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Outline	of	the	talk	

•  Brief	comments	on	EDM	searches	in	molecules.		
•  The	relativistic	coupled	cluster	method	and	its	applications	to	electron	

EDM	searches	in	cold	molecules	(YbF,	HgX,	BaF,	HgA,	and	YbOH).		
•  Previous	and	recent	results	for	the	electron	EDM.		



eEDM	in	the	Standard	Model	(SM)	&	
some	of	the	theories	beyond	SM		

	
eEDM in the Standard Model (SM) & 

some of the theories beyond SM



The	effective	electric	field	on	an	
electron		

	•  An	electric	field	(internal	or	external)	in	an	atom	or	a	molecule	causes	a	
shift,	ΔE=	-	deEeff.	

Introduction to the electric dipole moment of the electron (eEDM)

1.8 eEDM from molecules

The interaction Hamiltonian of a diatomic, due to the eEDM is given by [17]

HeEDM − de

Ne∑

i=1

βσi ·Eintl
i (1.67)

The internal electric field, Eintl
i , experienced by an electron, is due to the two nuclei

and all the other electrons in the molecule. Ne is the number of electrons in the molecule.
The experimental quantity is the energy shift due to the effective electric field, and it is
given by

∆E = ⟨ψ|HeEDM |ψ⟩

= −de

Ne∑

i=1

⟨ψ|βσi ·Eintl
i |ψ⟩

= −deEeff (1.68)

∴ Eeff =
Ne∑

i=1

⟨ψ|βσi.E
intl
i |ψ⟩ (1.69)

Eeff has to be evaluated using many-body theory. Hence, the energy shift is mea-
sured in an experiment, while the effective electric field is calculated from theory. The ratio
of these two quantities is the eEDM. In the equation above, |ψ⟩ is to the wave function of
a molecule in some state. Relativistic calculations are necessary, since non-relativistic cal-
culations give zero Eeff .

The evaluation of the two-body term in the expression for the internal electric field is
complicated. Hence, the following expression can be used [18]:

− de

Ne∑

i=1

βσi.E
intl = [−de

e
βσ · ▽▽▽,H0]

+ 2icde

Ne∑

i=1

βγ5p
2 (1.70)
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Effective	electric	field	
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|�ki is a k hole-k particle excitation.
For the k=0 case, H0|�0i = E0|�0i.
And Ek = E0 ��Ek; where the second term contains the energies of orbitals associated
with a k hole-k particle excitation.
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eEDM:	Combination	of	experiment	
and	theory		

	•  ΔEexpt	is	measured	in	experiment.	
	

•  The	effective	electric	field,	Eeff	,	is	calculated	from	theory.		
•  ΔEexpt	=	-	de	Eeff	η	(Eexternal)		
						=>	de	=	-	ΔEexpt	/	(Eeff	η	(Eexternal));		
						Here,	η	is	the	polarization	factor.		
						It	is	a	known	quantity,	since	it	is	a		function	of	Eexternal.		
•  Calculate	effective	field,	measure	ΔE,	η	is	known,	hence	obtain	de.		
	
	
	

eEDM from molecules

η(Eexternal) ∝ ⟨ẑ · n̂⟩ (1.43)

Here, η is called the polarization factor, and it is defined as being proportional to the dot
product of the z axis’ unit vector, defined by the applied electric field, and the internuclear
axis’ unit vector, n̂. In an ideal case, when this quantity is unity, then the molecule is said
to be fully polarized. What it means is that the external field and the internuclear axis are
along the same axis.

η can be obtained from experiment. Since the shift in energy due to an eEDM is
measured from experiment too, and Eeff is computed from many-body theory (relativistic),
a combination of all these is required to set an upper limit on eEDM.

The figure of merit for an eEDM experiment is given by (for example, refer [18]):

δde ∼
1

2πEeff

√
NT τη

(1.44)

N refers to the number of uncorrelated molecules. T refers to the total time, and τ to
the coherence time of the state in which the molecule is prepared. Note that only the effec-
tive field and polarization factor come outside of the square root. However, the latter has a
multiplicative factor that is less than one always. Therefore, a large effective field plays a
vital role in enhancing the sensitivity of the experiment.

