Singlet-triplet coherences in nuclear magnetic resonance

Kirill Sheberstov

J. T. Hill-Cousins, L. J. Brown, R. C. D. Brown, M. H. Levitt, A. V. Yurkovskaya, K. L. Ivanov

- Introduction to NMR
- ST coherences in pairs of weakly coupled spins
- ST coherences in pairs of near-equivalent spins

Precession of a nuclear spin-1/2

Control over nuclear spin states

Nuclear paramagnetism

NMR coherences

Internal interactions

Chemical shift

J-coupling

Electrons interact with the B₀ and induce a field on a nuclear

Nuclear spins interact indirectly via electrons

Two weakly coupled spins

Two strongly coupled spins

T₁: relaxation of the triplet populations

|Τ_**〉**

T_{IST}: relaxation of the Inner singlet-triplet coherence

- Introduction to NMR
- ST coherences in pairs of weakly coupled spins
- ST coherences in pairs of near-equivalent spins

Published on Web 08/26/2008

The Long-Lived Nuclear Singlet State of ¹⁵N-Nitrous Oxide in Solution

Giuseppe Pileio,[†] Marina Carravetta,[†] Eric Hughes,[‡] and Malcolm H. Levitt^{*,†}

School of Chemistry, University of Southampton, SO17 1BJ, Southampton, U.K., and Nestlé Research Centre, NESTEC LTD, 1000 Lausanne 26, Switzerland

Extremely Low-Frequency Spectroscopy in Low-Field Nuclear Magnetic Resonance

Giuseppe Pileio, Marina Carravetta, and Malcolm H. Levitt*

School of Chemistry, Southampton University, SO17 1BJ, United Kingdom (Received 28 May 2009; published 20 August 2009)

Adiabatic change of the eigen-states

Adiabatic change of the eigen-states

Adiabatic change of the eigen-states

Long-Lived Coherences for Homogeneous Line Narrowing in Spectroscopy

Riddhiman Sarkar,¹ Puneet Ahuja,¹ Paul R. Vasos,^{1,*} and Geoffrey Bodenhausen^{1,2}

Pulse sequence for creating the ST coherence

Spin-locking field

Evolution under spin-locking RF-field results in new eigen-states: singlet and three triplet

However these triplet states have the quantization axis parallel to the *x*-axis of the rotating frame

$$\hat{\mathbf{I}}_{\mathbf{x}} - \hat{\mathbf{S}}_{\mathbf{x}} \xrightarrow{2\pi J (\hat{\mathbf{I}} \cdot \hat{\mathbf{S}})} \mathbf{Cos}(\pi J t) \{ \hat{\mathbf{I}}_{\mathbf{x}} - \hat{\mathbf{S}}_{\mathbf{x}} \} + \mathbf{Sin}(\pi J t) \{ 2\hat{\mathbf{I}}_{\mathbf{y}} \, \hat{\mathbf{S}}_{\mathbf{z}} - 2\hat{\mathbf{I}}_{\mathbf{z}} \, \hat{\mathbf{S}}_{\mathbf{y}} \}$$

Long-Lived Coherences for Homogeneous Line Narrowing in Spectroscopy

Riddhiman Sarkar,¹ Puneet Ahuja,¹ Paul R. Vasos,^{1,*} and Geoffrey Bodenhausen^{1,2}

- Introduction to NMR
- Singlet Triplet Coherences in pairs of weakly coupled spins
- Singlet Triplet Coherences in pairs of near-equivalent spins

NMR Spectroscopy

A Nuclear Singlet Lifetime of More than One Hour in Room-Temperature Solution**

Gabriele Stevanato, Joseph T. Hill-Cousins, Pär Håkansson, Soumya Singha Roy, Lynda J. Brown, Richard C. D. Brown, Giuseppe Pileio, and Malcolm H. Levitt**

B [T]	<i>T</i> _s [s] ^[a]	<i>T</i> ₁ [s] ^[a]	T _s [s] ^[b]	T ₁ [s] ^[b]
0.0020 ± 10^{-4}	3950 ± 220	78 ± 3	$270\pm\!20$	33 ± 1
0.10 ± 0.02	4030 ± 220	72 ± 2	348 ± 8	37 ± 2
0.4 ± 0.2	4250 ± 130	73 ± 2	380 ± 8	40 ± 1
0.7 ± 0.3	4240 ± 150	76 ± 2	$381\pm\!12$	46 ± 1
1.6 ± 0.7	4050 ± 180	73 ± 2	$487\pm\!22$	48 ± 2
3.8 ± 1.3	3310 ± 70	55 ± 2	624 ± 17	37 ± 1
5.1 ± 1.3	2590 ± 30	43 ± 1	611 ± 26	29 ± 1
7.0 ± 1.2	1610 ± 20	29 ± 1	574 ± 19	22 ± 1
8.0 ± 1.0	1240 ± 40	24 ± 1	524 ± 28	19 ± 1
9.39	950 ± 60	19 ± 1	$485\pm\!23$	18 ± 1

[a] Degassed sample; [b] non-degassed sample with [O2] about 2 mм.

25

Table 1: Singlet (T_s) and magnetization (T_1) decay time for ${}^{13}C_2$ -I in $[D_6]$ acetone as a function of magnetic field *B*.

Efficiency of the coherences excitation

- Hard pulse excites 10 times stronger coherences within triplet manifold
- Detection further scales down the relative intensities of the OST transitions to the triplet ones by the same factor of 10
- The common reason: the OST coherences are less efficiently coupled to the probe coil

Near-equivalent spin pairs

Selective excitation of the OST coherences

Nutation of the OST coherences

Comparison of different methods for excitation of the OST coherences

Shuttling setup for field-cycling

Shuttling setup for field-cycling

IST coherence in weak magnetic field

Conclusions

Remarkably long lifetime of the inner singlettriplet coherence of about 200 s

very precise measurement of the spin-spin *J*-couplings allows extract the information about chemical environment

It opens the way to study molecules that are almost an order of magnitude larger than could be hitherto studied.

J-CPMG

 $|T_\rangle$

 $|2\rangle \approx |T_0\rangle$

|3)≈|S>

 $\pi(S-T_0)$

|3)≈|S)

|Τ_)

 $\langle |2\rangle \approx |T_0\rangle$

Echo delay should be:

$$\tau_e = \frac{1}{4\sqrt{J^2 + \Delta^2}} \approx \frac{1}{4J}$$

Number of echoes should be:

$$n = \operatorname{round}(\frac{\pi}{2\theta})$$

Relaxation

Two strongly coupled spins

