩. For three body decays often denoted

as Dalitz plot invariants s1,s2 and s3, here we use

s = (p1 + p2)
2, t = (p2 + p3)

2, u = (p1 + p3)
2, Q2 = s+ t +u−3M2

π . (2.4)

The center-of-mass scattering angle in each channel, θs,θt and θu, respectively, are related to the

Kacser function

K(s) =
t −u

cosθs
=
√

λ (s,M2
π ,M

2
π)
√

λ (s,Q2,M2
π). (2.5)

The Källén function λ (a,b,c) = a2 +b2 + c2 −2(ab+bc+ ca) can be written

λab(s) = λ (s,M2
a ,M

2
b) = [s− (Ma −Mb)

2][s− (Ma +Mb)
2]. (2.6)

With the definitions Lµν = LµL†
ν and Hµν = HµH†

ν of the leptonic and hadronic tensor the differ-

ential decay rate is given by

dΓ(τ → ντ 3π) =
1

2mτ
|M |2dΦ =

G2
F

4mτ
cos2 θCLµνHµνdΦ, LµνHµν =∑

X

LXWX , (2.7)

where dΦ is the phase space element. Lµν and Hµν , can be combined to form 16 symmetric and

antisymmetric structure functions WX . One useful basis for the hadronic structure functions WX is

defined via the polarization of the final state system. Consider the polarization vectors εµ(λ ) of the

three pions in their c.m. frame or the W boson in its rest frame, respectively. We can now define

the helicity amplitudes

A
i jkl

λ := ⟨π i(p1)π
j(p2)π

k(p3)|Al
µ(0)ε

µ(λ )|0⟩, (2.8)

where the subscript denotes the helicity. The outgoing pions have the two possible physical states

|π0π0π±⟩ and |π+π−π±⟩, that can be related by their isospin structure and crossing symmetry. In

the following we will consider A
π0π0π±

λ (s, t,u)=̂A 3311
λ (s, t,u) and neglect isospin breaking.

3. Method and parametrization

We approximate the transverse amplitude similar to Refs. [3, 4],

A 3311
+ (s, t,u) ∝

lmax

∑
l=0

∑
I

(2l +1)

[

dl
10(θs)

(

K(s)

4s

)l−1

P3311
I a+,Il(s)+dl

10(θt)

(

K(t)

4t

)l−1

P3131
I a+,Il(t)

+dl
10(θu)

(

K(u)

4u

)l−1

P1331
I a+,Il(u)

]

, (3.1)

where P
i jmn
I is the isospin projection operator. The relevant Wigner d-matrix is given by dl

10(θ) =

−sinθ/
√

l(l+1)P′
l (cos θ), where the prime denotes a derivative of the Legendre polynomial. The

above expansion results in partial waves aIl that contain no kinematical but only dynamical cuts.

This allows us to relate the parts of the partial waves that contain the left- and right-hand cuts

a
right/le f t
Il (s) in an iterative procedure suggested by Khuri and Treiman [5].

2

Isospin projection 

•  Coupled channel analysis up to √s ~1.4 GeV: Mushkhelishvili-Omnès approach 
 

Inputs: I=0, S-wave ππ  and  KK data 
 
 
 
 
•  Unitarity           the discontinuity of the form factor is known 
 

 
              
 

�
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3.2  Unitarity	

See also Osset & Oller’98 
  Lahde & Meissner’06 

 

  Donoghue, Gasser, Leutwyler’90 
          Moussallam’99 

Daub, Dreiner, Hanart, Kubis, Meissner’13 
 Celis,	Cirigliano,	E.P.’14	

Form factors
•  Two channel unitarity condition (ππ, KK) (OK up to  √s ~ 1.4 GeV)

n  = ππ, KK

•  General solution:

Canonical solution falling as 1/s for large s 
(obey un-subtracted dispersion relation) 

Polynomials 
determined by 

matching to ChPT

•  Solved iteratively, using input on s-
wave I=0  meson meson scattering

  n = ππ , KK

  Donoghue, Gasser, Leutwyler’90 
          Moussallam’99 

π 

π π 

π π 

π 

π 

π 

+ 

π 

π 

 K

 K

 K

 K

Scattering matrix: 
 

