Finite-field coupled cluster method for molecular properties

A. BORSCHEVSKY

 faculty of science and engineering van swinderen institute for particle physics and gravity

Search for new physics with atoms and molecules:

- Promising alternative to high energy experiments
- Small scale
- (Relatively) inexpensive
- Various enhancement effects \rightarrow high sensitivity
- Versatile, sensitive to different phenomena: variation of fundamental constants, parity violation, electron/proton EDM, search for dark matter, tests of Lorenz invariance...
- Tiny observable effects:
 - Very sensitive systems
 - Extremely precise measurements
 - Theoretical support is important

M.S. Safronova, D. Budker, D. DeMille, D.F.J. Kimball, A. Derevianko, C.W. Clark, Rev. Mod. Phys. 90 (2018)

What can theory contribute?

- Understanding the mechanisms whereby electronic structure is affected by the phenomena
- Identification of atomic/molecular candidates with enhanced sensitivity
- Supplying the necessary parameters for the interpretation of the results
- Calculations of the practical parameters needed for the experiment (spectra, lifetimes of levels, etc.)

Theoretical input should be accurate and reliable.

Which brings us to the computational methods...

Which brings us to the computational methods...

Relativistic coupled cluster

- Extremely powerful and accurate method for electron correlation
- Exponential wave operator:

$$\Psi = \exp(S)\Psi_0 = \left(1 + S + \frac{S^2}{2!} + \cdots\right)\Psi_0$$

• *S* is the excitation operator:

$$S = S_1 + S_2 + \dots + S_N; \ S_1 = \sum_{ia} s_i^a a_a^{\dagger} a_i; \ S_2 = \sum_{ijab} s_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i$$

• CC energy equations:

$$\langle \Phi_0 | (H - E_{\text{CCSD}}) \exp(S_1 + S_2) | \Phi_0 \rangle = 0$$

Relativistic coupled cluster

- **CCSD(T)** single reference coupled cluster Closed shell systems/systems with one dominant configuration (good example: BaF, $X^{2}\Sigma$)
- **FSCCSD** multireference Fock space coupled cluster Open shell systems, excited states, bond dissociation (good example: ThO, ${}^{3}\Delta_{1}$)

Use the most suitable method, or both in complementary manner.

- Obtaining expectation values/matrix elements within CC problematic (some implementations available/ongoing)
- Alternative: use <u>finite field</u> approach
- Established method: dipole moments, polarizabilities, effective field gradients...

Basic idea:

- $H=H^{(0)}+\lambda H'$
- Expectation value is obtained from the derivative of the energy with respect to $\boldsymbol{\lambda}$

• Example: effective electric field, E_{eff}

$$\hat{H}^{(0)} = \sum_{i}^{n} \left[c \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} + V_{nuc}(\mathbf{r}_{i}) \right] + \sum_{i < j} \frac{1}{r_{ij}}$$

$$H^{\text{EDM}} = 2cd_e \sum_{i=1}^n i\gamma^0(i)\gamma^5(i)\mathbf{p}^2(i)$$

$$E_{\text{eff}} = \langle \Psi | 2c \sum_{i=1}^{n} i \gamma^{0}(i) \gamma^{5}(i) \mathbf{p}^{2}(i) | \Psi \rangle = \langle \Psi | H^{\text{EDM}'} | \Psi \rangle$$

$$H^{\text{EDM}\prime} = H^{\text{EDM}}/d_e$$

• Example: effective electric field, E_{eff}

$$H^{\text{EDM}\prime} = 2c \sum_{i=1}^{n} i\gamma^{0}(i)\gamma^{5}(i)\mathbf{p}^{2}(i)$$

$$H = H^{(0)} + \lambda H^{\text{EDM}}, \quad \lambda \equiv d_e$$

$$E(\lambda) = E(0) + \lambda \frac{dE(\lambda)}{d\lambda} \bigg|_{\lambda=0} + \dots$$

$$E_{\rm eff} = \left. \frac{dE(\lambda)}{d\lambda} \right|_{\lambda=0}$$

$$\frac{dE(\lambda)}{d\lambda}\approx \frac{E(\lambda)-E(-\lambda)}{2\lambda}$$

Abe et al., PRA 97, 032515 (2018)

• Properties:

- $\circ E_{\rm eff}$
- \circ Scalar-pseudoscalar interaction coefficient $W_{\rm s}$
- NAM interaction coefficient W_A
- Magnetic hyperfine coupling constants
- 0 ...
- Developers version of the DIRAC program
- CCSD(T), FSCC, DHF, MP2
- Systematic investigation of effect of computational parameters and uncertainty evaluation

Applications

- W_A in BaF
- E_{eff} and W_s in BaF
- $E_{\rm eff}$ in YbF

 $W_{\rm A}$ coefficient in BaF

 Nuclear anapole moment is the dominant NSD-PV effect in heavy systems

$$H_{\rm NSD} = \frac{G_F}{\sqrt{2}I} \sum_i (\kappa_A + \kappa_{\rm ax} + \kappa_{\rm hfs}) (\boldsymbol{\alpha}_i \cdot \boldsymbol{I}) \rho(\boldsymbol{r}_i)$$