1.3.0.2 Polarization factor

The sensitivity of an eEDM experiment also depends on what is known as the polarizing
electric field, Epol. This is an indicator of how much one can polarize a molecule, that is,
align it in the direction of an external electric field. The lower the value of the external field
applied, for a given Eeff , the better the sensitivity is. The is given by 2B/D, where B is the
rotational constant for a molecule, and D is the permanent electric dipole moment of the
molecule (PDM). A sample calculation is given below, for HgF:

Epol = 2B/D (1.45)

B =
!

4πµr2
(1.46)

∴ B =
1.054× 10−34 × 10−9

4× π × µ(2.00686× 10−10)2 × 1.675× 10−27
(1.47)
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Calculation	of	the	effective	electric	
field		
	

The	wavefunctions	are	calculated	using	a	suitable	many-body	method.	Relativistic		
treatment	is	necessary.	This	is	because	for	the	non-relativistic	case,	the	effective		
electric	field	is	zero	(Sandars,	1964,	1966,	and	1968).	Note	that	in	the	non-relativistic		
case,	the	electron	still	has	its	EDM,	but	it	is	due	to	all	the	interactions	in	the	atom/		
molecule	treated	non-relativistically	that	one	gets	the	effective	field	to	be	zero.		
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Dirac-Fock	method	(DF)		
	

• The relativistic version of the Hartee-Fock or Mean Field 
method. 

• The wave function of the atom/ molecule is given by a 
many-electron wavefunction known as the Slater 
Determinant. 

• H
O
 |Φ

O
>=E

O
 |Φ

O
>;H

O
 =T+V

N
 +V

DF
 ;V

DF
 is an average

•  Potential experienced by every electron due to all other 
electrons. 

• A single particle orbital: 

Dirac-Fock (DF) method



Dirac-Fock	method	(DF)		
	

Dirac-Fock (DF) method

• The DF equations are solved iteratively, to get the 
coefficients, C. 

• χ : basis sets. The choice of basis is one of the factors that 
determines the precision of the calculations. The other 
important factor that determines the precision is electron  
correlations.  

If



Electron	correlation	
	

•  The	physical	effects	beyond	those	embodied	in	the	mean	field	
approximation.		

•  •	Ecorr	=	E	–	EDF;	E	is	the	exact	energy,	EDF	is	the	Dirac-Fock	energy,	and	Ecorr	
is	the	correlation	energy.		

•  Examples	of	many-electron	theories	that	take	electron	correlation	into	
account	are:	Configuration	interaction	(CI),	Multi-Configuration	Hartree-
Fock/Dirac-Fock	(MCHF/	DHF),	Many-Body	Perturbation	Theory	(MBPT),	
and	Coupled	Cluster	Methods	(CCM).		



Many-body	perturbation	theory:	non-
relativistic	and	relativistic		

	The	difference	between	the	actual	1/rij	potential	and	the	MF		
potential	is	the	perturbation	to	the	Hamiltonian.		

Many-Body Perturbation Theory: non-
relativistic and relativistic (MBPT)

• The difference between the actual 1/r
ij
 potential and the 

MF potential is the perturbation to the Hamiltonian. 
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Coupled	Cluster	Method:	non-
relativistic	and	relativistic		

	
Relativistic Coupled Cluster Method 

Relativistic Coupled-cluster (CC)  wavefunction: |Ψ> = eT |Φ
0
>

H|Ψ>=E|Ψ> ; H is the Dirac-Coulomb Hamiltonian. Phi-0 is 
made up of orbitals that are four-component spinors. 
The CCSD approximation: T = T

1
+T

2

T
1
=Σ

ia
 t

i
aa+i

T
2
=Σ

ijab
 t

ij
aba+b+ji

Energy and amplitude equations: 
<Φ

0 
|e-TH

N
eT|Φ

0
 >=ΔE; H

N
 = H - <Φ

0
|H|Φ

0
>

<Φ
i
a|e-TH

N
eT|Φ

0 
>=0

<Φ
ij
ab|e-TH

N
eT|Φ

0
 >=0 

CC wavefunction has electron correlation to all-orders of perturbation, in the residual 
Coulomb interaction. 