     ππ → ππ, ππ →  
        → ππ,           
 
 

KK
KK KK KK→ 

π 

η 

Khuri-Treiman  
formalism  
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Isospin projection 

Parametrization

G(s) =

∫ sin

s0

ds′

π

ImG

s′ − s
+
∑

i

cizi(s), Danilkin et al., JPAC (2015)

z(s) =

√
sin − s −√

sin√
sin − s +

√
sin

, sin : inelasticity threshold

Aµ

Redefine aIl,λ to contain only dynamical cuts

⇒ relate left- and righthand cuts iteratively:

aright(s) = Ω(s)

∫ ∞

s0

ds′ sin δ(s′)

πΩ(s′)

aleft(s′)

(s′ − s)

aleft(s) ∝
∫ +1

−1

d cos θπPl(cos θπ)
∑

I,l

...aright(s) inversion of partial wave expansion

a1 properties in hadronic tau decays Ina Lorenz

In the following we always consider aIl = a+,Il . For each channel, we can write the discontinuity

as a sum of the unitarity cut in this channel and those from the crossed channel as a
le f t
Il

Disc aIl(s) = ρ(s)t∗l (s)
(

a
right
Il (s)+a

le f t
Il (s)

)

, (3.2)

where ρ(s) =
√

1−4M2
π/s and tl(s) is the partial wave of the two-pion system, well-known from

ππ scattering. This discontinuity enters the standard dispersion relation, e.g. unsubtracted,

a
right
Il (s) =

1

π

∫ ∞

s0

ds′
Disc a

right
Il (s′)

s′ − s
, s0 = 4M2

π . (3.3)

Expanding A 3311
+ (s, t,u) in the s-channel physical region, comparing to Eq. (3.1), multiplying both

sides with P′
l (zs) and integrating over zs = cosθs we can write

a
le f t
Il (s) ∝ ∑

I′,l′
(2l′+1)

∫ +1

−1
dzs(1− z2

s )P
′
l (zs)

(

P′
l′(zt)C

II′

st aI′l′(t(s,zs))+P′
l′(zu)C

II′

su aI′l′(u(s,zs))
)

,

(3.4)

where Cst/su are the standard crossing matrices, see e.g. Ref. [4]. To find a solution of this set of

equations, we parametrize the transverse partial wave amplitudes similiar to Ref. [6], as

aIl(s) = ΩIl(s)

(

n−1

∑
i

cis
i +

sn

π

∫ ∞

s0

ds′

s′n
ρ(s′)t∗l (s

′)

Ω∗
Il(s

′)

a
le f t
Il (s′)

(s′ − s)

)

, ΩIl(s) = exp

(

s

π

∫ ∞

s0

ds′

s′
δIl(s′)

s′ − s

)

,

(3.5)

where the Omnès functions ΩIl(s) contain the unitary cut in s, and we use their parametrization

from Ref. [7]. The term in brackets in Eq. (3.5) contains the cuts from the crossed channels and

corresponds to an n-times subtracted dispersion relation with the subtraction constants ci. In a

first step the left-hand cuts can be set to zero. However, three main restrictions of this approach

are relevant in our case. First, the framework relies on the assumption that two body interactions

dominate. This assumption is only justified at low energy, Q2 ≪ 1 GeV2. Second, the truncation

of Eq. (3.1) induces an uncertainty that has to be tested in practice. Third, a precise knowledge of

the individual waves decreases with increasing energy.

4. Preliminary results

Our calculation for the helicity amplitudes can directly be compared to the experimentally deter-

mined structure functions. All structure functions that are not compatible with zero according to

CLEO [8] can be related to WA(s, t,u) ∝ |A 3311
+ (s, t,u)|2 + |A 3311

− (s, t,u)|2 [1]. In Fig. 2 we show

the structure functions given by the CLEO collaboration in the corresponding bins and our fit result.