- Planned measurement in BaF*
- $W_{\rm A}$ coefficient can be used to extract an apole from measurements

$$W_{A} = \frac{G_{F}}{\sqrt{2}} \left\langle +\frac{1}{2} \right| \sum_{i} \rho(\mathbf{r}_{i})\alpha_{+} \left| -\frac{1}{2} \right\rangle.$$
$$\alpha_{+} = \alpha_{x} + i\alpha_{y} = \begin{pmatrix} 0 & \sigma_{x} \\ \sigma_{x} & 0 \end{pmatrix} + i \begin{pmatrix} 0 & \sigma_{y} \\ \sigma_{y} & 0 \end{pmatrix}$$

E. Altuntas et al., PRL **120**, 142501 (2018)

$W_{\rm A}$ coefficient in BaF

• Computational parameters:

- Basis set
- Correlation: method (DHF/DFT/MP2/CCSD(T)/FSCC)
- Correlation (CC): higher excitations
- Correlation (CC): number of correlated electrons and virtual orbitals
- Treatment of relativity (Gaunt term)

Basis set effects

- We use relativistic basis sets of Dyall*
- Manually augment with diffuse and tight functions

$$g_{ijk} = Nx^i y^j z^k e^{-\alpha r^2},$$
$$L = i + j + k$$

K. G. Dyall, JPCA **113**, 12638 (2009), Theor. Chem. Acc. **135**, 128 (2016) D. Doeglas, Master Thesis

Basis set effects

• Basis set quality:

	v2z	v3z	v4z
N. functions	Ba: 25s19p13d F: 10s6p1d	Ba: 31s24p16d3f F: 14s8p2d1f	Ba: 35s30p19d4f3g F: 18s10p3d2f1g
$W_{\rm A}$ (Hz)	129.22	141.42	141.84

• Diffuse functions:

	v4z	s-aug-v4z (Ba)	s-aug-v4z (F)
$W_{\rm A}$ (Hz)	141.84	141.76	141.05

• Tight functions:

	v4z	v4z+ts	v4z+tp	v4z+td	v4z+tf	v4z+tg
$W_{\rm A}$ (Hz)	141.84	141.89	141.97	141.82	143.02	142.31

Correlation treatment and final result

Method	W _A (Hz)
DHF	112.3
DFT(CAMB3LYP)	112.9
MP2	138.3
CCSD	150.7
CCSD(T)	148.4
FSCC	148.8

Source of error	$ \Delta W_{\rm A} $ (Hz)
Basis set	0.5
Virtual space cut-off	1.0
Higher excitations	1.5
Full Breit; QED	0.7
Numerical	0.5
Total	2

Gaunt contribution: -0.7 Hz (on DHF level)

 $W_{\rm A}(\rm CCSD(T)+Gaunt)=147.7\pm 2~Hz$

Recommended value

Method	W _A (Hz)	Ref.
CCSD(T)+Gaunt	147.7±2	Present
RECP+SCF+EO	181	Kozlov et al., PRA 56 R3326 (1997)
Semiempirical	164	DeMille et al., PRL 100 , 023003 (2008)
4c-RASCI	160	Nayak and Das, PRA 79 , 060502 (2009)
Scaled ZORA-HF	190	Isaev & Berger, PRA 86, 062515 (2012)
DHF/DFT+CP	146	Borschevsky et al., PRA 88 , 022125 (2013)

Trends in the group

• $W_{\rm A}$ is expected to scale as $Z^2 R_W$

$$R_{\rm W} = \frac{2\gamma + 1}{3} \left(\frac{a_B}{2Zr_0A^{\frac{1}{3}}} \right)^{2-2\gamma} \frac{4}{[\Gamma(2\gamma + 1)]^2},$$
$$\gamma = \sqrt{1 - (Z\alpha)^2}.$$

Molecule	DHF	B3LYP	MP2	CCSD(T)
BeF	0.38	0.40	0.44	0.46
MgF	3.67	4.34	4.41	4.91
CaF	7.74	8.39	9.55	10.75
SrF	37.29	41.50	45.79	50.87
BaF	112.27	116.02	138.23	147.16

Flambaum et al., Phys. Lett. B 146, 367 (1984)

Trends in the group

• $W_{\rm A}$ is expected to scale as $Z^2 R_W$

$$R_{\rm W} = \frac{2\gamma + 1}{3} \left(\frac{a_B}{2Zr_0A^{\frac{1}{3}}} \right)^{2-2\gamma} \frac{4}{[\Gamma(2\gamma + 1)]^2},$$
$$\gamma = \sqrt{1 - (Z\alpha)^2}.$$

