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Outline of the talk

Brief comments on EDM searches in molecules.

The relativistic coupled cluster method and its applications to electron
EDM searches in cold molecules (YbF, HgX, BaF, HgA, and YbOH).

Previous and recent results for the electron EDM.



eEDM in the Standard Model (SM) &
some of the theories beyond SM

Particle Physics Model Electron EDM (e-cm)
Standard Model <1038
Super-symmetric Model 1024 - 1028
Left-Right Symmetric Model 10%°-10%°

Multi-Higgs Model 10% - 10



The effective electric field on an
electron

An electric field (internal or external) in an atom or a molecule causes a
Shift, AE= - deEeﬂ:-
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M Abe et al, Phys. Rev. A 90, 022501 (2014)



eEDM: Combination of experiment
and theory

AE_ . is measured in experiment.

expt

The effective electric field, E 4, is calculated from theory.
AE oo = - de Eetr N (Ecyternal)

=>d = - DB / (Eess N (Ecyternal));

Here, n is the polarization factor.

It is a known quantity, since it is a function of E

external®

Calculate effective field, measure AE, n is known, hence obtain d..

1
27TEeff\/ NTT??

od,



Calculation of the effective electric
field

Ne

Eery = Y (¥|Bo B |y)

1=1

The wavefunctions are calculated using a suitable many-body method. Relativistic
treatment is necessary. This is because for the non-relativistic case, the effective
electric field is zero (Sandars, 1964, 1966, and 1968). Note that in the non-relativistic
case, the electron still has its EDM, but it is due to all the interactions in the atom/
molecule treated non-relativistically that one gets the effective field to be zero.



Dirac-Fock method (DF)

* The relativistic version of the Hartee-Fock or Mean Field
method.

* The wave function of the atom/ molecule is given by a
many-electron wavefunction known as the Slater

Determinant. ‘(I)O> — Det DL1P203 . . .

e H, |®,>=E, |®,>;H, =T+V +V_. ;V_. is an average

* Potential experienced by every electron due to all other
electrons.

* A single particle orbital:
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Dirac-Fock method (DF)
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* The DF equations are solved iteratively, to get the
coefficients, C.

* X : basis sets. The choice of basis is one of the factors that
determines the precision of the calculations. The other
important factor that determines the precision is electron
correlations.



Electron correlation

The physical effects beyond those embodied in the mean field
approximation.

e E_ . =E—Ey; Eis the exact energy, E; is the Dirac-Fock energy, and E
is the correlation energy.

corr

Examples of many-electron theories that take electron correlation into
account are: Configuration interaction (Cl), Multi-Configuration Hartree-
Fock/Dirac-Fock (MCHF/ DHF), Many-Body Perturbation Theory (MBPT),
and Coupled Cluster Methods (CCM).



Many-body perturbation theory: non-
relativistic and relativistic

The difference between the actual 1/r potential and the MF
potential is the perturbation to the Hamlltonlan

Hy|®y) = Ei|Py)

|®y) is a k particle-k hole excitation.
For the k=0 case, Hy|®g) = Fp|Po).
And E) = Ey — AE}; where the second term contains the energies of orbitals associated
with a k particle-k hole excitation. For example:
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Coupled Cluster Method: non-
relativistic and relativistic
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Coupled-cluster (CC) wavefunction: |¢)) = T |®y) Here, T=T, +T,+ ...+ Ty
INMBPT, Jy) = 1@0) +127) + 19() + ..

By expanding this in a complete set of particle-hole states, we find that |¢) = ¥ |®)
Therefore, the CC wavefunction has electron correlation to all-orders of perturbation,
in the residual Coulomb interaction.

CC is also both size extensive and size consistent.

At any level of particle-hole excitation, it captures more physical effects than other
methods such as truncated configuration interaction or finite-order MBPT.



Coupled Cluster Method: non-
relativistic and relativistic

Hly) = El)
Hel'|®g) = Ee’'|®)
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(Bole THel'|®g) = E
This expression for energy terminates.
The CCSD approximation: T = T,+T,
The CCSD amplitude equations are:
(®%e THel|®y) = 0
(®Ple " He"|[®g) = 0

H is the Dirac-Coulomb Hamiltonian, for the relativistic case. The reference DF state is
made up of orbitals that are four-component spinors.



