Direct CP violation measurements with an amplitude analysis: $B^0 \rightarrow (\pi^+\pi^-)(K^+\pi^-)$ results

María Vieites Díaz Universidade de Santiago de Compostela

Future Challenges in Non-Leptonic B Decays

Mainz, January 14-18 $^{\rm th}$, 2019

Observables in an amplitude analysis of $B \rightarrow VV$ decays

$B ightarrow (p_a p_b)_1 (p_c p_d)_2$ decays

Can be fully described in terms of:

- ♦ Three helicity angles: θ_1, θ_2, ϕ
- ♦ **Two invariant masses**: m_1, m_2

A $B \rightarrow VV$ proceeds via three amplitudes \rightarrow three spin configurations: P-odd $S_{VV} = 1$ and P-even $S_{VV} = 0, 2$ usually rotated into the transversity basis $\lambda = L, ||, \perp$.

Observables: number of events per amplitude (**polarisation fractions**), f^{λ} , and their **phase** differences: $(\delta^{\lambda_i} - \delta^{\lambda_j})$

 \rightarrow Sensitivity to CPV by comparing *B* and \overline{B} parameters

$$f^{\lambda} = \frac{|A^{\lambda}|^2}{|A^L|^2 + |A^L||^2 + |A^L|^2}, \qquad \tilde{f}^{\lambda} = \frac{1}{2}(f^{\lambda} + \overline{f}^{\lambda}), \qquad \mathcal{A}^{\lambda} = \frac{\overline{f}^{\lambda} - f^{\lambda}}{\overline{f}^{\lambda} + f^{\lambda}}$$

T-odd quantities can be obtained from $A_T = f_{\perp} f_{(L,||)} \sin(\delta_{\perp} - \delta_{(L,||)})$, to build **Triple Product** asymmetries:

$$\mathcal{A}_{T-true} = \frac{\mathcal{A}_T - \overline{\mathcal{A}}_T}{2}, \qquad \mathcal{A}_{T-fake} = \frac{\mathcal{A}_T + \overline{\mathcal{A}}_T}{2}$$

 $\begin{array}{l} \mbox{Illustrative toys} \\ \mbox{(no interferences generated, } (a+b)^2 \neq a^2+b^2 \end{array} \right)$

In general, a *VV* final state **can not be isolated** and other possible decay channels must be accounted for: **Partial waves:**

VV: ρK^* , ωK^* , **VS**: $\rho(K\pi)$, $\omega(K\pi)$,

SV: $[f_0(500), f_0(980), f_0(1370)]K^*$,

 $SS:[f_0(500), f_0(980), f_0(1370)](K\pi)$

In general, a *VV* final state **can not be isolated** and other possible decay channels must be accounted for: **Partial waves:**

VV: $\rho K^*, \omega K^*$, **VS**: $\rho(K\pi), \omega(K\pi)$, **SV**: [$f_0(500), f_0(980), f_0(1370)$] K^* .

 $SS:[f_0(500), f_0(980), f_0(1370)](K\pi)$

Illustrative toys (no interferences generated, $(a + b)^2 \neq a^2 + b^2$)

Illustrative toys (no interferences generated, $(a + b)^2 \neq a^2 + b^2$)

In general, a *VV* final state **can not be isolated** and other possible decay channels must be accounted for: **Partial waves:**

VV: ρK*, ωK*, **VS**: ρ(Kπ), ω(Kπ),
 SV: [f₀(500), f₀(980), f₀(1370)]K*,
 SS: [f₀(500), f₀(980), f₀(1370)](Kπ)

Illustrative toys (no interferences generated, $(a + b)^2 \neq a^2 + b^2$)

In general, a *VV* final state **can not be isolated** and other possible decay channels must be accounted for: **Partial waves:**

VV: $\rho K^*, \omega K^*, \mathbf{VS}: \rho(K\pi), \omega(K\pi)$.

SV: $[f_0(500), f_0(980), f_0(1370)]K^*$.

 $SS:[f_0(500), f_0(980), f_0(1370)](K\pi)$

In general, a *VV* final state **can not be isolated** and other possible decay channels must be accounted for: **Partial waves:**

VV: $\rho K^*, \omega K^*, \mathbf{VS}: \rho(K\pi), \omega(K\pi),$

SV: [f₀(500), f₀(980), f₀(1370)]K*.