∣Φ0 〉
T 1 ∣0 〉 T 2 ∣0 〉

	
Coupled-cluster	(CC)	wavefunction:																									Here,	T	=	T1	+	T2	+	…	+	TN	
In	MBPT,		
	
By	expanding	this	in	a	complete	set	of	particle-hole	states,	we	find	that		
Therefore,	the	CC	wavefunction	has	electron	correlation	to	all-orders	of	perturbation,		
in	the	residual	Coulomb	interaction.		
CC	is	also	both	size	extensive	and	size	consistent.		
At	any	level	of	particle-hole	excitation,	it	captures	more	physical	effects	than	other		
methods	such	as	truncated	configuration	interaction	or	finite-order	MBPT.		
The	CC	method	has	been	referred	to	as	the	gold-standard	of	many-body	theory	of	atoms		
and	molecules.		
	
	
	
	
	
	

The Coupled Cluster wave function

|ψ⟩ = |Φ0⟩+
∑

ia

tai |Φa
i ⟩+

∑

i>j,a>b

tabij |Φab
ij ⟩+ . . . (3.6)

= |Φ0⟩+ T1|Φ0⟩+ T2|Φ0⟩+ . . . (3.7)

where T1 =
∑

ia t
a
i a

†i, etc. Here, T1, T2, etc are called clusters.
One notices that there can be more possible excitations. For example, there can be two

one hole-one particle excitations happening simultaneously. The amplitude for such an
excitation would be given by:

∑

i>j,a>b

tai t
b
j|Φab

ij ⟩ =
1

2!
T 2
1 |Φ0⟩ (3.8)

The factor of 1
2! is to avoid overcounting. Likewise, one gets 1

3!T
3
1 , 1

4!T
4
1 , etc. Also,

there would be terms like 1
3!T

3
2 , 1

4!T
4
2 , etc.

There can also be terms that involve simultaneous single and double excitations, single
and triple excitations, and so on. Each of those terms that contain T1T2, T 2

2 , etc are said
to be coupled clusters. For example, the coupled cluster T1T2 contains the clusters T1 and
T2.

When one takes all of these excitations into account, the probability amplitude auto-
matically takes an exponential form:

|ψ⟩ = eT |Φ0⟩ (3.9)

which is the coupled cluster wave function!
The coupled cluster method is valid both in the non-relativistic and the relativistic

regimes. For the relativistic case, the reference state, |Φ0⟩, is a determinantal state, which
is built out of 4-component orbitals (single particle wave functions). Also, the Hamiltonian
typically contains the one-electron Dirac terms and the two-electron Coulomb interactions.
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Coupled	Cluster	Method:	non-
relativistic	and	relativistic		

	

This	expression	for	energy	terminates.		
The	CCSD	approximation:	T	=	T1+T2		
	
The	CCSD	amplitude	equations	are:		
	
	
	
	
	
	
H	is	the	Dirac-Coulomb	Hamiltonian,	for	the	relativistic	case.	The	reference	DF	state	is	
made	up	of	orbitals	that	are	four-component	spinors.		
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The	Hellman-Feynman	Theorem	
	

Note	that	due	to	the	Hellman-Feynman	theorem,	any	first	order	property	can		
be	evaluated	as	wither	an	expectation	value	or	an	energy	derivative.		
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Expectation	value	approach		
	

1.  Solve	the	Dirac	Fock	(DF)	equations,	get	the	DF	orbitals.		

2.  Solve	the	CCSD	equations,	get	t	amplitudes.		

	
3.  Solve	expectation	value	problem.		

	

  

1. Solve the Dirac Fock (DF) equations, get 
the DF orbitals.

2. Solve the CCSD equations, get t 
amplitudes.  

3. Solve expectation value problem. 

Truncation required!  

Linear expectation value approximation

This expression is due to Cizek (1969). 

We consider only the linear terms in eT in the expectation value for E
eff

. 



The	Finite	Field	Coupled	Cluster	
Method	(FFCC)		

	•  The	basic	idea	is	that	we	can	evaluate	a	property	by	either	an	expectation	
value	expression	or	an	energy	derivative.	We	do	not	need	to	truncate	if	
we	use	this	approach!		

