

Mainz Institute for Theoretical Physics

Future Challenges in Non-Leptonic B Decays: Theory and Experiment

Extraction of the angle γ from charmless 3-body *B* decays

Eli Ben-Haïm, Emilie Bertholet, Matthew Charles

CKM parameters and charmless B meson decays

Measure CKM parameters:

- SM: V_{CKM} is unitary.
- SM + NP: V_{CKM} may not be unitary.
- Need to test unitarity and self-consistency.
- \rightarrow over-constrain the Unitarity Triangle.

Measure γ :

- from tree decays (eg. $B \rightarrow DK$).
- from loop decays [charmless].

Charmless *B* meson decays:

- Tree and penguin contributions can have similar size.
- CPV
- NP searches

$$\overline{b}$$
 \overline{s}

New Physics??

 $\begin{aligned} \alpha &= 86.4^{\circ + 4.5^{\circ}}_{-4.3^{\circ}} \\ \beta &= 22.14^{\circ + 0.69^{\circ}}_{-0.67^{\circ}} \\ \gamma &= 72.1^{\circ + 5.4^{\circ}}_{-5.7^{\circ}} \end{aligned}$

Emilie Bertholet (LPNHE, Paris)

eberthol@cern.ch

3-body decays

10

Dalitz plot

Experimental parametrisation of the DP: Isobar Model

The total amplitude of a 3-body decay is described as a coherent sum of partial amplitudes:

Emilie Bertholet (LPNHE, Paris)

eberthol@cern.ch

Method overview

- Method to extract the CKM angle γ from charmless loop processes (NP sensitive) developed by Bhubanjyoti Bhattacharya, Maxime Imbeault and David London.
- Combine information from 5 charmless 3-body decays of *B* mesons

$$\begin{array}{ccc} B^0 \to K_S K_S K_S & B^0 \to K^+ \pi^0 \pi^- & B^+ \to K^+ \pi^+ \pi^- \\ B^0 \to K_S K^+ K^- & B^0 \to K_S \pi^+ \pi^- \end{array}$$

4

Method overview

- Method to extract the CKM angle γ from charmless loop processes (NP sensitive) developed by Bhubanjyoti Bhattacharya, Maxime Imbeault and David London.
- Combine information from 5 charmless 3-body decays of *B* mesons

1)
$$B^{0} \to K_{S}K_{S}K_{S}$$
 2) $B^{0} \to K^{+}\pi^{0}\pi^{-}$ 3) $B^{+} \to K^{+}\pi^{+}\pi^{-}$
4) $B^{0} \to K_{S}K^{+}K^{-}$ 5) $B^{0} \to K_{S}\pi^{+}\pi^{-}$

 Use BABAR models (resonant content, lineshapes) and analysis results (isobar parameters, correlation matrices) to reconstruct the amplitudes of the different decay modes over the DP and extract γ with its uncertainty.

Emilie Bertholet	(LPNHE. Paris) e	berthol@cern.ch	Future Challenges in Non-Leptonic B De	cays 2019 5
	4) Phys. Rev. D78 (2012) 112010	5) <u>Phys. Rev. D80 (2009) 1</u> 2	<u>12001</u>	
	1) Phys. Rev. D85 (2012) 054023	2) Phys. Rev. D83 (2011) 11	12010 3) Phys. Rev. D78 (2009) 112004	

Flavour SU(3) diagrammatics

Phys. Rev. D.84.034040

• Different topologies for $b \rightarrow s$ transitions: T'₁, T'₂, C'₁, C'₂, P'₁, P'₂...

- γ from 2-body decays: N_{obs} > N_{param}
- γ from 3-body decays: N_{obs} < N_{param}

Need to make assumptions to reduce the number of parameters

Flavour SU(3) limit: tree and penguin diagrams are proportional

$$\mathsf{P}_{\mathsf{EW}}(\mathsf{C}) = \kappa \mathsf{T}(\mathsf{C}) \quad \text{with} \quad \kappa \equiv -\frac{3}{2} \frac{|\lambda_t^{(s)}| c_9 + c_{10}}{|\lambda_u^{(s)}| c_1 + c_2} \quad \begin{cases} \lambda_p^{(s)} = V_{pb}^* V_{ps} \\ c_i : \text{Wilson coefficients} \end{cases}$$

This relation holds only for **fully symmetric amplitudes**:

$$A_{\rm fs}(s_{12}, s_{13}) = \frac{1}{\sqrt{6}} \left(A(s_{12}, s_{13}) + A(s_{12}, s_{23}) + A(s_{13}, s_{23}) + A(s_{13}, s_{12}) + A(s_{23}, s_{12}) + A(s_{23}, s_{13}) \right)$$