SS: $[f_0(500), f_0(980), f_0(1370)](K\pi)$

Illustrative toys (no interferences generated, $(a + b)^2 \neq a^2 + b^2$)

 n_{m} [MeV/ c^2

Illustrative toys (no interferences generated, $(a + b)^2 \neq a^2 + b^2$)

In general, a *VV* final state **can not be isolated** and other possible decay channels must be accounted for: **Partial waves:**

VV: ρK^* , ωK^* , **VS**: $\rho(K\pi)$, $\omega(K\pi)$.

SV: $[f_0(500), f_0(980), f_0(1370)]K^*$.

SS: $[f_0(500), f_0(980), f_0(1370)](K\pi)$

Generalise to *N* amplitudes (isobar model):

$$d^{5}\Gamma \propto \Phi_{4} \left| \sum_{i=1}^{N} A_{i} \cdot g_{i}(\cos \theta_{1}, \cos \theta_{2}, \phi) \cdot M_{i}(m_{1}, m_{2}) \right|$$

More observables: +1 amplitude, +1 phase difference per new contribution

An amplitude analysis disentangles the final state!

 $A_i \rightarrow$ physical parameters

 $g_i(\theta_1, \theta_2, \phi) \rightarrow$ spherical harm.

 $M_i(m_1, m_2) \rightarrow mass prop.$

M. Vieites Díaz (USC

Analysis strategy

Main analysis steps:

1 Event selection:

 $\label{eq:transform} \mbox{Trigger on final state hadrons} + \mbox{Particle Identification} + \mbox{Invariant mass} \\ \mbox{windows} + \mbox{Multivariate Analysis} \\$

2 Four-body mass spectrum:

Inject simulated events to cancel $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ background, then use the *s*Fit to obtain signal weights \to background-subtracted data sample

Analysis strategy

Main analysis steps:

1 Event selection:

 $\label{eq:transform} \mbox{Trigger on final state hadrons} + \mbox{Particle Identification} + \mbox{Invariant mass} \\ \mbox{windows} + \mbox{Multivariate Analysis} \\$

2 Four-body mass spectrum:

Inject simulated events to cancel $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ background, then use the *s*Fit to obtain signal weights \rightarrow background-subtracted data sample

3 Build 5D model (2-body invariant masses + helicity angles): Describes a total of 14 amplitudes contributing to the $B^0 \rightarrow (\pi^+\pi^-)(K^+\pi^-)$ process in the quasi-two-body approach using the Isobar model.

> **VV**: ρK^* , ωK^* , **VS**: $\rho(K\pi)$, $\omega(K\pi)$, **SV**: $[f_0(500), f_0(980), f_0(1370)]K^*$, **SS**: $[f_0(500), f_0(980), f_0(1370)](K\pi)$

Analysis strategy

Main analysis steps:

1 Event selection:

 $\label{eq:trigger} \begin{array}{l} \mbox{Trigger on final state hadrons} + \mbox{Particle Identification} + \mbox{Invariant mass} \\ \mbox{windows} + \mbox{Multivariate Analysis} \end{array}$

2 Four-body mass spectrum:

Inject simulated events to cancel $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ background, then use the *s*Fit to obtain signal weights \rightarrow background-subtracted data sample

3 Build 5D model (2-body invariant masses + helicity angles): Describes a total of 14 amplitudes contributing to the $B^0 \rightarrow (\pi^+\pi^-)(K^+\pi^-)$ process in the quasi-two-body approach using the Isobar model.

4 Data fit:

Unbinned maximum likelihood fit **simultaneous in year and trigger categories** for B^0 and $\overline{B^0}$ (8 subsamples) using MultiNest. \rightarrow Multinest project LHCb acceptance effect accounted for using simulated events.

5 Systematic uncertainties study: Dominant systs.: for VV channels, $B^0 \rightarrow a_1(1260)^- K^+$ pollution; for S-waves, parameters in the mass propagators and experimental resolution.