The Hellman-Feynman Theorem

HA)[YN) = EN|$(A))
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Note that due to the Hellman-Feynman theorem, any first order property can
be evaluated as wither an expectation value or an energy derivative.



Expectation value approach

1. Solve the Dirac Fock (DF) equations, get the DF orbitals.

l

2. Solve the CCSD equations, get t amplitudes.

l

3. Solve expectation value problem.
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Truncation required!
We consider only the linear terms in e' in the expectation value for E_.
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The Finite Field Coupled Cluster
Method (FFCC)

* The basic idea is that we can evaluate a property by either an expectation
value expression or an energy derivative. We do not need to truncate if

we use this approach!
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The method can also be applied to other first order properties, like the molecular electric

dipole moment.



The analytical derivative approach

The analytical counterpart of FFCC.

H“|l'“> = Ep|y®)
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Equating terms of order lambda:
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These are the energy and amplitude equations, to be solved, to obtain
E,. Note that before solving these equations, one must solve the usual

CC equations.
The effective electric field can be obtained, once we know E, since it is

A first order property. In this case, H' is the eEDM operator.




Normal CCM
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Arponen (1983), Arponen and
Bishop (1985).

Expectation value of an operator, A: (A) = (]| Ale)
vl
Therefore, W)
(A) = (@ TG_TAGT|<I>U) This series terminates and satisfies the
Hellman-Feynman theorem.




Results for E_ in YbF

The best limit comes from ThO, but a new result from YbF is expected
soon.

The limit on eEDM from YbF is: d < 10.5 X 1028 e-cm (90% confidence
limit), Hudson et al, Nature, 2011.

We obtain a value of -23.1 GV/cm for E_; in YbF, using a relativistic CCSD
method, in the linear expectation value approximation, with an estimated
error of less than 10% (M Abe et al, Phys. Rev. A 90, 022501 (2014)).



Results for E_ in YbF

Our first calculation was based on the relativistic CCSD method. A fairly
large basis was used (Yb: 35s,30p,19d,13f,5g,3h,2i, F: 135,10p,4d,3f). The
results were obtained by only taking into account the linear terms in the
expectation value expression.

We overcome this limitation in finite field approach, since the effective
field can be considered as the derivative of energy, with respect to eEDM.
There is no truncation here.

Previous calculations on YbF were based on the Dirac-Fock approximation
(F A Parpia, J Phys B, 1998), effective core potential methods (Titov et al,
Phys Rev Lett, 1996), and the CI-SD method (Nayak and Chaudhuri, Chem
Phys Lett, 2006). Latest result: GHF-ZORA and GKS-ZORA (Gaul and Berger,
J Chem Phys, 2017).

We used basis sets that were optimized differently than for the previous
calculations, for both Yb and F.

Using FFCC, we obtain -23 GV/cm, which is in good agreement with the
linear expectation value result of -23.1 GV/cm.



Results for HgX
MMI!-

-104.25 -115.42 -116.37
HgCI DZ -103.57 -113.56 -114.31
HgBr DZ -97.89 -109.29 -109.56
Hgl DZ -96.85 -109.30 -109.56
BaF QZ -4.80 -6.50 -6.46

The units are in GV/cm. For the FFCC approach, we used a two point and six point
central difference formula to evaluate the derivative. We used the following values
of lambda: 103, 104, 10, and 10°°.

In a recent arXiv preprint, the authors explore laser cooling possibilities for HgF, and
Estimate the statistical sensitivities for an eEDM experiment to be ~9 x 103! (beam
experiment) and ~10-3? (trap experiment) (Zhenghai Yang et al, arXiv 1811.03908).

V S Prasannaa, A C Vutha, M Abe, B P Das, Phys Rev Lett, 114, 183001 (2015).
M Abe, V S Prasannaa, B P Das, Phys Rev A, 97, 032515 (2018).



Results for HgF: error estimates

1a. Basis 1b. Basis: Correlation
HgF diffuse effects
3.02 2.4 3.3

We take HgF as a representative case for estimating the error in our calculations.
Source (1-a): percentage fraction difference between the TZ and DZ FFCC results.
Source (1-b): percentage fraction difference between DZ cases with and without
diffuse functions.

Source (2): percentage fraction difference between FFCCSD(T) and FFCCSD results,
at DZ level of basis.