Here we ignore the left hand cuts which corresponds to the first iteration step in a Khuri Treiman

approach. For a complete analysis, see Ref. [9]. The dotted lines show the binning in Q2, the solid

line bars correspond to bins in s and t and the red dashed line to our preliminary fit. Changing

the variables by Eq. (2.4) and integrating WA(Q2,s, t) over s and t yields the integrated structure

functions wA,int(Q2) shown in Fig. 3. Here, a three body resonance-like structure occurs and can

3

•  Unitarity :  

 
 
 

•  Analyticity : Write a dispersion relation for 

�

•  Solution: Inhomogeneous Omnes solution 
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Disc aright
Il (s) ≡ Disc aIl(s)

Khuri-Treiman  
formalism  
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Parametrization
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•  Solution: 

•  With  

•  Solve by an iterative procedure  

  

 

 
 
 
 
 

 
      Belle does not see any asymmetry at the 0.2 - 0.3% level  
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+ (s, t,u)|2 + |A 3311

− (s, t,u)|2 [1]. In Fig. 2 we show

the structure functions given by the CLEO collaboration in the corresponding bins and our fit result.

Here we ignore the left hand cuts which corresponds to the first iteration step in a Khuri Treiman

approach. For a complete analysis, see Ref. [9]. The dotted lines show the binning in Q2, the solid

line bars correspond to bins in s and t and the red dashed line to our preliminary fit. Changing

the variables by Eq. (2.4) and integrating WA(Q2,s, t) over s and t yields the integrated structure

functions wA,int(Q2) shown in Fig. 3. Here, a three body resonance-like structure occurs and can
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20 Emilie Passemar 

•  Can we apply this method to heavy mesons? 

•  It has been done for D → Kππ�
  

•  Several questions: 
–  Inclusion on D waves for reconstruction theorem  

       Reconstruction theorem proven in the case of K,η à 3π, Kl4  with     
        truncation after S and P waves 
 D waves included « by hand » 

 
–  Method valid in the elastic region          only part of the Dalitz plot is 

described.   

–  how to include inelastic channels?  
–  Many parameters to determine in the subtraction polynomial 

•  How to match with other approaches?  
•  See other approaches           series of works and talks by B. Loiseau, 

           B. El Bennich, P.C. Magalhães 
 

•  With  

•  Solve by an iterative procedure  

  

 

 
 
 
 
 

 
      Belle does not see any asymmetry at the 0.2 - 0.3% level  
 

 
 
 
 
 

Charged channel: Niecknig, Kubis’15,’17  
Neutral channel: Kou, Moussallam, Moskalets  
                in progress 
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3. Three hadron system 
References: 
 
 
e.g: 

 
Possible Jp states for 0-+0-+0-  system 

      0-,  1+,  1-   
4 Hadronic Form Factors 

Axial Vector   F1(Q2,s1,s2): K*f,  F2(Q2,s1,s2); h K           B1,B2  
Vector           F3(Q2,s1,s2)                           B3 

Pseudo-Scalar  F4(Q2,s1,s2)                         B4 
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 K. Kiers,K.Little,A. Datta, D. London et al., 
Phys. Rev. D78, 113008 (2008). 
Tau2012 proceeding by K. Kiers 
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•  τ → πππντ

�

•  3-body: form factors function of one variable q2=s            amplitude function  
of s and cosθ or t & u and Q2  
Structure functions WX  

 
      Hµ: restricted to axial vector current Aµ by G-parity  
 
•  Consider helicity amplitudes                                     simple partial wave expan.  