The Finite Field Coupled Cluster Method 
(FFCC)

l  

λ is d
e
 for eEDM, and E

1
 = -d

e
E

eff
. The method can also be applied to 

other first order properties, like the molecular electric 

dipole moment (PDM). 

Comparing the two expressions: 

The basic idea is that we can evaluate a property by either an expectation 
value expression or an energy derivative. We do not need to truncate if we 
use this approach! 

0

Comparing	the	two	expressions:	

λ	is	de	for	eEDM,	and:		
	
	
The	method	can	also	be	applied	to	other	first	order	properties,	like	the	molecular	electric		
dipole	moment.		
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The	analytical	derivative	approach	
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Arponen (1983), Arponen and 
Bishop (1985).

Has excitation 
operators

Has de-excitation 
operators

Ket equation; identical to 
CC

Bra equation

The bra and the ket are treated on different footings: 

where

  

Normal CCM (NCCM)

This series terminates! 
NCCM better than CCM.

where

Expectation value of an operator, A: 

since

Therefore, 

If A is the eEDM operator, then the resulting
quantity is the effective field. 

This	series	terminates	and	satisfies	the		
Hellman-Feynman	theorem.		



Results	for	Eeff	in	YbF		
	

•  The	best	limit	comes	from	ThO,	but	a	new	result	from	YbF	is	expected	
soon.		

•  The	limit	on	eEDM	from	YbF	is:	de<	10.5	X	10-28	e-cm	(90%	confidence	
limit),	Hudson	et	al,	Nature,	2011.		

•  We	obtain	a	value	of	-23.1	GV/cm	for	Eeff	in	YbF,	using	a	relativistic	CCSD	
method,	in	the	linear	expectation	value	approximation,	with	an	estimated	
error	of	less	than	10%	(M	Abe	et	al,	Phys.	Rev.	A	90,	022501	(2014)).		

	



Results	for	Eeff	in	YbF		
	

•  Our	first	calculation	was	based	on	the	relativistic	CCSD	method.	A	fairly	
large	basis	was	used	(Yb:	35s,30p,19d,13f,5g,3h,2i,	F:	13s,10p,4d,3f).	The	
results	were	obtained	by	only	taking	into	account	the	linear	terms	in	the	
expectation	value	expression.		

•  We	overcome	this	limitation	in	finite	field	approach,	since	the	effective	
field	can	be	considered	as	the	derivative	of	energy,	with	respect	to	eEDM.	
There	is	no	truncation	here.		

•  Previous	calculations	on	YbF	were	based	on	the	Dirac-Fock	approximation	
(F	A	Parpia,	J	Phys	B,	1998),	effective	core	potential	methods	(Titov	et	al,	
Phys	Rev	Lett,	1996),	and	the	CI-SD	method	(Nayak	and	Chaudhuri,	Chem	
Phys	Lett,	2006).	Latest	result:	GHF-ZORA	and	GKS-ZORA	(Gaul	and	Berger,	
J	Chem	Phys,	2017).		

•  We	used	basis	sets	that	were	optimized	differently	than	for	the	previous	
calculations,	for	both	Yb	and	F.		

•  Using	FFCC,	we	obtain	-23	GV/cm,	which	is	in	good	agreement	with	the	
linear	expectation	value	result	of	-23.1	GV/cm.		



Results	for	HgX		
	

The	units	are	in	GV/cm.	For	the	FFCC	approach,	we	used	a	two	point	and	six	point		
central	difference	formula	to	evaluate	the	derivative.	We	used	the	following	values		
of	lambda:	10-3,	10-4,	10-5,	and	10-6.		
	
In	a	recent	arXiv	preprint,	the	authors	explore	laser	cooling	possibilities	for	HgF,	and		
Estimate	the	statistical	sensitivities	for	an	eEDM	experiment	to	be	~9	x	10-31	(beam		
experiment)	and	~10-32	(trap	experiment)	(Zhenghai	Yang	et	al,	arXiv	1811.03908).			
	

V	S	Prasannaa,	A	C	Vutha,	M	Abe,	B	P	Das,	Phys	Rev	Lett,	114,	183001	(2015).	
M	Abe,	V	S	Prasannaa,	B	P	Das,	Phys	Rev	A,	97,	032515	(2018).	

