NL-eEDM Measuring the electron-EDM with BaF molecules

Scientific staff:

Anastasia Borschevsky **Rick Bethlem** Steven Hoekstra Klaus Jungmann Rob Timmermans Wim Ubachs Lorenz Willmann

PhD students:

Parul Aggarwal Alexander Boeschoten Kevin Esajas Pi Haase Yongliang Hao Virginia Marshall Thomas Meijknecht Maarten Mooij Anno Touwen Artem Zapara

Postdocs Malika Denis Yanning Yin

university of groningen

van swinderen institute for particle physics and gravity

Nikhef Dutch National Institute for (astro)Particle Physics

VRIJE UNIVERSITEIT AMSTERDAM

Is the electron round? The Electric Dipole Moment of the electron (eEDM)

An EDM would arise along the same axis as the electron's spin.

eEDM violates P, T and CP symmetry (provided CPT holds)

> The charge cloud would be distorted, making one side slightly more negative than the other.

fig: Nature 553, 144 (2018)

Next-generation experiment with cold molecules

How the electron-EDM measurement is done with BaF molecules

Energy level structure of the BaF molecule

rotational structure

How to read out small energy shifts: spin interferometer

Detector count

after slide by Ed Hinds

Applied electric field (kV/cm)

Main challenge: how to maintain N while increasing t

Strongly connected to choice of molecule!

Towards longer coherent interaction times

fountain

t ~ 100 ms

L ~ 0.5 m

trap

t ~ 1-10 s L ~ 0.5 mm

molecules trapped in laser focus

Demonstrated first molecular fountain: PRL 117 253201 (2016) Rick Bethlem

slow vertical beam

Our approach: Combining three recent experimental breakthroughs 1) Cryogenic source 2) Stark deceleration 3) Molecular laser cooling

Using BaF molecules, we can create a very intense, slow and cold beam

We aim for 5.10⁻³⁰ e.cm in the first generation of the experiment Published paper with full details of proposal: EPJD 72:197 (2018)

Molecular beams

Supersonic

Aims:

- Intense, fast beam (600 m/s)
- Short pulse
- Test lasers systems, state manipulation and interaction zone

Cryogenic

Aims:

- slow, but relatively fast beam (~180 m/s) - relatively short pulse - relatively small velocity spread - for optimal loading into decelerator - High N: 4x10⁹/shot in the desired state - Use for eEDM measurement

First BaF results

photon counts

BaF supersonic beam

First cryogenic beam results

Cryogenic beam

- Ablating SrF₂ salt target
- Imperial college design (Tarbutt, Truppe)
- Neon carrier gas
- Absorption, 1 cm from cell
- Fluorescence, 30 cm from cell
- Translational Temp 10 K
- Velocity 150-200 m/s
- Operating @ 10 Hz

-	5000 -	
a.units	4000 -	
nce (ar	3000 -	
Drescel	2000 -	
LIUC	1000 -	l,
(S)	0 –	
liun.o	0	~
ion (ari	-0,005	
sorpt	-0,010	
AD		

decelerator

laser c

Main aims:

- Bring average beam velocity from ~180 to ~30 m/s
- Maintain N during deceleration

- Capture as many molecules as possible from cryogenic beam

Molecular beam source

Heavy -> long decelerator Rotational structure -> limited Stark shift

Stark deceleration of SrF ($X^2\Sigma$, N=1)

Guiding @ 345 m/s

Deceleration

Mathavan et al, Chemphyschem. **17,** 3709 (2016)

Stark deceleration from cryogenic source

Simulation: deceleration from cryogenic beam to 30 m/s

Aim: increase capture range by decelerating in N=2 state at 10 kV instead of N=1 at 5 kV

Aim:

- Stop the slow beam from transverse spreading
- Essential step to benefit from slow beam
- Transverse cooling takes ~ 2 ms

Status:

- Laser system has been set up
- Detailed investigation of BaF structure, to assess possible leak to Delta state
- Franck-Condon factors and transition dipole moments all seem favourable
- Laser cooling possibilities still very limited compared to Rb or similar atoms
- Planning first state manipulation experiments in BaF supersonic source

 $a^{2}\Delta$

Laser cooling

FC-factors sufficient for rapid (2 ms, 2000 photons) transverse laser cooling

Detector count rate

Aim:

Polarise the molecules using an electric field, while providing a very stable and weak magnetic field

Status:

- Design finished, negotiating with manufacturers
- Longer interaction time result in more stringent requirements on the magnetic field ($\pi/4$ B-field is 600 pT = 6 microG)

Interaction zone

Numbers

Table 1. The estimate of the number of molecules that can be detected per repetition of the experiment. We aim to run the experiment at 10 Hz.

Item	Number	Units	Resulting $\#$ mol./shot
Source	10^{13}	Molecules/shot Extraction officiency from buffer real coll	
	$0.005 \\ 0.24 \\ 0.3$	Fraction in $v = 0, N = 2$ Fraction in low-field seeking states	5×10^{10} from source; 4×10^9 in desired s $v_{long} = (180 \pm 50) \text{ m/s}, v_{trans} = \pm 30 \text{ m/s}.$
Decelerator	$\begin{array}{c} 0.002 \\ 0.3 \\ 0.7 \end{array}$	Fraction in velocity acceptance Fraction in spatial acceptance Efficiency of deceleration relative to guiding	2×10^6 , $v_{long} = (30 \pm 6) \text{ m/s}$, $v_{trans} = \pm 5$
Laser cooling	$\begin{array}{c} 0.8 \\ 0.7 \end{array}$	Laser cooling efficiency State transfer efficiency	9×10^5 , $v_{long} = (30 \pm 6) \text{ m/s}$, $v_{trans} = \pm 0.2$
Interaction zone	$\begin{array}{c} 0.8 \\ 1.0 \end{array}$	Transmission and state transfer efficiency Detection efficiency	$7 imes 10^5$

EPJD 72:197 (2018)

Towards longer coherent interaction times

Main challenge: how to maintain N while increasing t

Strongly connected to choice of molecule!

fountain

t ~ 100 ms

L ~ 0.5 m

Future trap

t ~ 1-10 s

L ~ 0.5 mm

molecules trapped in laser focus

Demonstrated first molecular fountain: PRL **117** 253201 (2016) **Rick Bethlem**

The NL-eEDM team