 

 
 
 
 
 

 
      Belle does not see any asymmetry at the 0.2 - 0.3% level  
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Kühn, Mirkes’92 

Basic definitions

More information encoded in structure functions WX (Kühn, Mirkes, 1992)

τ

ντ

W

π

M ∝ LµHµ, Hµ = ⟨πππ|Vµ − Aµ|0⟩

Hµ: restricted to axial vector current Aµ by G-parity

helicity amplitudes Aλ = ϵµ(λ)Hµ: simple partial wave expansion

ϵµ(λ): polarization vector of final state system with helicity λ = ±, 0, t

WX : linear combinations of Hλλ′

= AλA†
λ′
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Polarization vector of final state system with  
helicity    

Q2  
Basic definitions

More information encoded in structure functions WX (Kühn, Mirkes, 1992)
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ϵµ(λ): polarization vector of final state system with helicity λ = ±, 0, t

WX : linear combinations of Hλλ′
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Lorenz, E.P. in progress 

  
s = p

π − + p
π1

+( )2

,
  
t = p

π1
+ + p

π 2
+( )2

,

  
u = p

π + + p
π +( )2

  s + t + u = Q2 + 3M
π ±
2
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3.4  Three body CP asymmetries 

52 

 
 

•  Ex:	τ � Kππντ 
 
 
 
 
 
•  A variety of CPV observables can be studied :  

τ → Kππντ, τ → πππντ rate, angular asymmetries,  
triple products,….     
 

Same principle as in charm, see Bevan’15 
 
Difficulty : Treatement of the hadronic part 
Hadronic final state interactions have to be taken into account! 
          Disentangle weak and strong phases 

	
•  More form factors, more asymmetries to build but same principles as for 2 

bodies 

 
      Belle does not see any asymmetry at the 0.2 - 0.3% level  
 

 
 
 
 
 

e.g., Choi, Hagiwara and 
Tanabashi’98 
Kiers, Little, Datta,  
London et al.,’08 
Mileo, Kiers and, Szynkman’14 
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Following the example of η à 3π 
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•  τ → πππντ

�

•  3-body: form factors function of one variable q2=s            amplitude function  
of s and cosθ or t & u and Q2  
structure functions WX  

 
      Hµ: restricted to axial vector current Aµ by G-parity  
 
•  Consider helicity amplitudes                                     simple partial wave expan. 
 
 

•  WX: linear combinations of  
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τ

ντ

W

π

M ∝ LµHµ, Hµ = ⟨πππ|Vµ − Aµ|0⟩

Hµ: restricted to axial vector current Aµ by G-parity

helicity amplitudes Aλ = ϵµ(λ)Hµ: simple partial wave expansion

ϵµ(λ): polarization vector of final state system with helicity λ = ±, 0, t

WX : linear combinations of Hλλ′

= AλA†
λ′

Q2  

Lorenz, E.P. in progress 

  
s = p

π − + p
π1

+( )2

,
  
t = p

π1
+ + p

π 2
+( )2

,

  
u = p

π + + p
π +( )2

  s + t + u = Q2 + 3M
π ±
2

3. Three hadron system 
References: 
 
 
e.g: 

 
Possible Jp states for 0-+0-+0-  system 

      0-,  1+,  1-   
4 Hadronic Form Factors 

Axial Vector   F1(Q2,s1,s2): K*f,  F2(Q2,s1,s2); h K           B1,B2  
Vector           F3(Q2,s1,s2)                           B3 

Pseudo-Scalar  F4(Q2,s1,s2)                         B4 

 
 

 
2014/10/31 30-31, October, 2014, B2TIP, KEK, Japan 17 

 K. Kiers,K.Little,A. Datta, D. London et al., 
Phys. Rev. D78, 113008 (2008). 
Tau2012 proceeding by K. Kiers 

WQSSW )()()(K)( 321123 pppp GGGG ���� o

3.4  Three body CP asymmetries 

52 

 
 

•  Ex:	τ � Kππντ 
 
 
 
 
 
•  A variety of CPV observables can be studied :  

τ → Kππντ, τ → πππντ rate, angular asymmetries,  
triple products,….     
 