Molecule	 Basis	 DF	 LE-CCSD	 FF-CCSD	

HgF	 DZ	 -104.25	 -115.42	 -116.37	

HgCl	 DZ	 -103.57	 -113.56	 -114.31	

HgBr	 DZ	 -97.89	 -109.29	 -109.56	

HgI	 DZ	 -96.85	 -109.30	 -109.56	

BaF	 QZ	 -4.80	 -6.50	 -6.46	



Results	for	HgF:	error	estimates		
	

We	take	HgF	as	a	representative	case	for	estimating	the	error	in	our	calculations.		
Source	(1-a):	percentage	fraction	difference	between	the	TZ	and	DZ	FFCC	results.		
Source	(1-b):	percentage	fraction	difference	between	DZ	cases	with	and	without		
diffuse	functions.		
Source	(2):	percentage	fraction	difference	between	FFCCSD(T)	and	FFCCSD	results,		
at	DZ	level	of	basis.	

Molecule	 Error	(%	fraction)	

	
HgF	

1a.	Basis	 1b.	Basis:	
diffuse	

Correlation	
effects	

3.02	 2.4	 3.3	



New	potential	candidates	for	eEDM	
experiments	

	
•  Mercury	alkalis	(HgA;	A=Li,	Na,	and	K):	hold	promise	because	they	can	be	

produced	in	large	numbers	with	improved	cooling	and	photoassociation	
techniques.	Also,	lattice-trapped	experiments	would	mean	much	larger	
coherence	times.	Their	effective	electric	fields	are	comparable	to	YbF	
(HgLi:	-38	GV/cm,	HgNa:	-20	GV/cm,	and	HgK:	-16	GV/cm)	(A	Sunaga	et	al,	
arXiV	1810.10177).	Estimated	sensitivity:	~	10-30	e-cm.		

•  YbOH:	attractive	future	candidates	due	to	laser	cooling	possibilities.	Its	Eeff	
is	around	-23	GV/cm	(submitted	to	PRL).	Estimated	sensitivity	is	four	
orders	better	than	the	current	best	limit	set	by	ThO,	which	is	0.87	x	10-28	
e-cm	(Kozyrev	and	Hutzler,	PRL,	119,	133002	(2017)).		



New	potential	candidates	for	eEDM	
experiments:	YbOH	
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Limits	for	de:	Present	Status		
	

•  Limit	from	YbF:		
de<	10.5	X	10-28	e-cm	(90%	confidence	limit)		
Hudson	et	al,	Nature,	2011.	New	result	expected	soon.		
•  Limit	from	HfF+:		
de<	1.3	X	10-28	e-cm	(90%	confidence	limit)		
Cairncross	et	al,	PRL,	2017	(to	be	published).		
•  Limit	from	ThO:		
de<	0.87	X	10-28	e-cm	(90%	confidence	limit)	:	Current	best	limit	for	de.		
Baron	et	al,	Science,	2014.	
Eeff=80	GV/cm	(Skripnikov),	75	GV/cm	(Fleig).		



Conclusions	and	outlook		
	

•  Relativistic	many-body	theory	is	indispensable	in	the	searches	of	electron	
EDM.	It	is	necessary	to	determine	the	upper	limit	for	eEDM	and	also	for	
identifying	promising	candidates	for	eEDM	searches.		

•  With	new	results	expected	for	the	electron	EDM	experiments,	
improvements	in	relativistic	many-body	calculations	in	molecules	are	
desirable.		

•  Relativistic	coupled	cluster	theory	is	well	suited	for	the	EDM	searches	
mentioned	above.	It	would	be	necessary	to	develop	different	variants	of	
the	theory	for	this	purpose:	Extended	CC	method	(Arponen,	1983,	and	
Bishop,	1998),	tensor	network	tailored	CC	theory	for	open-shell	molecules	
(Kvall,	Legeza,	and	collaborators,	2018),	quantum	computation	
approaches	(Troyer	and	collaborators:	‘quantum	algorithms	for	electronic	
structure	calculations:	particle-hole	Hamiltonian	and	optimized	wave	
function	expansions’,	PRA,	2018).		
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All	results	above	are	to	be	multiplied	by	-1.	


