What To take Home? or: What do I take Home?

Thomas Mannel

Theoretische Physik I Universität Siegen

FCNLB II in 2019

The Use of Flavour Symmetries

Conclusions and Outlook

- Symmetry methods important for SM-parameter extractions
 - Precision extractions typically avoid direct calculation
 - ▶ Future challenge in non-leptonic B decays
- Smallness of NP poses new challenges to CPV interpretation
- Correlations and small effects in exp. data important
- New data show importance of previously neglected contributions
 - Precise measurements of rare modes feed back into theory
- Reparametrization invariance necessitates dynamical input
- Understanding SU(3) breaking essential for reducing uncertainties
 - Several hierarchies complicate analysis
 - ▶ Data-driven determination possible to some extent
- $b \to c\bar{c}s$: precision analysis of $\phi_{d,s}$ possible, SU(3) breaking critical
- $B \to PP$: $B \to \pi\pi$ and $B \to \pi K$ indicate missing contributions
- QCD understanding critical for NP sensitivity!

QCD-Factorization / PQCD

... this I leave to Sebastian Jäger

Light Cone Sum Rules

- wish list (experiment):
 - more accurate measuruments of pion and kaon form factors,
 - $B \rightarrow \gamma \ell \nu_{\ell}$
 - slope of $B \to \pi \ell \nu_\ell$, $B_s \to K \ell \nu_\ell$
 - to complete the observables in $B \rightarrow PP$
- ▶ wish list (theory):
 - *B*-meson DA, updated QCD SR estimates λ_B , $\lambda_{E,H}$, λ_{B_s} and other parameters
 - dipon and dikaon DAs
 - a method 2 for nonleptonic amplitudes?
 - \bullet B_c form factors

(A. Khodiamirian, Discussion: D. van Dvk)

A personal Comment:

LCQCD Sum Rule Estimates will become more important again

- Inverse Moment estimates
- B_c Form Factors
- Estimating Power Corrections in QCDF
- Multibody final States ??

Three (and more) body Final States

Going beyond 1 GeV: higher states and resonances

- $\pi\pi$ and $K\bar{K}$ coupled channels work up to $1.05\,\mathrm{GeV}$
- beyond: strong coupling to $4\pi \longrightarrow \text{phase/inelasticity description??}$
- resonances, e.g. $\mathcal{B}(f_0(1500) \to 4\pi) = (49.5 \pm 3.3)\%$
- idea: coupling to 4π via resonances, preserve unitarity

 Hanhart 2012
 - --- Omnès at low energies, unitary isobar model above
- 4π in general very complicated; approximations:
 - vector form factor: 4π phase space only $+\pi\omega$ • scalar form factor: isobars $\rho\rho$ or $\sigma\sigma$

Hanhart 2012 Ropertz, Hanhart, BK 2018

PDG 2018

neglect crossed-channel effects, other channels

(B. Kubis)

(I. Bediga)

(P. Magalhaes)

Duality of the Charm Loop with the hadronic picture?

- Modelling is currently unavoidable
- Beautiful Fits to data (Miranda, Diaz, ...)

A remark on fitting:

Effective Hamiltonian

$$H_{\rm eff} = O_1 + O_2 e^{i\gamma}$$

Take the matrix element

$$egin{aligned} \langle \pi\pi\pi|H_{ ext{eff}}|B^{+}
angle &= \mathcal{A}_{1}(s_{12},s_{23}) + \mathcal{A}_{1}(s_{12},s_{23})e^{i\gamma} \ \langle \overline{\pi\pi\pi}|H_{ ext{eff}}|B^{+}
angle &= \mathcal{A}_{1}(s_{12},s_{23}) + \mathcal{A}_{1}(s_{12},s_{23})e^{-i\gamma} \end{aligned}$$

• Fitting A_1 and A_2 for γ fixed may give better insights into QCD dynamics.

Prospects

- Increase in precision for two/body decays: QCD Corrections, Inverse moments, Power Suppressed terms
- Three or more body decays: Close the gap!!
- Experimental Prospects are very good (Gershon)

Thank You for Comming Have a safe trip home