Same principle as in charm, see Bevan’15 
 
Difficulty : Treatement of the hadronic part 
Hadronic final state interactions have to be taken into account! 
          Disentangle weak and strong phases 

	
•  More form factors, more asymmetries to build but same principles as for 2 

bodies 

 
      Belle does not see any asymmetry at the 0.2 - 0.3% level  
 

 
 
 
 
 

e.g., Choi, Hagiwara and 
Tanabashi’98 
Kiers, Little, Datta,  
London et al.,’08 
Mileo, Kiers and, Szynkman’14 
 

Emilie Passemar 

d 

Basic definitions

More information encoded in structure functions WX (Kühn, Mirkes, 1992)
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W
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Hµ: restricted to axial vector current Aµ by G-parity
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What do we know at the amplitude level?

Aλ(s, t, u) analytic continuation of scattering amplitudes

Q2 = s + t + u − 3M2
π

Aµ

Aijmn
λ (s, t, u) ∝

∑

I

∑

l

√
2l + 1al

I,λ(s)d
l
λ0(θπ)P

ijmn
I

P
ijmn
I : isospin projection, θπ = 2-pion angle

Bose symmetry restricts I + l
!
= even

transverse amplitude: p- and d-wave dominating

Building amplitudes starting from low energies 
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•  Analytical continuation of the amplitude  

and decomposition:  

•  Bose symmetry: I+l = even 
 

•  For the transverse amplitude, P and D-waves dominating: 
�

                   

  

 

 
 
 
 
 

 
      Belle does not see any asymmetry at the 0.2 - 0.3% level  
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Khuri-Treiman  
formalism  

Wigner function 

a1 properties in hadronic tau decays Ina Lorenz

two-by-two scattering element ⟨π(p1)π(p2)|π(−p3)Aµ(Qµ)⟩. For three body decays often denoted

as Dalitz plot invariants s1,s2 and s3, here we use

s = (p1 + p2)
2, t = (p2 + p3)

2, u = (p1 + p3)
2, Q2 = s+ t +u−3M2

π . (2.4)

The center-of-mass scattering angle in each channel, θs,θt and θu, respectively, are related to the

Kacser function

K(s) =
t −u

cosθs
=
√

λ (s,M2
π ,M

2
π)
√

λ (s,Q2,M2
π). (2.5)

The Källén function λ (a,b,c) = a2 +b2 + c2 −2(ab+bc+ ca) can be written

λab(s) = λ (s,M2
a ,M

2
b) = [s− (Ma −Mb)

2][s− (Ma +Mb)
2]. (2.6)

With the definitions Lµν = LµL†
ν and Hµν = HµH†

ν of the leptonic and hadronic tensor the differ-

ential decay rate is given by

dΓ(τ → ντ 3π) =
1

2mτ
|M |2dΦ =

G2
F

4mτ
cos2 θCLµνHµνdΦ, LµνHµν =∑

X

LXWX , (2.7)

where dΦ is the phase space element. Lµν and Hµν , can be combined to form 16 symmetric and

antisymmetric structure functions WX . One useful basis for the hadronic structure functions WX is

defined via the polarization of the final state system. Consider the polarization vectors εµ(λ ) of the

three pions in their c.m. frame or the W boson in its rest frame, respectively. We can now define

the helicity amplitudes

A
i jkl

λ := ⟨π i(p1)π
j(p2)π

k(p3)|Al
µ(0)ε

µ(λ )|0⟩, (2.8)

where the subscript denotes the helicity. The outgoing pions have the two possible physical states

|π0π0π±⟩ and |π+π−π±⟩, that can be related by their isospin structure and crossing symmetry. In

the following we will consider A
π0π0π±

λ (s, t,u)=̂A 3311
λ (s, t,u) and neglect isospin breaking.

3. Method and parametrization

We approximate the transverse amplitude similar to Refs. [3, 4],

A 3311
+ (s, t,u) ∝

lmax

∑
l=0

∑
I

(2l +1)

[

dl
10(θs)

(

K(s)

4s

)l−1

P3311
I a+,Il(s)+dl

10(θt)

(

K(t)

4t

)l−1

P3131
I a+,Il(t)

+dl
10(θu)

(

K(u)

4u

)l−1

P1331
I a+,Il(u)

]

, (3.1)

where P
i jmn
I is the isospin projection operator. The relevant Wigner d-matrix is given by dl

10(θ) =

−sinθ/
√

l(l+1)P′
l (cos θ), where the prime denotes a derivative of the Legendre polynomial. The

above expansion results in partial waves aIl that contain no kinematical but only dynamical cuts.