6

- 5 effective diagrams
- 1 weak phase
- 1 parameter related to flavour SU(3) breaking

$$2A_{\rm fs}(B^0 \to K^+ \pi^0 \pi^-) = Be^{i\gamma} - \kappa C$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^0 \pi^+ \pi^-) = -De^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa D$$

$$A_{\rm fs}(B^0 \to K^0 K^0 \overline{K}^0) = \alpha_{\rm SU(3)}(\tilde{P}'_{\rm uc}e^{i\gamma} + A)$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)}(-Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B)$$

- 5 effective diagrams: A, B, C, D and P.
- 1 weak phase
- 1 parameter related to flavour SU(3) breaking

$$2A_{\rm fs}(B^0 \to K^+ \pi^0 \pi^-) = Be^{i\gamma} - \kappa C$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^0 \pi^+ \pi^-) = -De^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa D$$

$$A_{\rm fs}(B^0 \to K^0 K^0 \overline{K}^0) = \alpha_{\rm SU(3)}(\tilde{P}'_{\rm uc}e^{i\gamma} + A)$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)}(-Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B)$$

- 5 effective diagrams: A, B, C, D and P.
- 1 weak phase: γ.
- 1 parameter related to flavour SU(3) breaking

$$2A_{\rm fs}(B^0 \to K^+ \pi^0 \pi^-) = Be^{i\gamma} - \kappa C$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^0 \pi^+ \pi^-) = -De^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa D$$

$$A_{\rm fs}(B^0 \to K^0 K^0 \overline{K}^0) = \alpha_{\rm SU(3)}(\tilde{P}'_{\rm uc}e^{i\gamma} + A)$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)}(-Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B)$$

- 5 effective diagrams: A, B, C, D and P.
- 1 weak phase: γ.
- 1 parameter related to flavour SU(3) breaking: $\alpha_{SU(3)}$.

$$2A_{\rm fs}(B^0 \to K^+ \pi^0 \pi^-) = Be^{i\gamma} - \kappa C$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^0 \pi^+ \pi^-) = -De^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa D$$

$$A_{\rm fs}(B^0 \to K^0 K^0 \overline{K}^0) = \alpha_{\rm SU(3)}(\tilde{P}'_{\rm uc}e^{i\gamma} + A)$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)}(-Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B)$$

$$\sqrt{2}A_{\rm fs}(B^+ \to K^+ \pi^+ \pi^-) = -Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B$$

Theoretical amplitudes for each mode can be expressed in terms of:

- 5 effective diagrams: A, B, C, D and P.
- 1 weak phase: γ.
- 1 parameter related to flavour SU(3) breaking: $\alpha_{SU(3)}$.

$$2A_{\rm fs}(B^0 \to K^+ \pi^0 \pi^-) = Be^{i\gamma} - \kappa C$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^0 \pi^+ \pi^-) = -De^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa D$$

$$A_{\rm fs}(B^0 \to K^0 K^0 \overline{K}^0) = \alpha_{\rm SU(3)}(\tilde{P}'_{\rm uc}e^{i\gamma} + A)$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)}(-Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B)$$

$$\sqrt{2}A_{\rm fs}(B^+ \to K^+ \pi^+ \pi^-) = -Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B$$

Parameter counting for 4 modes (5 modes) 10 (11) theoretical parameters

Emilie Bertholet (LPNHE, Paris)

eberthol@cern.ch

From the extracted amplitudes of the 4 (5) modes, we construct **momentum dependent observables**

$$X(s_{13}, s_{23}) = |A_{fs}(s_{13}, s_{23})|^2 + |\overline{A}_{fs}(s_{13}, s_{23})|^2$$

X: branching ratio [available for 4 (5) modes]

From the extracted amplitudes of the 4 (5) modes, we construct **momentum dependent observables**

$$X(s_{13}, s_{23}) = |A_{fs}(s_{13}, s_{23})|^2 + |\overline{A}_{fs}(s_{13}, s_{23})|^2$$
$$Y(s_{13}, s_{23}) = |A_{fs}(s_{13}, s_{23})|^2 - |\overline{A}_{fs}(s_{13}, s_{23})|^2$$

X: branching ratio[available for 4 (5) modes]Y: direct ACP[available for 4 (5) modes]