Fit results (II): projections on the invariant masses

Full set of numerical results

LHCb-PAPER-2018-042

Parameter	CP average \tilde{f}	CP asymmetry A	Parameter	CP average, $\frac{1}{2}(\delta_{\overline{B}} + \delta_B)$ [rad]	CP difference, $\frac{1}{2}(\delta_{\bar{B}} - \delta_B)$ [rad]
40 2	$0.32 \pm 0.04 \pm 0.07$	$-0.75 \pm 0.07 \pm 0.17$	$\delta^0_{\rho K^*}$	$1.57 \pm 0.08 \pm 0.18$	$0.12 \pm 0.08 \pm 0.04$
$ A^{ }_{K^*} ^2$	$0.52 \pm 0.04 \pm 0.03$ $0.70 \pm 0.04 \pm 0.08$	$-0.049 \pm 0.053 \pm 0.019$	$\delta_{\rho K^*}^{ }$	$0.795 \pm 0.030 \pm 0.068$	$0.014 \pm 0.030 \pm 0.026$
$ A_{aK^*}^{\perp} ^2$	$0.67 \pm 0.04 \pm 0.07$	$-0.187 \pm 0.051 \pm 0.026$	$\delta_{\rho K^*}^{\perp}$	$-2.365 \pm 0.032 \pm 0.054$	$0.000 \pm 0.032 \pm 0.013$
$ A^{0}_{\omega K^{*}} ^{2}$	$0.019\ \pm 0.010\ \pm 0.012$	$-0.6 \pm 0.4 \pm 0.4$	$\delta^0_{\omega K^*}$	$-0.86 \pm 0.29 \pm 0.71$	$0.03 \pm 0.29 \pm 0.16$
$ A_{\omega K^*}^{ } ^2$	$0.0050 \pm 0.0029 \pm 0.0031$	$-0.30 \pm 0.54 \pm 0.28$	$\delta^{"}_{\omega K^*}$	$-1.83 \pm 0.29 \pm 0.32$	$0.59 \pm 0.29 \pm 0.07$ 0.25 ± 0.42 ± 0.16
$ A_{\omega K^*}^{\perp} ^2$	$0.0020 \pm 0.0019 \pm 0.0015$	$-0.2 \pm 0.9 \pm 0.4$	$o_{\omega K^*}$	$1.0 \pm 0.4 \pm 0.0$ $-2.32 \pm 0.22 \pm 0.24$	$-0.25 \pm 0.43 \pm 0.16$ $-0.20 \pm 0.22 \pm 0.14$
$ A_{\omega(K\pi)} ^2$ $ A_{L_{(TOD)}K\pi} ^2$	$0.026 \pm 0.011 \pm 0.025$ $0.53 \pm 0.05 \pm 0.10$	$-0.47 \pm 0.33 \pm 0.45$ $-0.06 \pm 0.09 \pm 0.04$	$\delta_{\omega(K\pi)}$ $\delta_{f_{\alpha}(500)K^{*}}$	$-2.32 \pm 0.22 \pm 0.24$ $-2.28 \pm 0.06 \pm 0.22$	$-0.00 \pm 0.06 \pm 0.05$
$ A_{f_0(980)K^*} ^2$	$2.42 \pm 0.13 \pm 0.25$	$-0.022 \pm 0.052 \pm 0.023$	$\delta_{f_0(980)K^*}$	$0.39 \pm 0.04 \pm 0.07$	$0.018 \pm 0.038 \pm 0.022$
$ A_{f_0(1370)K^*} ^2$	$1.29 \pm 0.09 \pm 0.20$	$-0.09 \pm 0.07 \pm 0.04$	$\delta_{f_0(1370)K^*}$	$-2.76 \pm 0.05 \pm 0.09$	$0.076 \pm 0.051 \pm 0.025$
$ A_{f_0(500)(K\pi)} ^2$	$0.174 \pm 0.021 \pm 0.039$	$0.30 \pm 0.12 \pm 0.09$	$\delta_{f_0(500)(K\pi)}$	$-2.80 \pm 0.09 \pm 0.21$	$-0.206 \pm 0.088 \pm 0.034$
$ A_{f_0(980)(K\pi)} ^2$	$1.18 \pm 0.08 \pm 0.07$ $0.139 \pm 0.028 \pm 0.039$	$-0.083 \pm 0.066 \pm 0.023$ $-0.48 \pm 0.17 \pm 0.15$	$\delta_{f_0(980)(K\pi)}$	$-2.982 \pm 0.032 \pm 0.057$ 1.76 $\pm 0.10 \pm 0.11$	$-0.027 \pm 0.032 \pm 0.013$ 0.16 ± 0.10 ± 0.04
r0	0.164 + 0.015 + 0.000	0.40 ± 0.00 ± 0.00	$O_{f_0(1370)(K\pi)}$	1.76 ± 0.10 ± 0.11	$-0.10 \pm 0.10 \pm 0.04$
$J_{\rho K^*}_{r}$	$0.104 \pm 0.015 \pm 0.022$	$-0.62 \pm 0.09 \pm 0.09$	$\delta_{\rho K^*}^{\parallel - \perp}$	$3.160 \pm 0.035 \pm 0.044$	$0.014 \pm 0.035 \pm 0.026$
$\int \rho K^*$ $f^{\perp}_{\mu\nu}$	$0.435 \pm 0.016 \pm 0.042$ $0.401 \pm 0.016 \pm 0.037$	$0.138 \pm 0.037 \pm 0.022$ $0.050 \pm 0.039 \pm 0.015$	$\delta^{\parallel=0}_{\rho K^*}$	$-0.77 \pm 0.09 \pm 0.06$	$-0.109 \pm 0.085 \pm 0.034$
$f^{0}_{\omega K^*}$	$0.68 \pm 0.17 \pm 0.16$	$-0.13 \pm 0.27 \pm 0.13$	$\delta_{\rho K^*}^{\pm=0}$	$-3.93 \pm 0.09 \pm 0.07$	$-0.123 \pm 0.085 \pm 0.035$
$f_{\omega K^*}^{ }$	$0.22 \pm 0.14 \pm 0.15$	$0.26 \pm 0.55 \pm 0.22$	$\delta_{\omega K^*}^{ -1}$	$-3.4 \pm 0.5 \pm 0.7$	$0.84 \pm 0.52 \pm 0.16$
$f_{\omega K^*}^{\perp}$	$0.10 \pm 0.09 \pm 0.09$	$0.3 \pm 0.8 \pm 0.4$	$\delta^{ii-0}_{\omega K^*}$ s $\perp -0$	$-1.0 \pm 0.4 \pm 0.6$	$0.57 \pm 0.41 \pm 0.17$
			$o_{\omega K^*}$	2.4 ± 0.0 ± 0.8	$-0.28 \pm 0.31 \pm 0.24$