This allows us to relate the parts of the partial waves that contain the left- and right-hand cuts

a
right/le f t
Il (s) in an iterative procedure suggested by Khuri and Treiman [5].

2

Isospin projection 
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2mτ
|M |2dΦ =

G2
F

4mτ
cos2 θCLµνHµνdΦ, LµνHµν =∑

X

LXWX , (2.7)
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three pions in their c.m. frame or the W boson in its rest frame, respectively. We can now define
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i jkl
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µ(λ )|0⟩, (2.8)
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(
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In the following we always consider aIl = a+,Il . For each channel, we can write the discontinuity

as a sum of the unitarity cut in this channel and those from the crossed channel as a
le f t
Il

Disc aIl(s) = ρ(s)t∗l (s)
(

a
right
Il (s)+a

le f t
Il (s)

)

, (3.2)

where ρ(s) =
√

1−4M2
π/s and tl(s) is the partial wave of the two-pion system, well-known from

ππ scattering. This discontinuity enters the standard dispersion relation, e.g. unsubtracted,

a
right
Il (s) =

1

π

∫ ∞

s0

ds′
Disc a

right
Il (s′)

s′ − s
, s0 = 4M2

π . (3.3)

Expanding A 3311
+ (s, t,u) in the s-channel physical region, comparing to Eq. (3.1), multiplying both

sides with P′
l (zs) and integrating over zs = cosθs we can write

a
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Il (s) ∝ ∑
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−1
dzs(1− z2

s )P
′
l (zs)

(

P′
l′(zt)C

II′

st aI′l′(t(s,zs))+P′
l′(zu)C

II′

su aI′l′(u(s,zs))
)

,

(3.4)

where Cst/su are the standard crossing matrices, see e.g. Ref. [4]. To find a solution of this set of

equations, we parametrize the transverse partial wave amplitudes similiar to Ref. [6], as

aIl(s) = ΩIl(s)

(

n−1

∑
i

cis
i +

sn

π

∫ ∞

s0

ds′

s′n
ρ(s′)t∗l (s

′)

Ω∗
Il(s

′)

a
le f t
Il (s′)

(s′ − s)

)

, ΩIl(s) = exp

(

s

π

∫ ∞

s0

ds′

s′
δIl(s′)

s′ − s

)

,

(3.5)

where the Omnès functions ΩIl(s) contain the unitary cut in s, and we use their parametrization

from Ref. [7]. The term in brackets in Eq. (3.5) contains the cuts from the crossed channels and

corresponds to an n-times subtracted dispersion relation with the subtraction constants ci. In a

first step the left-hand cuts can be set to zero. However, three main restrictions of this approach

are relevant in our case. First, the framework relies on the assumption that two body interactions

dominate. This assumption is only justified at low energy, Q2 ≪ 1 GeV2. Second, the truncation

of Eq. (3.1) induces an uncertainty that has to be tested in practice. Third, a precise knowledge of

the individual waves decreases with increasing energy.

4. Preliminary results

Our calculation for the helicity amplitudes can directly be compared to the experimentally deter-

mined structure functions. All structure functions that are not compatible with zero according to

CLEO [8] can be related to WA(s, t,u) ∝ |A 3311
+ (s, t,u)|2 + |A 3311

− (s, t,u)|2 [1]. In Fig. 2 we show

the structure functions given by the CLEO collaboration in the corresponding bins and our fit result.

Here we ignore the left hand cuts which corresponds to the first iteration step in a Khuri Treiman

approach. For a complete analysis, see Ref. [9]. The dotted lines show the binning in Q2, the solid

line bars correspond to bins in s and t and the red dashed line to our preliminary fit. Changing

the variables by Eq. (2.4) and integrating WA(Q2,s, t) over s and t yields the integrated structure

functions wA,int(Q2) shown in Fig. 3. Here, a three body resonance-like structure occurs and can
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T matrix parametrization 

where Tmn represent the T matrix elements which describe the scattering among the relevant

channels (n = ⇡⇡,KK̄ with ` = 0 and I = 0). The general solution to the condition (14) that

does not grow faster than a power of s at infinity can be written as [71, 74]:

 

F⇡(s)
2p
3
FK(s)

!