DHF	B3LYP	MP2	CCSD(T)		
0.38	0.40	0.44	0.46	а _{рнғ} =1.768	
3.67	4.34	4.41	4.91	1.5 a _{B3LYP} =1.759	B
7.74	8.39	9.55	10.75	a _{MP2} =1.789	SrF
37.29	41.50	45.79	50.87	a _{ccsp(T)} =1.799	
	DHF 0.38 3.67 7.74 37.29	DHFB3LYP0.380.403.674.347.748.3937.2941.50	DHFB3LYPMP20.380.400.443.674.344.417.748.399.5537.2941.5045.79	DHFB3LYPMP2CCSD(T)0.380.400.440.463.674.344.414.917.748.399.5510.7537.2941.5045.7950.87	DHF B3LYP MP2 CCSD(T) 0.38 0.40 0.44 0.46 3.67 4.34 4.41 4.91 7.74 8.39 9.55 10.75 37.29 41.50 45.79 50.87

PHYSICAL REVIEW A 98, 032510 (2018)

Nuclear anapole moment interaction in BaF from relativistic coupled-cluster theory

Yongliang Hao,¹ Miroslav Iliaš,² Ephraim Eliav,³ Peter Schwerdtfeger,^{4,5} Victor V. Flambaum,^{6,7} and Anastasia Borschevsky^{1,*}

$E_{\rm Eff}$ and $W_{\rm s}$ in BaF

NL-eEDM Measuring the electron-EDM with BaF molecules

Scientific staff: Anastasia Borschevsky **Rick Bethlem** Steven Hoekstra Klaus Jungmann Rob Timmermans Wim Ubachs Lorenz Willmann

PhD students: Parul Aggarwal Alexander Boeschoten Kevin Esajas Pi Haase Yongliang Hao Virginia Marshall Thomas Meijknecht Maarten Mooij Anno Touwen Artem Zapara Postdocs Malika Denis Yanning Yin

university of groningen van swinderen institute for particle physics and gravity Nik[hef

Dutch National Institute for (astro)Particle Physics

$E_{\rm Eff}$ and W_s in BaF

• In paramagnetic systems two main contributions to the EDM are the eEDM (d_e) and the S-PS electron-nucleon interaction (C_s)

$$\hat{H}_S = i \frac{G_F}{\sqrt{2}} Z C_S \sum_e \gamma_e^0 \gamma_e^5 \rho(\boldsymbol{r}_e)$$

Associated interaction coefficient:

$$W_S = \frac{1}{\Omega} \langle \psi_{\Omega} | \hat{H}_S | \psi_{\Omega} \rangle$$

Computational scheme

- Extensive tests were carried out
- Final computational scheme:
 - E_{eff} : Dyall's v4z basis set+ tight f function All electrons correlated, virtual cut-off: 2000 a.u. CCSD(T)+Gaunt
 - *W*_s: Dyall's s-aug-v4z basis set+ tight f function All electrons correlated, virtual cut-off: 2000 a.u. CCSD(T)+Gaunt

Results

----- [[

Method	$E_{\rm eff}$ (GV/cm)	Ref.
CCSD(T)+Gaunt	6.33±0.14	Present
RECP+SCF+EO	7.5	Kozlov et al., PRA 56 R3326 (1997)
4c-RASCI	7.28	Nayak and Chaudhuri, J. Phys. B 39 1231 (2006)
4c-CISD	4.32	Fukuda et al., PRA 93 , 012518 (2016)
GKS ZORA	6.0	Gaul and Berger, JCP 86, 014109 (2017)
CCSD(T)	6.46	Abe et al., PRA 97 032515 (2018)
CCSD	6.6	Sunaga et al., PRA 98 , 042511 (2018)

Results

----- [

Method	W _s (KHz)	Ref.
CCSD(T)+Gaunt	8.30±0.16	Present
RECP+SCF+EO	5.9	Kozlov et al., PRA 56 R3326 (1997)
4c-RASCI	9.7	Nayak et al., PRA 75 022510 (2007)
MBPT	8.4	Nayak and Chaudhuri, PRA 78 , 012506 (2008)
CCSD	8.4	Sunaga et al., PRA 98 , 042511 (2018)

$E_{\rm eff}$ in YbF: multireference character

- Ground state ²Σ (f¹⁴ s¹), but has a low-lying excited state (f¹³ s²)
- Miltireference character; (T) are unstable. Use CCSD?

$E_{\rm eff}$ (GV/cm)	CCSD	FSCC
v2z	21.34	21.85
v3z	20.57	23.66
v4z	23.65	23.91

Here, FSCC is better suited.

Magnetic hyperfine coupling constants

- Getting an accuracy estimate
- Useful in experiments
- New implementation, first test case: Cs
- Use FSCC to treat excited states
- Large basis sets (t-aug-ae4z)

Yongliang Hao: W_A , **Pi Haase** and **Malika Denis**: E_{eff} , **Diewertje Doeglas**: W_s , **Anne de Vries**: hyperfine structure

Victor Flambaum

Ephraim Eliav

Miroslav Ilias

Peter Schwerdtfeger

Victor Flambaum