From the extracted amplitudes of the 4 (5) modes, we construct **momentum dependent observables**

$$X(s_{13}, s_{23}) = |A_{fs}(s_{13}, s_{23})|^2 + |\overline{A}_{fs}(s_{13}, s_{23})|^2$$
$$Y(s_{13}, s_{23}) = |A_{fs}(s_{13}, s_{23})|^2 - |\overline{A}_{fs}(s_{13}, s_{23})|^2$$
$$Z(s_{13}, s_{23}) = \Im[A_{fs}^*(s_{13}, s_{23})\overline{A}_{fs}(s_{13}, s_{23})]$$

X: branching ratio
Y: direct ACP
Z: indirect ACP
Idvailable for 4 (5) modes
Idvailable for 4 (5) modes
Idvailable for 3 modes (self-conjugates modes only)

From the extracted amplitudes of the 4 (5) modes, we construct **momentum dependent observables**

$$X(s_{13}, s_{23}) = |A_{fs}(s_{13}, s_{23})|^2 + |\overline{A}_{fs}(s_{13}, s_{23})|^2$$
$$Y(s_{13}, s_{23}) = |A_{fs}(s_{13}, s_{23})|^2 - |\overline{A}_{fs}(s_{13}, s_{23})|^2$$
$$Z(s_{13}, s_{23}) = \Im[A_{fs}^*(s_{13}, s_{23})\overline{A}_{fs}(s_{13}, s_{23})]$$

X: branching ratio[available for 4 (5) modes]Y: direct ACP[available for 4 (5) modes]Z: indirect ACP[available for 3 modes (self-conjugates modes only)]

Parameter counting for 4 modes (5 modes) 11 (13) observables

Emilie Bertholet (LPNHE, Paris)

Fit principle

10 (11) parameters

11 (13) observables

observables as functions of the parameters

Fit principle

11 (13) observables

observables as functions of the parameters

Extraction of γ at one point (s₁₃, s₂₃) on the DP:

- Compute observables: X (s₁₃, s₂₃), Y (s₁₃, s₂₃), Z(s₁₃, s₂₃).
- Compute the covariance matrix including the correlations.
- Scan on γ : fix γ to consecutive values and evaluate the other parameters minimising a χ^2 function.

9

Fit principle

11 (13) observables

observables as functions of the parameters

Cov matrix:

11x11 (13x13)

Extraction of γ at one point (s₁₃, s₂₃) on the DP:

- Compute observables: X (s₁₃, s₂₃), Y (s₁₃, s₂₃), Z(s₁₃, s₂₃).
- Compute the covariance matrix including the correlations.
- Scan on γ : fix γ to consecutive values and evaluate the other parameters minimising a χ^2 function.

Choice of points on the DP

Fully symmetrised amplitudes

$$A_{\rm fs}(s_{12}, s_{13}) = \frac{1}{\sqrt{6}} (A(s_{12}, s_{13}) + A(s_{12}, s_{23}) + A(s_{13}, s_{23}) + A(s_{13}, s_{12}) + A(s_{23}, s_{12}) + A(s_{23}, s_{13}))$$

The fully symmetric DP is divided into 6 regions containing the same information.

Kinematic boundaries of the different modes

The information we can use is limited by the size of $B^0 \rightarrow K_S K_S K_S DP$ (smallest one).

eberthol@cern.ch

Choice of points on the DP

The use of several points allows:

- Improving the validity of flavour SU(3) hyp.
- Using the maximum amount of information.

Extract γ using the maximum possible number of points on the DP.

In practice, due to very high correlations between certain points we are limited to the use of 3 simultaneous points.

> Cov matrix: 33x33 (39x39)

Method for extracting the results

- Several hundred combinations of 3 points randomly scattered over the DP.
- For each set of points: scan on the value of γ (500 fits with random initial parameters).
- Extract minima and statistical uncertainties for each scan.
- Combine results of all scans.
- Estimate systematic uncertainties.

Baseline results: extraction of γ using 4 modes

- $\alpha_{SU(3)}$ fixed to 1 in the fit.
- 501 sets of random 3-points combinations (correlations < 70%).
- 500 fits randomising the initial values of the parameters per set.
- Fit convergence = 100%.

Preferred values for γ : central values (μ) and statistical uncertainties (σ_L , σ_R).

	$\mid \mu$	σ_L	σ_R	frequency
minimum 1	12.9°	4.3 °	8.4°	484
minimum 2	36.6 $^{\circ}$	6.1°	6.6°	474
minimum 3	68.9°	8.6 $^{\circ}$	8.6°	461
minimum 4	223.2°	7.5°	10.9°	499
minimum 5	266.4°	10.8°	9.2°	487
minimum 6	307.5°	8.1°	6.9°	488
	$\gamma_{_{ m SM}}$ =	= 72.1°	$+5.4^{\circ} -5.8^{\circ}$	

Histogram of the central values of the minima extracted from the 501 sets of points.