=

 

C1(s) D1(s)

C2(s) D2(s)

! 

PF (s)

QF (s)

!

, (15)

where PF (s) and QF (s) are polynomials and the “canonical” solutions Cn(s), Dn(s) generalize

the Omnès factor appearing in the solution of the one-channel unitarity condition [75].

Provided that the S-matrix satisfies certain asymptotic conditions at large s (namely that

S12 ! 0 and Arg(det(S)) ! 4⇡), the solutions Cn(s) and Dn(s), generically denoted by Xn(s)

behave as 1/s for |s| ! 1. Therefore, the Xn(s) satisfy unsubtracted dispersion relations,

which combined with the unitarity condition (14) lead to a set of coupled Muskhelishvili-Omnès

singular integral equations [74, 75]

Xn(s) =
2
X

m=1

1

⇡

Z 1

4M2
⇡

dt

t� s
T ⇤
nm(t)�m(t)Xm(t) , X(s) = C(s), D(s) . (16)

So in order to find a solution to the MO problem described above, we need to specify an

appropriate T matrix. The T matrix is related to the S matrix by

Smn = �mn + 2i
p
�m�n Tmn , (17)

where the kinematical factor �m(s) represents the velocity of the two particles in the centre-of-

mass frame defined in Eq. (10) with �1(s) = �⇡(s) and �2(s) = �K(s). In turn, the ` = 0, I = 0

projection of the S matrix is parameterized as follows

S =

 

cos� e2i�⇡ i sin� ei(�⇡+�K)

i sin� ei(�⇡+�K) cos� e2i�K

!

, (18)

and therefore we need three input functions, the inelasticity ⌘00 ⌘ cos �, the ⇡⇡ S-wave phase

shift �⇡(s) and the KK̄ phase shift �K(s). Up to some energy, these inputs are determined by

solving the Roy-Steiner equations for ⇡⇡ [64, 65, 76, 77] and K⇡ scattering [78]. Since Eq. (14)

is a reasonable approximation to the exact discontinuity only in the energy region below some

cut scut . m2
⌧ , we use the following strategy: for s < scut we use the inputs for the two phase

shifts �⇡(s) and �K(s) and the inelasticity ⌘00(s) coming from a recent update of the solutions of

Roy-Steiner equations [78] 3 provided by B. Moussallam. For s > scut, we drive the T matrix to

zero consistently with unitarity, by forcing the three input functions to the asymptotic values

�⇡ = 2⇡, �K = 0, ⌘00 = 1, which ensure that the canonical solutions to the MO problem fall o↵

as 1/s [71,72,79]. We have varied scut in the range (1.4 GeV)2 � (1.8 GeV)2, and find that the

form factors are insensitive to scut for
p
s < 1.4 GeV.

3The input values M⇡ = 139.57018 MeV and MK = 495.7 MeV have been used to generate these inputs.
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projection of the S matrix is parameterized as follows

S =

 

cos� e2i�⇡ i sin� ei(�⇡+�K)

i sin� ei(�⇡+�K) cos� e2i�K

!

, (18)

and therefore we need three input functions, the inelasticity ⌘00 ⌘ cos �, the ⇡⇡ S-wave phase

shift �⇡(s) and the KK̄ phase shift �K(s). Up to some energy, these inputs are determined by

solving the Roy-Steiner equations for ⇡⇡ [64, 65, 76, 77] and K⇡ scattering [78]. Since Eq. (14)

is a reasonable approximation to the exact discontinuity only in the energy region below some

cut scut . m2
⌧ , we use the following strategy: for s < scut we use the inputs for the two phase

shifts �⇡(s) and �K(s) and the inelasticity ⌘00(s) coming from a recent update of the solutions of

Roy-Steiner equations [78] 3 provided by B. Moussallam. For s > scut, we drive the T matrix to

zero consistently with unitarity, by forcing the three input functions to the asymptotic values

�⇡ = 2⇡, �K = 0, ⌘00 = 1, which ensure that the canonical solutions to the MO problem fall o↵

as 1/s [71,72,79]. We have varied scut in the range (1.4 GeV)2 � (1.8 GeV)2, and find that the

form factors are insensitive to scut for
p
s < 1.4 GeV.