Amplitudes and phase differences measured for 13 waves (CP-av. and asym.)

- \checkmark First measurements for several modes
- $\checkmark\,$ First measurements of CP-phase differences per channel
- $\checkmark\,$ First observation of CPV in angular distributions of VV decays

Numerical fit results

Remarks

- $B^0 o
 ho^0({\cal K}^+\pi^-)$ amplitude fixed (normalisation)
- Measurements of the relative amplitudes and phases for the remaining 13 waves

Results for the $B^0
ightarrow
ho^0 K^{*0}$ related observables compared with QCDF predictions:

VV dominated angular distributions

The landscape of longitudinal polarisations

Available results:

- Large f_L values confirmed in $b \rightarrow u$ tree dominated decays
- Penguin dominated modes span wider ranges for *f_L*
- The $B^0 \rightarrow K^* (892)^0 \bar{K}^* (892)^0$ seems to be an exception $(f_L > 0.7)$

Longitudinal Polarization Fraction in Charmless B Decays

The landscape of longitudinal polarisations

Available results:

- Large *f*_L values confirmed in *b* → *u* tree dominated decays
- Penguin dominated modes span wider ranges for f_L
- The $B^0 \rightarrow K^* (892)^0 \bar{K}^* (892)^0$ seems to be an exception $(f_L > 0.7)$

dominated decays

Available results:

• Penguin dominated modes span wider ranges for f_L

• Large f_L values confirmed in $b \rightarrow u$ tree

• The $B^0 \to K^*(892)^0 \bar{K}^*(892)^0$ seems to be an exception $(f_L > 0.7)$

The landscape of longitudinal polarisations

Longitudinal Polarization Fraction in Charmless B Decays

The landscape of longitudinal polarisations

Available results:

- Large f_L values confirmed in $b \rightarrow u$ tree dominated decays
- Penguin dominated modes span wider ranges
- The $B^0 \to K^*(892)^0 \bar{K}^*(892)^0$ seems to be an exception $(f_L > 0.7)$
- 📩 This work

• Amplitude analyses

- Give access to large sets of observables probing structures of potential new contributions
- Exp.: high technicality, require careful treatment of correlations and very good understanding of the detector effects
- Th.: challenging calculations still affected by very large uncertainties

• Some comments

- $M_i(m_1, m_2)$: mass propagators shapes (magnitude and phase) introduce some model-dependency. Sensible choices needed.
- Description of the *S*-wave is a long standing *feature*: rich dynamics, phenomenology...
- Backgrounds: either describe or subtract with statistical methods.
- High dimensional problems, with many parameters... could some of these be shared among contributions?