Results

- 6 possible values for γ .
- 3rd minimum compatible with SM.
- Statistical error of the order of 10°.

Systematic uncertainties

Influence of "poorly resolved" minima

- To combine the results obtained from the different sets of 3 points we average on the central values of the minima.
- Some minima are not deep enough to extract statistical uncertainties. They are labelled as "poorly resolved minima" and are not included in the average for the baseline result.
- The central value including all the minima, $\mu^{all},$ is used to assign a systematic uncertainty

Syst1 = $|\mu - \mu^{all}|$

Influence flavour SU(3) breaking

- So far we do not take into account flavour SU(3) breaking.
- γ is re-extracted with 5 modes, letting $\alpha_{SU(3)}$ float in the fit. [next slide]
- Central values found with 5 modes are used to assign a systematic uncertainty

Syst2 =
$$|\mu^{4modes} - \mu^{5modes}|$$

Extraction of γ using 5 modes

s 120 #evts

100

80

60

40

20

50

100

150

200

250

300

 γ_{min}

350 [deg]

- $\alpha_{SU(3)}$ free in the fit.
- 401 sets of random 3-points combinations (correlations < 80%).
- 500 fits randomising the initial values of the parameters per set.
- Fit convergence \geq 80%.

Preferred values for γ : central values (μ) and statistical uncertainties (σ_L , σ_R).

	$\mid \mu$	σ_L	σ_R	$ \mu - \mu^{all} $	$ \mu^{4modes}-\mu^{5modes} $	frequency
minimum 1	11.9	5.8	9.1	1.3	1.0	306
minimum 2	39.2	6.3	6.7	1.2	2.6	329
minimum 3	71.3	9.5	9.3	0.4	2.4	372
minimum 4	223.9	7.4	9.5	0.1	0.7	383
minimum 5	265.0	11.0	10.0	1.2	1.3	378
minimum 6	308.4	8.8	7.0	0.6	0.9	391

entral values and statistical uncertainties are compatible with those obtained

Central values and statistical uncertainties are compatible with those obtained extracting γ with 4 modes.

Emilie Bertholet (LPNHE, Paris)

Histogram of the minima extracted from the 401 sets of points.

Summary of systematic uncertainties

	Poorly resolved minima	Flavour $SU(3)$ breaking
Minimum 1	0.8°	1.0°
$Minimum \ 2$	0.3°	2.6°
$Minimum \ 3$	0.2°	2.4°
Minimum 4	0.7°	0.7°
$Minimum \ 5$	1.4°	1.3°
Minimum 6	0.7°	0.9°

Test no 1 of flavour SU(3) breaking

• From the theoretical expressions for the amplitudes:

$$A(B^0 \to K^+ K^0 K^-)_{\rm fs} = \alpha_{SU(3)} A(B^+ \to K^+ \pi^+ \pi^-)_{\rm fs}$$

- If flavour SU(3) symmetry is conserved, $\alpha_{SU(3)} = 1$, and thus these amplitudes are equal.
- We define the ratio *R*(s₁₃, s₂₃)

$$R(s_{13}, s_{23}) = \frac{A^{K^+\pi^+\pi^-}(s_{13}, s_{23}) + \bar{A}^{K^+\pi^+\pi^-}(s_{13}, s_{23})}{A^{K_SK^+K^-}(s_{13}, s_{23}) + \bar{A}^{K_SK^+K^-}(s_{13}, s_{23})}$$

Hypothesis:

 Flavour SU(3) symmetry is conserved when averaging over many points over the DP.

Test no 1 of flavour SU(3) breaking

Remarks:

- R(s₁₃, s₂₃) varies over the DP, especially near resonances
- $< R(s_{13}, s_{23}) > = 1.03 \approx 1$

Test no 1 of flavour SU(3) breaking

Remarks:

- $R(s_{13}, s_{23})$ varies over the DP, especially near resonances \rightarrow as expected.
- $< R(s_{13}, s_{23}) > = 1.03 \approx 1 \rightarrow as expected.$

The hypothesis of flavour SU(3) symmetry conserved "on average" holds.

Emilie Bertholet (LPNHE, Paris)

Test no 2 of flavour SU(3) breaking

• Extract $\alpha_{SU(3)}$ value by a fit at several single points (≈ 400) over the DP fixing γ to the values of the 6 minima we found previously.