New potential candidates for eEDM
experiments

* Mercury alkalis (HgA; A=Li, Na, and K): hold promise because they can be
produced in large numbers with improved cooling and photoassociation
techniques. Also, lattice-trapped experiments would mean much larger
coherence times. Their effective electric fields are comparable to YbF
(HgLi: -38 GV/cm, HgNa: -20 GV/cm, and HgK: -16 GV/cm) (A Sunaga et al,
arXiV 1810.10177). Estimated sensitivity: ~ 103%e-cm.

* YbOH: attractive future candidates due to laser cooling possibilities. Its E_
is around -23 GV/cm (submitted to PRL). Estimated sensitivity is four
orders better than the current best limit set by ThO, which is 0.87 x 1028
e-cm (Kozyrev and Hutzler, PRL, 119, 133002 (2017)).



New potential candidates for eEDM
experiments: YoOH

E."F (GV/cm) vs O (degrees)
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Limits for d_: Present Status

* Limit from YbF:

d.< 10.5 X 1028 e-cm (90% confidence limit)

Hudson et al, Nature, 2011. New result expected soon.

e Limit from HfF+:

d.< 1.3 X 1028 e-cm (90% confidence limit)

Cairncross et al, PRL, 2017 (to be published).

* Limit from ThO:

d.<0.87 X 1028 e-cm (90% confidence limit) : Current best limit for d..

Baron et al, Science, 2014.
E.+=80 GV/cm (Skripnikov), 75 GV/cm (Fleig).



Conclusions and outlook

* Relativistic many-body theory is indispensable in the searches of electron
EDM. It is necessary to determine the upper limit for eEDM and also for
identifying promising candidates for eEDM searches.

* With new results expected for the electron EDM experiments,
improvements in relativistic many-body calculations in molecules are
desirable.

* Relativistic coupled cluster theory is well suited for the EDM searches
mentioned above. It would be necessary to develop different variants of
the theory for this purpose: Extended CC method (Arponen, 1983, and
Bishop, 1998), tensor network tailored CC theory for open-shell molecules
(Kvall, Legeza, and collaborators, 2018), quantum computation
approaches (Troyer and collaborators: ‘quantum algorithms for electronic
structure calculations: particle-hole Hamiltonian and optimized wave
function expansions’, PRA, 2018).



ASIDE



Results for YbF

Basis set type Method Total energy (a.u.) T, diagnostic E.; (GV/em) DM* Ay (MHz)
DZ DF —14167.289602 17.9 3.21

TZ DF —14167.321791 18.2 3.21

QZ DF —14167.323266 18.2 3.21 6239
DZ 49e-CCSD(197) —14169.344299 0.0432 214 3.37

TZ 49e-CCSD(255) —14169.899971 0.0588 21.1 3.46

QZ 49e-CCSD(293) —14170.080575 0.0397 22.7 3.59

QZ 49e-CCSD(303) —14170.026999 0.0339 22.8 3.59

QZ 69e-CCSD(293) —14170.501826 0.0334 23.1 3.60

QZ 19e-CCSD(293) —14170.522807 0.0311 23.1 3.60 7913
Expt. 3.91(4)° 7424(81)

“The direction of the dipole moment is taken as the molecular axis from the fluorine to the ytterbium atom.

M Abe et al, Phys. Rev. A 90, 022501 (2014).



DF Results for HgX

The DF contribution can be rewritten as:  >.o_, 3.7 21 CRECH OGP IS
Atom Mixing| Hgk| HgCl| HgBr Hgl
Hg s — p1/2|-266.29(-262.07|-249.39|-242.34
Hg pi/2 — s| 373.37| 367.74| 349.42| 339.56
Hg p3j2 —dsgo| 31.22) 2522 21.84| 20.99
Hg d3jo —p3jo| -32.26| -26.35| -22.48| -21.84
Hg dsjo — f5,2| -0.91 -0.51 -0.39] -0.33
Hg f5/2 — ds /o 0.92 0.52 0.4 0.33
X s —pij2| -2.78] -4.85] -10.58| -17.19
X pij2— S 2.79 4.92| 11.17| 19.87
Total: 106.06| 104.62| 99.99| 99.05
DF 105.47| 104.03| 99.55| 98.99
s —pi1y2 and py o — s| 107.08| 105.67| 100.03| 97.22

All results above are to be multiplied by -1.

V. S. Prasannaa, M. Abe, V. M. Bannur, and B. P. Das
Phys. Rev. A 95, 042513 (2017) -

Published 21 April 2017.




