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Set up

b→ cc̄s four quark operators contribute to B(0)
s − B̄(0)

s mixing, B(0)
s

lifetime, rare and radiative B decay at loop level and to B → J/ψKS at
tree level

Schematically

Q = V̂ (c̄ΓXb)(s̄ΓY c)

Kirsten Leslie (University of Sussex) 14th January 2019 3 / 18



Motivation - studying BSM in b→ cc̄s transitions
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Eur.Phys.J.C77(2017)895,http:
//www.slac.stanford.edu/xorg/hfag

Altmannshofer, Niehoff, Stangl, Straub,
1703.09189

SM predictions consistent with measurement in mixing observables

Anomalies in rare decay are reported in LHCb analysis, indicating a
possible shift to Wilson coefficient C9
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Plus 12 more primed operators obtained by letting PL(R) → PR(L) in the
above

C
c
i (µ) =

{
CSMi (µ) + ∆Ci(µ), i = 1, 2

∆Ci(µ), i = 3, .., 10

C
′c
i (µ) = ∆C

′
i(µ) i = 1, ..., 10

C
′
i(µ) = C

′
i(µ) i = 7γ, 9V
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Case I: Rare decay anomalies Cc1 − Cc4 in C9V from previous publication

Strategy

Consider shift to C9 induced by Operators Qc1 −Q
c
4 in b→ s`` amplitude

constrain with BSM predictions for mixing, lifetime and radiative decay using Operators Qc1 −Q
c
4
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CSM9 = 4.27, shift to C9 of ∆C9 = −1 could explain anomaly in rare decay

[Jäger,Kirk,Leslie,Lenz 1701.09183 ]
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Case II: Right handed currents analysis (New work)
Strategy

C′
9 here constrains general BSM contributions from Operators Q′c

1 −Q
′c
4 .

C′
9 = 0.2± 0.2 [Altmannshofer, Niehoff,Stangl,Straub 1703:09189]

Can again constrain size of ∆C′c
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Case III: New operators Qc5 −Qc10 (New work)

Can only constrain size of ∆C5 −∆C10 with BSM predictions for mixing, lifetime and radiative
decay

Dominant constraint is from B(B → Xsγ) and rules out many scenarios involving pairs of these
coefficients
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Case IV: New operators Q′c5 −Q′c10 (New work)

Can only constrain size of ∆C′
5 −∆C′

10 with BSM predictions for mixing, lifetime and radiative
decay

Dominant constraint is again from B(B → Xsγ) and is less constraining dues to quadratic
dependence of ratio upon ∆C′

7γ
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CP Asymmetries - New Weak Phases from SM Wilson coefficients

Cci = CSM
i + Re(∆Ci) + Im(∆Ci) i = 1, 2

Assl =
Γ(B̄0

s(t)→f)−Γ(B0
s(t)→f̄)

Γ(B̄0
s(t)→f)+Γ(B0

s(t)→f̄)

Introduce new source of CP violation by allowing Wilson coefficients to
be complex

Any deviation of Asl from zero signals CP violation
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CP Asymmetries II: Further constraints from B → J/ψKS?

Time Dependent CP Asymmetry

ACP (t) = SJ/ψK sin(∆Mt)− CJ/ψK cos(∆Mt)

SJ/ψK =
2Im(λJ/ψK)

(1+|λJ/ψK |2) CJ/ψK =
(1−|λJ/ψK |2)
(1+|λJ/ψK |2)

λJ/ψK = e2iβ ((Cc1)∗ + (Cc2)∗r21)

(Cc1 + Cc2r21+)
r21 =

〈J/ψK0
d |O2|B0

d〉
〈J/ψK0

d |O1|B0
d〉

r21 ∈ C

Branching ratio

B(B → J/ψK) =
τB |~pc|G2

F |λc|
2

M2
Bπ

|〈O1〉|2|(Cc1 + Cc2r21)|2

Theoretically challenging to compute the hadronic matrix elements
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Fit of hadronic parameters