γ_i	$\langle \alpha_{SU(3)} \rangle_i$
12°	1.06
37°	1.06
68°	1.05
223°	1.06
266°	1.05
307°	1.05

S₁₃

eberthol@cern.ch

18

Summary and results

- We studied a method for extracting γ from charmless 3-body decays relying on flavour SU(3) symmetry.
- Using BABAR results:
 - 6 values for γ (1 consistent with SM).
 - Well separated, no overlap.
 - Statistical error about 10° (BABAR results only!).
 - Statistical error dominates over Systematics.

$$\begin{split} \gamma_1 &= 12.9^{\circ} {}^{+8.4^{\circ}}_{-4.3^{\circ}} \quad (\text{stat}) \pm 1.3^{\circ} \ (\text{syst}), \\ \gamma_2 &= 36.6^{\circ} {}^{+6.6^{\circ}}_{-6.1^{\circ}} \quad (\text{stat}) \pm 2.6^{\circ} \ (\text{syst}), \\ \gamma_3 &= 68.9^{\circ} {}^{+8.6^{\circ}}_{-8.6^{\circ}} \quad (\text{stat}) \pm 2.4^{\circ} \ (\text{syst}), \\ \gamma_4 &= 223.2^{\circ} {}^{+10.9^{\circ}}_{-7.5^{\circ}} \ (\text{stat}) \pm 1.0^{\circ} \ (\text{syst}), \\ \gamma_5 &= 266.4^{\circ} {}^{+9.2^{\circ}}_{-10.8^{\circ}} \ (\text{stat}) \pm 1.9^{\circ} \ (\text{syst}), \\ \gamma_6 &= 307.5^{\circ} {}^{+6.9^{\circ}}_{-8.1^{\circ}} \ (\text{stat}) \pm 1.1^{\circ} \ (\text{syst}). \end{split}$$

The paper is on the arXiv: <u>arXiv:1812.06194</u>

Emilie Bertholet (LPNHE, Paris)

Perspectives

The results of this study are very encouraging and we are following up in this direction.

- Take into account other symmetry states (under way):
 - totally anti-symmetric states
 - mixed states

may help to decrease the statistical uncertainties and reduce the number of solutions.

Interesting longer term possibility: dedicated analysis in a single experiment (LHCb, BELLE 2...) or even joint analysis?

BACKUP

Observables as functions of the theoretical parameters

$$A = ae^{i\phi_a}, B = be^{i\phi_b}, C = ce^{i\phi_c} \text{ and } D = de^{i\phi_d}$$

$$\phi_a = 0$$

$$\begin{aligned} X_{K^+\pi^+\pi^-}^{th}(s_1, s_2) &= a^2 + (\kappa b)^2 + c^2 + 2ac \cos \phi_c \cos \gamma - 2\kappa ab \cos \phi_b - 2\kappa bc \cos(\phi_b - \phi_c) \cos \gamma \\ Y_{K^+\pi^+\pi^-}^{th}(s_1, s_2) &= -2 \left(ac \sin \phi_c + \kappa bc \sin(\phi_b - \phi_c) \right) \sin \gamma \\ X_{K_SK^+K^-}^{th}(s_1, s_2) &= \alpha_{SU(3)}^2 X_{K^+\pi^+\pi^-}^{th} \\ Y_{K_SK^+K^-}^{th}(s_1, s_2) &= \alpha_{SU(3)}^2 Y_{K^+\pi^+\pi^-}^{th} \\ Z_{K_SK^+K^-}^{th}(s_1, s_2) &= \alpha_{SU(3)}^2 \left(-c^2 \cos \gamma - ac \cos \phi_c + \kappa bc \cos(\phi_b - \phi_c) \right) \sin \gamma \\ X_{K_S\pi^+\pi^-}^{th}(s_1, s_2) &= a^2 + (\kappa d)^2 + d^2 + 2ad \cos \phi_d \cos \gamma - 2\kappa ad \cos \phi_d - 2\kappa d^2 \cos \gamma \\ Y_{K_S\pi^+\pi^-}^{th}(s_1, s_2) &= -2ad \sin \phi_d \sin \gamma \\ Z_{K_S\pi^+\pi^-}^{th}(s_1, s_2) &= (-d^2 \cos \gamma - ad \cos \phi_d + \kappa d^2) \sin \gamma \\ X_{K^+\pi^+\pi^0}^{th}(s_1, s_2) &= \frac{1}{2} \left(b^2 + \kappa^2 c^2 - 2\kappa bc \cos \gamma \cos(\phi_b - \phi_c) \right) \\ Y_{K^+\pi^+\pi^0}^{th}(s_1, s_2) &= \kappa bc \sin \gamma \sin(\phi_b - \phi_c) \\ X_{K_SK_SK_S}^{th}(s_1, s_2) &= 2\alpha_{SU(3)}^2 \end{aligned}$$