Backup slides

A glimpse into MultiNest

Uses **clustered nested sampling**: a **Monte Carlo** method targetted at the efficient calculation of the probability for a set of parameter values given a data sample

MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics

(MN HilpX style file x2.2

F. Feroz*, M.P. Hobson and M. Bridges Astrophysics Group, Covendrati Laboratory, JJ Thomson Arenae, Cambridge CB3 0HE, UK

010.1-14 (2008)

Highlighted characteristics:

- Defines "high dimensionality" as > 50D :-)
- Nested sampling: new algorithm type (\sim 2004) performing better (less evaluations needed) than MC-Markov-Chain reference
- Clustered nested sampling: very good finding several modes in the posterior distributions (induced by non smoothness of the log \mathcal{L} in our case)
- Very slow but: parameter estimation, uncertainties, log $\mathcal L$ profiles, iso-log $\mathcal L$ contours, correlations, ... all produced at once

Example of MultiNest performance finding peaks in a multimodal $\log \mathcal{L}$ distribution. Toy (left) vs fit (right).

Sources of systematic uncertainties

PDF term
$$\sim \frac{\mathcal{A}_{i} \cdot g_{i}(\theta_{1}, \theta_{2}, \phi) \cdot \mathcal{M}_{i}(m_{1}, m_{2}) \times (...)_{j}^{*}}{\sum_{i,j} \mathcal{A}_{i} \mathcal{A}_{j}^{*} n w_{ij}}$$

Normalisation: $\sum_{i,j} A_i A_j^* n w_{ij}$

- A_iA^{*}_i→ polarisation affects acceptance.
- nwij obtained from MC sample, limited statistics

Experimental resolution $(\theta_1, \theta_2, \phi, m_1, m_2)$ and Orbital angular momentum barriers $(m_1 \times m_2)$

Neglected in the nominal model

Mass propagators: $\mathcal{M}(m_1, m_2)$

• Vary the parameters in the propagators: $BW(m, L, m_0, \Gamma_0, r_0) \rightarrow x_0 \rightarrow Gauss(x_0, \sigma_{x_0})$

Neglected contributions in the model: $A_i A_i^*$

• Identical π exchange, $B^0 \to (\pi^+\pi^-)(K^+\pi^-)$, and $B^0 \to a_1(1240)^-K^+$ pollution

Pull distributions: to estimate possible model-induced biases

Data-Simulation corrections: nwij

• PIDCalib 2D maps plus iterative reweight to correct for p_T^B and Ntracks

Data sample:

- Negative weights cancelling the $B_s^0 o K^*(892)^0 \bar{K}^*(892)^0$ contribution (yield and shapes)
- Signal weights from the sFit

M. Vieites Díaz (USC)

Systematic uncertainties

• The $B^0 \rightarrow a_1(1260)^- K^+$, being sensitive to polarisations too, dominates the systematics for the *VV* parameters. *S*-waves are mostly affected by the parameters used in the mass propagators and the experimental resolution.

	Systematic uncertainty	$f^{0}_{\rho K^{*}}$	$f_{\rho K^{*}}^{ }$	$f_{\rho K^*}^{\perp}$	$\delta_{\rho K^*}^{\parallel - \perp}$	$\delta^{ -0}_{ ho K^*}$	$\delta^{\perp -0}_{\rho K^*}$
CP averages	Centrifugal barrier factors	0.001	0.001	0.002	0.001	_	_
	Hypatia parameters	0.001	0.001	0.001	0.001	_	_
	$B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.	0.005	0.003	0.005	0.018	0.02	0.02
	Simulation sample size	0.004	0.004	0.004	0.009	0.02	0.02
	Data-Simulation corrections	_	-	-	0.001	_	_
CP asym.	Centrifugal barrier factors	_	0.001	0.002	0.004	0.007	0.004
	Hypatia parameters	_	0.003	0.002	0.001	0.002	0.002
	$B^0_s \to K^{*0} \overline{K}^{*0}$ bkg	(0.03)	0.007	0.011	(0.024)	0.020	0.026
	Simulation sample size	0.02	0.010	0.009	0.011	0.027	0.023
	Data-Simulation corrections	_	0.001	0.001	_	0.002	0.002
	Mass propagators parameters	0.011	0.005	0.006	0.004	0.028	0.024
$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $		0.010	(0.016)	(0.018)	0.031	0.029	0.040
		0.003	0.001	0.002	0.003	0.005	0.004
		(0.015)	0.040	0.031	(0.024)	0.035	0.032
		0.004	-	0.004	0.005	0.001	0.001

LO and NLO systematic uncertainties.

The LHCb detector