3The input values M⇡ = 139.57018 MeV and MK = 495.7 MeV have been used to generate these inputs.
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Figure 4: The form factors �⇡(s), �⇡(s) and ✓⇡(s) defined in Eq. (4) as determined by solving the

two-channel unitarity condition and then by matching to ChPT , see text for details. The black solid line

represents their real part and the red dashed-dotted red line stands for their imaginary part. This plot is

generated using scut = (1.4GeV)2 and central values for the matching coe�cients.

for LFV Higgs decays at the LHC. The phenomenology of a CP-odd Higgs boson with LFV

couplings is discussed with a similar spirit. A general two-Higgs-doublet model is introduced to

motivate the discussion of LFV e↵ects in the scalar sector, however all the results in this section

are expressed using the Lagrangian in Eq. (1) and can therefore be interpreted within other new

physics scenarios.

4.1 2HDM and beyond

Two-Higgs-doublet models (2HDM) provide a specific gauge-invariant framework where lepton

flavor violating e↵ects encoded in Eq. (1) can occur, due to both CP-even and CP-odd Higgs

bosons at tree-level. In the Higgs basis, where only one scalar doublet acquires a vev, one can
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Figure 10: Differential decay width τ → Kπντ . On the left-hand side the calculations with one
real zero in the scalar form factor close to the physical region (T0 = −0.1 GeV2) and without
zero are compared. The vector form factor has no zero. On the right-hand side the calculation
is done without zero and with complex zeros at Z0 = (0.1 ± i2) GeV2 in the vector form
factor. Different cases have been considered corresponding to different ansätze for the phase as
explained in the text. The scalar form factor has no zero. In these figures lnC = 0.2138, Eq.
(2.8) and Λ+ = 0.02450 as obtained from the pole parametrization with the K*(892) mass. For
comparison the Belle data for τ− → K0

Sπ
−ντ [30] are displayed, too.

RHS of Fig. 10. Much larger or smaller phases at the beginning of the inelastic region seem
to be excluded as shown on the same figure where instead of π, 0 for the lower plain black
curve and 3π for the upper plain black curve have been used for φ1. In the presence of complex
zeros, on the contrary, the phase should be very small at the beginning of the inelastic region
in order to reproduce the data, as illustrated in Fig. 10. There the result with a phase equal to
3 π in the energy range from 1.4 to 3 GeV (pink dotted curve) is compared with the one with
a vanishing phase in that same energy range (blue dashed curve). The opposite is true for real
space-like zeros. As the value of T0 increases, the resonance peak gets more and more washed
out and eventually disappears for a given phase φ1. Rather highly improbable large values of the
phase in the inelastic region becomes necessary to counterbalance the effect of the zeros. Thus
from our study, due to the lack of knowledge of φ1 in the inelastic (high-energy) region, we
cannot completely rule out the presence of zeros in the vector form factor even though such a
scenario does not seem very probable. We can, however, conclude as expected that zeros in the
vector form factor which would not be totally excluded from the analysis of tau decays would
not affect the low energy region of the vector form factor and consequently the results of the
analysis of Kℓ3-decays.

5 Final remarks and Conclusion

In this paper we have discussed the robustness of a precise and convenient dispersive represen-
tation of the scalar and vector Kπ form factors. In Fig.11 we show the scalar (left panel), Eq.
(3.1), and the vector form factors (right panel), Eq. (3.7), with all the uncertainties discussed
above under the usual assumption of no zeros in the form factors and for two different values of
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