〈O1〉 factorizes in the naive sense with correction in the large N limit of
O
(

1
N2

)
relative to NF

〈O2〉 color fierzes into a color singlet and color octet and is 1
N suppressed

in Naive factorization

〈O1〉 = 〈O1〉NF (1 +O
(

1
N2

)
)

〈O2〉 = 1
N 〈O1〉+ 〈T1〉

Strategy

Keep r21, 〈O1〉 exact

3 observables, 3 predictions, 3 hadronic parameters

Fit hadronic parameters Re(r21), Im(r21), |〈O1〉| to experimental data

Compare with theoretical estimate of |〈O1〉|NF
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Fit of hadronic parameters II
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Fitted hadronic parameters agree with Naive factorization and with
lifetime ratio constraint at distinct points
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Full constraint from B → J/ψKS on complex Cc1

∆C1 = Re(∆C1) + iIm(∆C1)
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��(Δ��(��))

-���
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���

���

��(Δ��(��)) discrete points become bands
when requiring |〈O1〉| is
within theoretical error for
NF prediction (quite good)
and r21 left free

CP violation with imaginary
shift to Cc1 of around ±0.2

With very little theoretical
input it is possible to obtain a
further constraint in the
complex Cc1 plane

Kirsten Leslie (University of Sussex) 14th January 2019 14 / 18



Full constraint from B → J/ψKS on Cc2

∆C2 = Re(∆C2) + iIm(∆C2)
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��(Δ��(��)) Still possible to constrain
further using fitted
parameters but less clear
outcome in Cc2

No region where all
observables agree to a
particular value for ∆C2 ∈ C
but real axis in agreement
with NF estimate
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Conclusions

BSM physics in rare decays can be connected to radiative decays, mixing
and lifetimes using charmed four quark operators

Explanation to rare decay anomalies in shift to C9V from Cc1 − Cc4 is
possible

Cc5 − Cc10 are strongly constrained by radiative decay but C ′c5 − C ′c10 less
stringently so due to quadratic dependence of branching ratio upon ∆C ′7γ

C ′c1 − C ′c4 constrained by mixing, lifetimes, radiative and rare decay

we looked at CPV and used "novel " method to consider BSM effects vs
NF

O1 is quite well approximated by NF ; distinct regions in the complex
∆C1 plane for which theory prediction agrees with B → J/ψKS

O2 is not so trustworthy and regions agreeing with NF in complex ∆C2

plane are not so useful
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Backup

The color octet operator contains SU(3) color generators
T1 = (c̄γµT

APLc)(s̄γ
µTAPLb)

In naive factorization the operator matrix element of O1 factorizes
as
〈O1〉NF = 〈J/ψ|c̄γµc|0〉〈K|s̄γµb|B〉
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∆B = 0, 2 Basis

∆B = 0: SM

Qs1 = b̄γµ(1− γ5)ss̄γµ(1− γ5)b

Qs2 = b̄(1− γ5)ss̄(1 + γ5)b

T s1 = b̄γµ(1− γ5)TAss̄γµ(1− γ5)TAb

T s2 = b̄(1− γ5)TAss̄(1 + γ5)TAb
M.Kirk, A.Lenz,T.Rauh, 1711.02100

∆B = 0 : New Operators

Qs3 = b̄γµ(1− γ5)ss̄γµ(1 + γ5)b

Qs4 = b̄(1− γ5)ss̄(1− γ5)b

T s3 = b̄γµ(1−γ5)TAss̄γµ(1+γ5)TAb

T s4 = b̄(1− γ5)TAss̄(1− γ5)TAb

∆B = 2

Q = (s̄αγµ(1− γ5)bα)(s̄βγµ(1− γ5)bβ) QS = (s̄α(1 + γ5)bα)× (s̄β(1 + γ5)bβ)

Q̃S = (s̄α(1 + γ5)bβ)× (s̄β(1 + γ5)bα) R1 = ms
mb

(s̄α(1 + γ5)bα)× (s̄β(1− γ5)bβ)

R̃1 = ms
mb

(s̄α(1 + γ5)bβ)× (s̄β(1− γ5)bα)

α, β Colour indices, TA are SU(3) Colour generators
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